ST L6388E User Manual

High-voltage high and low side driver
Features
High-voltage rail up to 600 V
dV/dt immunity ±50 V/nsec in full temperature
range
– 400 mA source – 650 mA sink
Switching times 70/40 nsec rise/fall with 1nF
load
3.3 V, 5 V, 15 V CMOS/TTL input comparators
with hysteresis and pull-down
Internal bootstrap diode
Outputs in phase with inputs
Dead time and interlocking function
L6388E
DIP-8 SO-8
Description
The L6388E is a high-voltage device, manufactured with the BCD™ “offline” technology.
It has a driver structure that enables the driving of independent referenced n channel Power MOSFETs or IGBTs. The high side (floating) section is enabled to work with voltage rail up to 600 V.
The logic inputs are CMOS/TTL compatible to ease the interfacing with controlling devices.

Figure 1. Block diagram

BOOTSTRAP DRIVER
V
3
CC
HIN
LIN
2
1
UV
DETECTION
LOGIC
SHOOT
THROUGH
PREVENTION
UV
DETECTION
LEVEL
SHIFTER
R
R
S
LVG
DRIVER
V
CC
HVG
DRIVER
Vboot
8
H.V.
HVG
7
OUT
6
LVG
5
GND
4
Cboot
TO LOAD
February 2012 Doc ID 13991 Rev 2 1/19
www.st.com
19
Contents L6388E
Contents
1 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Input logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.1 C
selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BOOT
7 Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19 Doc ID 13991 Rev 2
L6388E Electrical data

1 Electrical data

1.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Val ue
Symbol Parameter
Min. Max.
Unit
dV
V
out
V
V
boot
V
hvg
V
lvg
V
out
P
T
T
Output voltage V
Supply voltage - 0.3 18 V
cc
-18 V
boot
boot
Floating supply voltage - 0.3 618 V
High side gate output voltage V
-0.3 V
out
boot
Low side gate output voltage -0.3 Vcc +0.3 V
Logic input voltage -0.3 Vcc +0.3 V
i
/dtAllowed output slew rate 50 V/ns
Total power dissipation (TJ = 85 °C) 750 750 mW
tot
Junction temperature 150 150 °C
j
Storage temperature -50 150 °C
s
Note: ESD immunity for pins 6, 7, and 8 is guaranteed up to 900 V (human body model).

1.2 Thermal data

Table 2. Thermal data

Symbol Parameter SO-8 DIP-8 Unit
Thermal resistance junction to ambient 150 100 °C/W
R
th(JA)
V
V

1.3 Recommended operating conditions

Table 3. Recommended operating conditions

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
V
out
V
BS
f
sw
V
cc
T
1. If the condition V
2. VBS = V
6 Output voltage
(2)
8 Floating supply voltage
Switching frequency HVG, LVG load CL = 1 nF 400 kHz
3 Supply voltage 17 V
J
Junction temperature -45 125 °C
- V
boot
- V
out
boot
.
< 18 V is guaranteed, V
out
can range from -3 to 580 V.
out
Doc ID 13991 Rev 2 3/19
(1)
(1)
17 V
580 V
Pin connection L6388E

2 Pin connection

Figure 2. Pin connection (top view)

Table 4. Pin description

LIN
HIN
V
CC
GND
1
2
3
4 LVG
D97IN517A
V
8
7
6
5
boot
HVG
OUT
Pin Type Function
1 LIN I Low side driver logic input
2 HIN I High side driver logic input
3 Vcc Low-voltage power supply
4 GND Ground
5 LVG
(1)
O Low side driver output
6 OUT O High side driver floating reference
7 HVG
8 V
1. The circuit guarantees 0.3 V maximum on the pin (@ Isink = 10mA). This allows the omission of the “bleeder” resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.
(1)
O High side driver output
Bootstrap supply voltage
boot
4/19 Doc ID 13991 Rev 2
L6388E Electrical characteristics

3 Electrical characteristics

(VCC = 15 V; TJ = 25 °C).

3.1 AC operation

Table 5. AC operation electrical characteristics

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
t
on
1 vs. 5 2 vs. 7
t
off
t
r
t
f
High/low side driver turn-on propagation delay
High/low side driver turn-off propagation delay
5, 7 Rise time CL = 1000 pF 70 100 ns
5, 7 Fall time CL = 1000 pF 40 80 ns
DT 5, 7 Dead time 220 320 420 ns

3.2 DC operation

Table 6. DC operation electrical characteristics

Symbol Pin Parameter Test condition Min. Typ. Max. Unit
Low supply voltage section
V
V
V
I
ccth1
ccth2
cchys
qccu
V
cc
Vcc UV turn-off threshold 7.9 8.3 8.8 V
Vcc UV hysteresis 0.9 V
Undervoltage quiescent
3
supply current
= 0 V 225 300 ns
V
out
V
= 0 V 160 220 ns
out
UV turn-on threshold 9.1 9.6 10.1 V
≤ 9 V 250 330 µA
V
cc
I
R
DS(on)
qcc
Quiescent current Vcc = 15 V 350 450 µA
Bootstrap driver on resistance
(1)
Bootstrapped supply voltage section
V
V
V
I
BSth1
BSth2
BShys
Q
BS
I
LK
V
UV turn-on threshold 8.5 9.5 10.5 V
BS
VBS UV turn-off threshold 7.2 8.2 9.2 V
VBS UV hysteresis 0.9 V
8
VBS quiescent current HVG ON 250 µA
High-voltage leakage current
Doc ID 13991 Rev 2 5/19
V
12.5 V 125
cc
= V
V
V
hvg
boot
=
out
= 600 V
10 µA
Electrical characteristics L6388E
Table 6. DC operation electrical characteristics (continued)
Symbol Pin Parameter Test condition Min. Typ. Max. Unit
High/low side driver
I
so
I
si
Logic inputs
V
il
V
ih
1, 2
I
ih
I
il
1. R
where I
is tested in the following way:
DS(on)
is pin 8 current when V
1
Source short-circuit current V
5,7
= Vih (tp < 10 µs) 300 400 mA
IN
Sink short-circuit current VIN = Vil (tp < 10 µs) 500 650 mA
Low logic level input voltage 1.1 V
High logic level input voltage 1.8 V
High logic level input current VIN = 15 V 20 70 µA
Low logic level input current VIN = 0 V -1 µA
V
R
DSON
CBOOT
()VCCV
CCVCBOOT1
----------- ------------- ------------- ------------- -------------- ------------- ------------- -------------=
I
()I2VCC,V
1VCC,VCBOOT1
= V
CBOOT1
, I2 when V
CBOOT
()
= V
()
CBOOT2
CBOOT2
CBOOT2
.
6/19 Doc ID 13991 Rev 2
L6388E Waveform definitions

4 Waveform definitions

Figure 3. Dead time waveform definition

LIN
HIN
DT DT
LVG
DT
Interlocking function
HVG

Figure 4. Propagation delay waveform definition

Doc ID 13991 Rev 2 7/19
Input logic L6388E

5 Input logic

Input logic is provided with an interlocking circuitry which avoids the two outputs (LVG, HVG) being active at the same time when both the logic input pins (LIN, HIN) are at a high logic level. In addition, to prevent cross conduction of the external MOSFETs, after each output is turned off, the other output cannot be turned on before a certain amount of time (DT) (see
Figure 3).

6 Bootstrap driver

A bootstrap circuitry is needed to supply the high-voltage section. This function is normally accomplished by a high-voltage fast recovery diode (Figure 5 a). In the L6388E, a patented integrated structure replaces the external diode. It is realized by a high-voltage DMOS, driven synchronously with the low side driver (LVG), with a diode in series, as shown in
Figure 5 b. An internal charge pump (Figure 5 b) provides the DMOS driving voltage. The
diode connected in series to the DMOS has been added to avoid an undesirable turn-on.
6.1 C
To choose the proper C capacitor. This capacitor C
The ratio between the capacitors C It must be:
E.g.: if Q 300 mV.
If HVG must be supplied for a long period, the C losses into account.
E.g.: HVG steady-state consumption is lower than 250 µA, so, if HVG T must supply 1.25 µC to C
1.25 V.
The internal bootstrap driver offers important advantages: the external fast recovery diode can be avoided (it usually has a high leakage current).
This structure can work only if V LVG is on. The charging time (T fulfilled and it must be long enough to charge the capacitor.
BOOT
selection and charging
value, the external MOSFET can be seen as an equivalent
BOOT
is related to the MOSFET total gate charge:
EXT
C
EXT
and C
EXT
C
BOOT
is 30 nC and V
gate
is 10 V, C
gate
. This charge on a 1 µF capacitor means a voltage drop of
EXT
OUT
charge
EXT
is close to GND (or lower) and, at the same time, the
) of the C
Q
gate
------------ -- -=
V
gate
is proportional to the cyclical voltage loss.
BOOT
>>>C
EXT
is 3 nF. With C
selection must also take the leakage
BOOT
is the time in which both conditions are
BOOT
= 100 nF the drop would be
BOOT
is 5 ms, C
ON
BOOT
The bootstrap driver introduces a voltage drop due to the DMOS R 125 Ω). This drop can be neglected at low switching frequency, but it should be taken into account when operating at high switching frequency.
8/19 Doc ID 13991 Rev 2
(typical value:
DS(on
)
L6388E Bootstrap driver
The following equation is useful to compute the drop on the bootstrap DMOS:
Q
gate
V
==
dropIch eargRdsonVdrop
-------------------
T
ch earg
R
dson
where Q
is the gate charge of the external Power MOSFET, R
gate
of the bootstrap DMOS, and T
is the charging time of the bootstrap capacitor.
charge
is the on-resistance
DS(on
)
For example: using a Power MOSFET with a total gate charge of 30 nC, the drop on the bootstrap DMOS is about 1 V, if the T
charge
is 5 µs.
In fact:
30nC
drop
------------ -- -
5µs
1250.8V=
is calculated: if this drop
BOOT
V
V
should be taken into account when the voltage drop on C
drop
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode can be used.
Doc ID 13991 Rev 2 9/19
Bootstrap driver L6388E

Figure 5. Bootstrap driver

D
BOOT
V
S
V
BOOT
H.V.
HVG
V
OUT
C
BOOT
TO LOAD
LVG
a
V
V
BOOT
OUT
H.V.
C
BOOT
TO LOAD
V
S
HVG
LVG
b
10/19 Doc ID 13991 Rev 2
L6388E Typical characteristics
)
)
)

7 Typical characteristics

Figure 6. Typical rise and fall times vs.
time
(nsec)
250
200
150
100
50
0
Figure 8. V
13
12
11
10
(V)
BSth1
V
load capacitance
D99IN1054
T
r
T
f
012345C (nF)
For both high and low side buffers @25˚C Tamb
UV turn-on threshold
BOOT
vs. temperature
@ Vcc = 15V
Typ.
9
8
7
6
5
-45 -25 0 25 50 75 100 125 Tj (˚C
Figure 7. Quiescent current vs. supply
voltage
Iq
(µA)
10
10
10
10
4
3
2
246810121416V
0
D99IN1055
(V)
S
Figure 9. VCC UV turn-off threshold vs.
temperature
11
10
9
Typ.
8
Vccth2(V)
7
6
-45 -25 0 25 50 75 100 125
Tj (˚C
Figure 10. V
14
13
12
11
(V)
10
9
BSth2
V
8
Typ.
7
6
-45 -25 0 25 50 75 100 125
UV turn-off threshold
BOOT
vs. temperature
@ Vcc = 15V
Doc ID 13991 Rev 2 11/19
Figure 11. Output source current vs.
temperature
1000
@ Vcc = 15V
800
600
Typ.
400
current (mA)
200
0
-45-250 255075100125 Tj (˚C
Typical characteristics L6388E
)
)
Figure 12. VCC UV turn-on threshold vs.
13
12
11
10
Vccth1(V)
temperature
Typ.
9
8
7
-45 -25 0 25 50 75 100 125 Tj (˚C
Figure 13. Output sink current vs.
temperature
1000
800
600
Typ.
400
current (mA)
200
0
-45 -25 0 25 50 75 100 125
@ Vcc = 15V
Tj (˚C
12/19 Doc ID 13991 Rev 2
L6388E Package mechanical data

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of
®
ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK
packages, depending on their level of environmental compliance. ECOPACK®
®
is an ST trademark.

Table 7. DIP-8 mechanical data

mm inch
Dim.
Min. Typ. Max. Min. Typ. Max.
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430
E 7.95 9.75 0.313 0.384
e 2.54 0.100
e3 7.62 0.300
e4 7.62 0.300
F 6.6 0.260
I 5.08 0.200
L 3.18 3.81 0.125 0.150
Z 1.52 0.060
Doc ID 13991 Rev 2 13/19
Package mechanical data L6388E

Figure 14. DIP-8 package dimensions

!-V
14/19 Doc ID 13991 Rev 2
L6388E Package mechanical data

Table 8. SO-8 mechanical data

mm
Dim.
Min. Typ. Max.
A 1.75
A1 0.10 0.25
A2 1.25
b 0.28 0.48
c 0.17 0.23
D 4.80 4.90 5.00
E 5.80 6.00 6.20
E1 3.80 3.90 4.00
e1.27
h 0.25 0.50
L 0.40 1.27
L1 1.04
k0° 8°
ccc 0.10
Doc ID 13991 Rev 2 15/19
Package mechanical data L6388E

Figure 15. SO-8 package dimensions

!-V
16/19 Doc ID 13991 Rev 2
L6388E Order codes

9 Order codes

Table 9. Order codes

Part number Package Packaging
L6388E DIP-8 Tube
L6388ED SO-8 Tube
L6388ED013TR SO-8 Tape and reel
Doc ID 13991 Rev 2 17/19
Revision history L6388E

10 Revision history

Table 10. Document revision history

Date Revision Changes
11-Oct-2007 1 First release
Updated Ta bl e 1 , Ta bl e 6 and Section 6.1.
29-Feb-2012 2
DIP-8 mechanical data and package dimensions have been updated. SO-8 mechanical data and package dimensions have been updated.
18/19 Doc ID 13991 Rev 2
L6388E
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 13991 Rev 2 19/19
Loading...