ST L6258 User Manual

L6258

PWM controlled high current DMOS universal motor driver

Features

Able to drive both windings of a bipolar stepper motor or two DC motors

Output current up to 1.2A each winding

Wide voltage range: 12V to 34V

Four quadrant current control, ideal for microstepping and DC motor control

Precision PWM control

No need for recirculation diodes

TTL/CMOS compatible inputs

Cross conduction protection

Thermal shutdow

Description

L6258 is a dual full bridge for motor control applications realized in BCD technology, with the capability of driving both windings of a bipolar stepper motor or bidirectionally control two DC motors.

L6258 and a few external components form a complete control and drive circuit. It has high efficiency phase shift chopping that allows a very low current ripple at the lowest current control levels, and makes this device ideal for steppers as well as for DC motors.

Not For New Design

PowerSO36

The power stage is a dual DMOS full bridge capable of sustaining up to 34V, and includes the diodes for current recirculation. The output current capability is 1.2A per winding in continuous mode, with peak start-up current up to 1.5A. A thermal protection circuitry disables the outputs if the chip temperature exceeds the safe limits.

Table 1.

Device summary

 

 

 

Order Code

Package

Packing

 

 

 

 

 

L6258

 

 

(Replaced by E-L6258EX and E-

PowerSO36

Tube

 

L6258EXTR)

 

 

 

 

 

 

March 2010

Doc ID 4588 Rev 10

1/32

This is information on a product still in production but not recommended for new designs.

www.st.com

Contents

L6258

 

 

Contents

1

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 5

2

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

2.1

Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.2

Input logic (I0 - I1 - I2 - I3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

2.3

Phase input ( PH ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

2.4

Triangular generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

2.5

Charge pump circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

2.6

Current control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

2.7

Current control loop compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

3

PWM current control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

3.1 Open loop transfer function analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Power amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Load attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.4 Error amplifier and sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5 Effect of the Bemf of the current control loop stability . . . . . . . . . . . . . . . 22

4

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

4.1

Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

 

4.2

Motor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

4.3

Unused inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

4.4

Notes on PCB design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

5

Operation mode time diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

6

Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

7

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

2/32

Doc ID 4588 Rev 10

L6258

List of tables

 

 

List of tables

Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 2. Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 3. Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 5. Current levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 6. Charge pump capacitor's values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Doc ID 4588 Rev 10

3/32

List of figures

L6258

 

 

List of figures

Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. Power bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 5. Current control loop block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 6. Output comparator waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 7. Ax bode plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 8. Aloop bode plot (uncompensated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 9. Aloop bode plot (compensated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 10. Electrical model of the load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 11. Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 12. Full step operation mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Figure 13. Half step operation mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 14. 4 bit microstep operation mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 15. PowerSO36 mechanical data & package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4/32

Doc ID 4588 Rev 10

ST L6258 User Manual

L6258

Block diagram

 

 

1 Block diagram

Figure 1. Block diagram

 

 

 

 

 

R1 1M

 

 

 

 

 

 

 

 

 

RC1

 

CC1

 

 

CBOOT

 

 

 

 

 

 

 

 

 

 

 

 

CP

VCP2

EA_IN1

 

 

 

 

EA_OUT1

VS

VBOOT

 

 

 

 

 

 

 

 

TRI_0

 

 

 

VCP1

CHARGE

 

 

 

 

 

 

+

C

 

OUT1A

 

PUMP

 

 

 

 

ERROR

-

 

 

 

 

VR

 

 

POWER

 

 

 

 

 

 

 

 

 

 

+

 

AMP

 

 

BRIDGE

 

 

 

 

 

 

 

 

 

 

VREF1

 

 

 

 

 

 

+

 

1

OUT1B

 

INPUT

 

 

-

 

 

C

I3_1

 

 

 

 

 

TRI_180

 

SENSE1B

 

&

 

 

 

 

 

-

 

 

I2_1

DAC

SENSE

 

 

 

 

 

 

 

 

Rs

I1_1

AMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I0_1

 

 

 

 

 

 

 

 

 

 

 

PH_1

 

 

 

 

 

 

 

 

 

 

SENSE1A

 

 

 

 

 

 

 

 

 

 

 

VDD(5V)

VR GEN

VR (VDD/2)

THERMAL

 

 

 

 

 

 

 

DISABLE

PROT.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VS

VREF1

 

 

 

 

 

ERROR

TRI_0

 

 

 

I3_2

 

 

VR

 

 

+

 

OUT2A

 

INPUT

 

+

 

AMP

 

C

 

 

 

 

 

 

 

 

I2_2

 

 

 

 

 

 

-

 

DAC

&

 

 

-

 

 

 

POWER

 

I1_2

SENSE

 

 

 

 

 

 

BRIDGE

 

 

 

 

 

 

 

 

+

OUT2B

I0_2

 

AMP

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

-

C

SENSE2B

PH_2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TRI_180

 

 

TRI_CAP

TRIANGLE

TRI_0

 

 

 

 

 

 

 

 

Rs

 

 

 

 

 

 

 

 

 

 

GENERATOR

TRI_180

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CFREF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSE2A

 

GND

 

EA_IN2

 

 

 

 

EA_OUT2

 

D96IN430D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RC2

CC2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 1M

 

 

 

 

Table 2.

Absolute maximum rating

 

 

Parameter

Description

Value

Unit

 

 

 

 

 

 

Vs

Supply voltage

36

V

 

VDD

Logic supply voltage

7

V

 

Vref1/Vref2

Reference voltage

2.5

V

 

IO

Output current (peak)

1.5

A

 

IO

Output current (continuous)

1.2

A

 

Vin

Logic input voltage range

-0.3 to 7

V

 

Vboot

Bootstrap supply

60

V

 

Vboot - Vs

Maximum Vgate applicable

15

V

 

Tj

Junction temperature

150

°C

 

Tstg

Storage temperature range

-55 to 150

°C

Doc ID 4588 Rev 10

5/32

Block diagram

L6258

 

 

Figure 2.

Pin connection (top view)

PWR_GND

 

1

 

36

 

PWR_GND

PH_1

 

2

35

 

SENSE1

 

 

I1_1

 

3

34

 

OUT1B

 

 

I0_1

 

4

33

 

I3_1

 

 

OUT1A

 

5

32

 

I2_1

 

 

DISABLE

 

6

31

 

VS

 

 

TRI_CAP

 

7

30

 

EA_OUT1

 

 

VDD

 

8

29

 

EA_IN1

 

 

 

9

28

 

GND

 

 

VREF1

VCP1

 

10

27

 

SIG_GND

 

 

VCP2

 

11

26

 

VREF2

 

 

VBOOT

 

12

25

 

EA_IN2

 

 

VS

 

13

24

 

EA_OUT2

 

 

OUT2A

 

14

23

 

I2_2

 

 

I0_2

 

15

22

 

I3_2

 

 

I1_2

 

16

21

 

OUT2B

 

 

PH_2

 

17

20

 

SENSE2

 

 

PWR_GND

 

18

 

19

 

PWR_GND

 

 

 

 

 

 

 

D96IN432E

Table 3.

Pin functions

 

Pin #

 

Name

Description

 

 

 

 

1, 36

 

PWR_GND

Ground connection (1). They also conduct heat from die to

 

printed circuit copper.

 

 

 

 

 

 

 

 

 

 

These TTL compatible logic inputs set the direction of

2, 17

 

PH_1, PH_2

current flow through the load. A high level causes current to

 

 

 

flow from OUTPUT A to OUTPUT B.

 

 

 

 

 

 

 

Logic input of the internal DAC (1). The output voltage of the

3

 

I1_1

DAC is a percentage of the Vref voltage applied according to

 

 

 

the thruth Table 5 on page 12.

 

 

 

 

4

 

I0_1

See pin 3

5

 

OUT1A

Bridge output connection (1)

 

 

 

 

6

 

DISABLE

Disables the bridges for additional safety during switching.

 

When not connected the bridges are enabled

 

 

 

 

 

 

 

7

 

TRI_cap

Triangular wave generation circuit capacitor. The value of

 

this capacitor defines the output switching frequency

 

 

 

 

 

 

 

6/32

Doc ID 4588 Rev 10

L6258

 

 

 

Block diagram

 

 

 

 

 

 

Table 3.

Pin functions (continued)

 

 

 

 

 

 

Pin #

 

Name

Description

 

 

 

 

 

 

8

 

VDD (5V)

Supply voltage input for logic circuitry

 

9

 

GND

Power ground connection of the internal charge pump circuit

 

 

 

 

 

 

10

 

VCP1

Charge pump oscillator output

 

11

 

VCP2

Input for external charge pump capacitor

 

12

 

VBOOT

Overvoltage input for driving of the upper DMOS

 

13, 31

 

VS

Supply voltage input for output stage. They are shorted

 

 

internally

 

 

 

 

 

 

14

 

OUT2A

Bridge output connection (2)

 

 

 

 

 

 

 

 

 

Logic input of the internal DAC (2). The output voltage of the

 

15

 

I0_2

DAC is a percentage of the VRef voltage applied according

 

 

 

 

to the truth Table 5 on page 12.

 

 

 

 

 

 

16

 

I1_2

See pin 15

 

18, 19

 

PWR_GND

Ground connection. They also conduct heat from die to

 

 

printed circuit copper

 

 

 

 

 

 

 

 

 

 

20, 35

 

SENSE2, SENSE1

Negative input of the transconductance input amplifier (2, 1)

 

 

 

 

 

 

21

 

OUT2B

Bridge output connection and positive input of the

 

 

tranconductance (2)

 

 

 

 

 

 

 

 

 

 

22

 

I3_2

See pin 15

 

23

 

I2_2

See pin 15

 

24

 

EA_OUT_2

Error amplifier output (2)

 

 

 

 

 

 

25

 

EA_IN_2

Negative input of error amplifier (2)

 

 

 

 

 

 

 

 

 

Reference voltages for the internal DACs, determining the

 

26, 28

 

VREF2, VREF1

output current value. Output current also depends on the

 

 

 

 

logic inputs of the DAC and on the sensing resistor value

 

 

 

 

 

 

27

 

SIG_GND

Signal ground connection

 

 

 

 

 

 

29

 

EA_IN_1

Negative input of error amplifier (1)

 

 

 

 

 

 

30

 

EA_OUT_1

Error amplifier output (1)

 

 

 

 

 

 

32

 

I2_1

See pin 3

 

33

 

I3_1

See pin 3

 

34

 

OUT1B

Bridge output connection and positive input of the

 

 

tranconductance (1)

 

 

 

 

 

 

 

 

Note:

The number in parenthesis shows the relevant Power Bridge of the circuit. Pins 18, 19, 1

 

and 36 are connected together.

 

Doc ID 4588 Rev 10

7/32

Block diagram

 

 

 

L6258

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Thermal characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conditions

 

Power Dissipated

T Ambient

Thermal J-A resistance

 

 

 

 

 

 

(W)

(˚C)

(˚C/W)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3

70

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pad

layout + ground layers + 16

via hol

 

 

 

 

 

 

 

 

 

PCB ref.: 4 LAYER cm 12 x 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0

70

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pad layout + ground layers

 

 

 

 

 

 

 

 

 

PCB ref.: 4 LAYER cm 12 x 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3

70

35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pad layout + 6cm2 on board heat sink

 

 

 

 

 

 

 

 

 

PCB ref.: 2 LAYER cm 12 x 12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

(W)

10

 

 

 

 

8

 

 

 

 

Dissipated

 

 

 

 

6

 

 

 

 

Power

 

 

4

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

0

D02IN1370

15˚C/W

20˚C/W

35˚C/W

20

40

60

80

100

120

140

160

 

 

Ambient Temperature (˚C)

 

D02IN1371

Table 4.

Electrical characteristics

 

 

 

 

 

(VS = 40V; VDD = 5V; Tj = 25°; unless otherwise specified.)

 

 

Parameter

Description

Test condition

Min.

Typ.

Max.

Unit

 

 

 

 

 

 

 

VS

Supply voltage

 

12

 

34

V

VDD

Logic supply voltage

 

4.75

 

5.25

V

VBOOT

Storage voltage

VS = 12 to 40V

VS+6

 

VS+12

V

VSense

Max drop across sense

 

 

 

1.25

V

resistor

 

 

 

VS(off)

Power off reset

Off threshold

6

 

7.2

V

VDD(off)

Power off reset

Off threshold

3.3

 

4.1

V

IS(on)

VS quiescent current

Both bridges ON, no

 

 

15

mA

load

 

 

IS(off)

VS quiescent current

Both bridges OFF

 

 

7

mA

IDD

VDD operative current

 

 

 

15

mA

8/32

Doc ID 4588 Rev 10

L6258

 

 

 

 

Block diagram

 

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics (continued)

 

 

 

 

 

 

 

(VS = 40V; VDD = 5V; Tj = 25°; unless otherwise specified.)

 

 

 

 

Parameter

Description

Test condition

Min.

Typ.

 

Max.

Unit

 

 

 

 

 

 

 

 

 

 

TSD-H

Shut down hysteresis

 

 

25

 

 

°C

 

TSD

Thermal shutdown

 

 

150

 

 

°C

 

fosc

Triangular oscillator

CFREF = 1nF

12.5

15

 

18.5

KHz

 

frequency(1)

 

 

TRANSISTORS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IDSS

Leakage current

OFF State

 

 

 

500

µA

 

Rds(on)

On resistance

ON state

 

0.6

 

0.75

W

 

Vf

Flywheel diode voltage

If =1.0A

 

1

 

1.4

V

 

CONTROL LOGIC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vin(H)

lnput voltage

All Inputs

2

 

 

VDD

V

 

Vin(L)

Input voltage

All inputs

0

 

 

0.8

V

 

Iin

Input current (2)

0 < Vin < 5V

-150

 

 

+10

µA

 

Idis

Disable pin input current

-10

 

 

+150

µA

 

 

 

 

 

Vref1/ref2

Reference voltage

Operating

0

 

 

2.5

V

 

Iref

Vref terminal input current

Vref = 1.25

-2

 

 

5

µA

 

FI =

PWM loop transfer ratio

 

 

1.94

 

 

 

 

Vref/Vsense

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VFS

DAC full scale precision

Vref = 2.5V I0/I1/I2/I3 = L

1.23

1.29

 

1.34

V

 

Voffset

Current loop offset

Vref = 2.5V I0/I1/I2/I3 = H

-30

 

 

+30

mV

 

 

DAC factor ratio

Normalized @ full scale

-2

 

 

+2

%

 

 

value

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SENSE AMPLIFIER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcm

lnput common mode

 

-0.7

 

 

VS+0.7

V

 

voltage range

 

 

 

 

Iinp

Input bias

sense1/sense2

-200

 

 

0

µA

 

ERROR AMPLIFIER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GV

Open loop voltage gain

 

 

70

 

 

dB

 

SR

Output slew rate

Open loop

 

0.2

 

 

V/µs

 

 

 

 

 

 

 

 

 

 

GBW

Gain bandwidth product

 

 

400

 

 

kHz

 

 

 

 

 

 

 

 

 

1.Chopping frequency is twice fosc value.

2.This is true for all the logic inputs except the disable input.

Doc ID 4588 Rev 10

9/32

Functional description

L6258

 

 

2 Functional description

The circuit is intended to drive both windings of a bipolar stepper motor or two DC motors.

The current control is generated through a switch mode regulation.

With this system the direction and the amplitude of the load current are depending on the relation of phase and duty cycle between the two outputs of the current control loop.

The L6258 power stage is composed by power DMOS in bridge configuration as it is shown in Figure 4, where the bridge outputs OUT_A and OUT_B are driven to Vs with an high level at the inputs IN_A and IN_B while are driven to ground with a low level at the same inputs.

The zero current condition is obtained by driving the two half bridge using signals IN_A and IN_B with the same phase and 50% of duty cycle.

In this case the outputs of the two half bridges are continuously switched between power supply (Vs) and ground, but keeping the differential voltage across the load equal to zero.

In Figure 4 is shown the timing diagram of the two outputs and the load current for this working condition.

Following we consider positive the current flowing into the load with a direction from OUT_A to OUT_B, while we consider negative the current flowing into load with a direction from OUT_B to OUT_A.

Now just increasing the duty cycle of the IN_A signal and decreasing the duty cycle of IN_B signal we drive positive current into the load.

In this way the two outputs are not in phase, and the current can flow into the load trough the diagonal bridge formed by T1 and T4 when the output OUT_A is driven to Vs and the output OUT_B is driven to ground, while there will be a current recirculation into the higher side of the bridge, through T1 and T2, when both the outputs are at Vs and a current recirculation into the lower side of the bridge, through T3 and T4, when both the outputs are connected to ground.

Since the voltage applied to the load for recirculation is low, the resulting current discharge time constant is higher than the current charging time constant during the period in which the current flows into the load through the diagonal bridge formed by T1 and T4. In this way the load current will be positive with an average amplitude depending on the difference in duty cycle of the two driving signals.

In Figure 4 is shown the timing diagram in the case of positive load current

On the contrary, if we want to drive negative current into the load is necessary to decrease the duty cycle of the IN_A signal and increase the duty cycle of the IN_B signal. In this way we obtain a phase shift between the two outputs such to have current flowing into the diagonal bridge formed by T2 and T3 when the output OUT_A is driven to ground and output OUT_B is driven to Vs, while we will have the same current recirculation conditions of the previous case when both the outputs are driven to Vs or to ground.

So, in this case the load current will be negative with an average amplitude always depending by the difference in duty cycle of the two driving signals.

In Figure 4 is shown the timing diagram in the case of negative load current.

Figure 5 shows the device block diagram of the complete current control loop.

10/32

Doc ID 4588 Rev 10

Loading...
+ 22 hidden pages