ST L6235Q User Manual

DMOS driver for 3-phase brushless dc motor
Features
Operating supply voltage from 8 to 52 V
5.6 A output peak current
R
Operating frequency up to 100 kHz
Non-dissipative overcurrent protection
Diagnostic output
Constant t
Slow decay synchronous rectification
60° and 120° Hall effect decoding logic
Brake function
Tacho output for speed loop
Cross conduction protection
Thermal shutdown
Undervoltage lockout
Integrated fast freewheeling diodes

Figure 1. Block diagram

0.3 Ω typ. value @ TJ = 25 °C
PWM current controller
OFF
L6235Q
QFN-48
(7 x 7 mm)
Description
The L6235Q is a DMOS fully integrated 3-phase motor driver with overcurrent protection. Realized in BCDmultipower technology, the device combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip. The device includes all the circuitry needed to drive a 3-phase BLDC motor including: a 3-phase DMOS bridge, a constant OFF time PWM current controller and the decoding logic for single ended Hall sensors that generates the required sequence for the power stage. Available in QFN48 7x7 package, the L6235Q features a non­dissipative overcurrent protection on the high-side power MOSFETs and thermal shutdown.
VBOOT V
VCP
DIAG
EN
BRAKE
FWD/REV
H
3
H
2
H
1
RCPULSE
TACHO
BOOT
CHARGE
TACHO
MONOSTABLE
10V 5V
REGULATOR
PUMP
OCD
VOLTAGE
THERMAL
PROTECTION
OCD1
OCD2
OCD
HALL-EFFECT
SENSORS
DECODING
LOGIC
OCD3
ONE SHOT
MONOSTABLE
GATE
LOGIC
PWM
MASKING
TIME
V
BOOT
OCD1
10V
V
BOOT
OCD2
10V
V
BOOT
OCD3
10V
COMPARATOR
SENSE
VS
A
OUT
1
OUT
2
SENSE
A
VS
B
OUT
3
SENSE
+
-
B
VREF
RCOFF
AM02555v1
November 2011 Doc ID 018997 Rev 2 1/33
www.st.com
33
Contents L6235Q
Contents
1 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Power stages and charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 PWM current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Slow decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Decoding logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Tacho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 Non-dissipative overcurrent detection and protection . . . . . . . . . . . . . . . 18
4.8 Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Output current capability and IC power dissipation . . . . . . . . . . . . . . 25
7 Thermal management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/33 Doc ID 018997 Rev 2
L6235Q Electrical data

1 Electrical data

1.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Symbol Parameter Parameter Value Unit
V
Supply voltage VSA = VSB = VS 60 V
S
V
OD
V
BOOT
V
IN,VEN
V
REF
V
RCOFF
V
SENSE
I
S(peak)
I
Differential voltage between VSA, OUT1A, OUT2A, SENSEA and
, OUT1B, OUT2B, SENSE
VS
B
B
Bootstrap peak voltage VSA = VSB = VS V
Input and enable voltage range -0.3 to +7 V
Voltage range at pin V
Voltage range at pin RC
REF
OFF
Voltage range at pins SENSEA and SENSE
B
Pulsed supply current (for each VSA
SB
pin)
and V
DC supply current (for each VSA and
S
VSB pin)
VSA = VSB = VS = 60 V; VSENSEA = VSENSEB =
60 V
GND
+ 10 V
S
-0.3 to +7 V
-0.3 to +7 V
-1 to +4 V
V
= VSB = VS;
SA
< 1 ms
t
PULSE
VS
= VSB = VS 2.5 A
A
7.1 A
, TOP
T
stg
Storage and operating temperature range

1.2 Recommended operating conditions

Table 2. Recommended operating conditions

Symbol Parameter Parameter Min. Max. Unit
V
Supply voltage VSA = VSB = VS 8 52 V
S
Differential voltage between
V
V
V
SENSE
I
OUT
f
OD
REF
T
sw
VSA, OUT1A, OUT2A, SENSEA and
, OUT1B, OUT2B, SENSEB
VS
B
Voltage range at pin V
-0.1 5 V
REF
Voltage range at pins SENSEA and SENSE
B
DC output current VSA = VSB = VS;2.5 A
Operating junction temperature -25 +125 °C
j
Switching frequency 100 kHz
= VSB = VS;
VS
A
V
SENSEA
Pulsed tW < t
DC -1 1 V
= V
SENSEB
rr
-40 to 150 °C
52 V
-6 6 V
Doc ID 018997 Rev 2 3/33
Pin connection L6235Q

2 Pin connection

Figure 2. Pin connection (top view)

OUT1
OUT1
GND
TACHO
NC
NC
NC
NC
NC
NC
NC
NC
SENSEA
RCOFF
NC
48 47 46 45 44 43 42 41 40 39 38 37
1
EPAD
2
3
4
5
6
7
8
9
10
11
12
13 14 15 16 17 18 19 20 21 22 23 24
NC
SENSEB
RCPULSE
SENSEA
SENSEB
H1
H3
DIAG
EN
VREF
FWD/REV
Note: The exposed PAD must be connected to GND pin.
H2
BRAKE
VCP
VBOOT
OUT2
OUT3
OUT2
OUT3
NC
NC
36
NC
35
VSA
34
VSA
33
NC
32
NC
31
GND
30
NC
29
NC
28
NC
27
VSB
26
VSB
25
NC
AM02556v1

Table 3. Pin description

Pin Name Type Function
43 H1 Sensor input Single ended Hall effect sensor input 1.
44 DIAG
45, 46 SENSE
48 RC
OFF
Open drain
output
Power supply
A
RC pin
2, 3 OUT1 Power output Output 1
6, 31 GND GND Ground terminals.
12 TACHO
Open drain
output
13 RCPULSE RC pin
Overcurrent detection and thermal protection pin. An internal open drain transistor pulls to GND when an overcurrent on one of the high-side MOSFETs is detected or during thermal protection.
Half bridge 1 and half bridge 2 source pin. This pin must be connected together with pin SENSEB to power ground through a sensing power resistor.
RC network pin. A parallel RC network connected between this pin and ground sets the current controller OFF time.
Frequency-to-voltage open drain output. Every pulse from pin H shaped as a fixed and adjustable length pulse.
RC network pin. A parallel RC network connected between this pin and ground sets the duration of the monostable pulse used for the frequency-to-voltage converter.
is
1
4/33 Doc ID 018997 Rev 2
L6235Q Pin connection
Table 3. Pin description (continued)
Pin Name Type Function
Half bridge 3 source pin. This pin must be connected together with
15, 16 SENSE
Power supply
B
17 FWD/REV Logic input
pin SENSE this pin also the inverting input of the sense comparator is connected.
Selects the direction of the rotation. High logic level sets forward operation, whereas low logic level sets reverse operation. If not used, it must be connected to GND or +5 V.
to power ground through a sensing power resistor. At
A
18 EN Logic input
19 VREF Logic input
Chip enable. Low logic level switches off all power MOSFETs. If not used, it must be connected to +5 V.
Current controller reference voltage. Do not leave this pin open or connect to GND.
Brake input pin. Low logic level switches on all high-side power
20 BRAKE Logic input
MOSFETs, implementing the brake function. If not used, it must be connected to +5 V.
21 VBOOT Supply voltage Bootstrap voltage needed for driving the upper power MOSFETs.
22, 23 OUT
26, 27 VSB Power supply
34, 35 VSA Power supply
38, 39 OUT
Power output Output 3.
3
Half bridge 3 power supply voltage. It must be connected to the supply voltage together with pin VS
Half bridge 1 and half bridge 2 power supply voltage. It must be connected to the supply voltage together with pin VS
Power output Output 2.
2
.
A
.
B
40 VCP Output Charge pump oscillator output.
41 H2 Sensor input Single ended Hall effect sensor input 2.
42 H
Sensor input Single ended Hall effect sensor input 3.
3
Doc ID 018997 Rev 2 5/33
Electrical characteristics L6235Q

3 Electrical characteristics

VS = 48 V, TA = 25 °C, unless otherwise specified.

Table 4. Electrical characteristics

Symbol Parameter Test condition Min. Typ. Max. Unit
V
Sth(ON)
V
Sth(OFF)
Turn-on threshold 6.6 7 7.4 V
Turn-off threshold 5.6 6 6.4 V
IS Quiescent supply current
Thermal shutdown temperature 165 °C
T
j(OFF)
Output DMOS transistors
High-side switch ON resistance
R
DS(ON)
Low-side switch ON resistance
I
DSS
Leakage current
Source drain diodes
V
Forward ON voltage ISD = 2.5 A, EN = low 1.15 1.3 V
SD
t
rr
t
fr
Reverse recovery time If = 2.5 A 300 ns
Forward recovery time 200 ns
Logic input (H1, H2, H3, EN, FWD/REV, BRAKE)
All bridges OFF; Tj = -25 °C to 125 °C
(1)
510mA
Tj = 25 °C 0.34 0.4
Tj =125 °C
(1)
0.53 0.59
Ω
Tj = 25 °C 0.28 0.34
Tj =125 °C
EN = low; OUT = V
(1)
0.47 0.53
2mA
S
EN = low; OUT = GND -0.15 mA
V
V
I
I
V
th(ON)
V
th(OFF)
V
th(HYS)
IH
IL
IH
Low level logic input voltage -0.3 0.8 V
IL
High level logic input voltage 2 7 V
Low level logic input current GND logic input voltage -10 µA
High level logic input current 7 V logic input voltage 10 µA
Turn-on input threshold 1.8 2.0 V
Turn-off input threshold 0.8 1.3 V
Input threshold hysteresis 0.25 0.5 V
Switching characteristics
t
D(on)EN
t
D(off)EN
t
D(on)IN
t
D(off)IN
Enable to out turn ON delay time
Enable to out turn OFF delay time
Other logic inputs to output turn ON delay time
Other logic inputs to out turn OFF delay time
(2)
(2)
I
I
I
I
=2.5 A, resistive load 100 250 400 ns
LOAD
=2.5 A, resistive load 300 550 800 ns
LOAD
=2.5 A, resistive load 2 ns
LOAD
=2.5 A, resistive load 2 ns
LOAD
6/33 Doc ID 018997 Rev 2
L6235Q Electrical characteristics
Table 4. Electrical characteristics (continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
t
Output rise time
RISE
t
Output fall time
FAL L
Dead time protection 0.5 1 µs
t
DT
Charge pump frequency Tj = -25 °C to 125 °C (7) 0.6 1 MHz
f
CP
PWM comparator and monostable
(2)
(2)
I
I
=2.5 A, resistive load 40 250 ns
LOAD
=2.5 A, resistive load 40 250 ns
LOAD
I
RCOFF
V
offset
t
PROP
t
BLANK
t
ON(MIN)
t
OFF
I
BIAS
Source current at pin RC
OFF
Offset voltage on sense comparator V
Turn OFF propagation delay
Internal blanking time on SENSE comparator
(3)
V
RCOFF =
REF
2.5 V 3.5 5.5 mA
= 0.5 V ±5 mV
Minimum ON time 1.5 2 µs
R
PWM recirculation time
Input bias current at pins VREF VREF
B
and
A
OFF
= 100 kΩ; C
R
OFF
= 20 kΩ; C
= 1 nF 13 µs
OFF
= 1 nF 61 µs
OFF
Tacho monostable
I
RCPULSE
t
PULSE
R
TAC H O
Source current at pin RCPULSE V
Monostable of time
RCPULSE
R
PUL
R
PUL
Open drain ON resistance 40 60 Ω
= 2.5 V 3.5 5.5 mA
= 20 kΩ; C
= 100 kΩ; C
=1 nF 12 µs
PUL
=1 nF 60 µs
PUL
Over current detection e protection
I
sover
R
OPDR
I
OH
t
OCD(ON)
t
OCD(OFF)
1. Tested at 25 °C in a restricted range and guaranteed by characterization.
2. See Figure 3.
3. Measured applying a voltage of 1 V to pin SENSE and a voltage drop from 2 V to 0 V to pin V
4. See Figure 4.
Supply overcurrent protection threshold
-25 °C<Tj <125 °C 4.0 5.6 7.1 A
Open drain ON resistance I = 4 mA 40 60 Ω
OCD high level leakage current V
OCD turn-on delay time
OCD turn-off delay time
(4)
(4)
= 5 V 1 µA
DIAG
I = 4 mA; CEN < 100 pF 200 ns
I = 4 mA; CEN < 100 pF 100 ns
REF
500 ns
s
10 µA
.
Doc ID 018997 Rev 2 7/33
Electrical characteristics L6235Q

Figure 3. Switching characteristic definition

EN
V
th(ON)
V
th(OFF)
t
I
OUT
90%
10%
D01IN1316
t
D(OFF)EN
t
FAL L
t
D(ON)EN
t
t
RISE
AM02557v1

Figure 4. Overcurrent detection timing definition

I
OUT
I
SOVER
ON
BRIDGE
OFF
V
DIAG
90%
10%
t
OCD(ON)
t
OCD(OFF)
AM02558v1
8/33 Doc ID 018997 Rev 2
L6235Q Circuit description

4 Circuit description

4.1 Power stages and charge pump

The L6235Q integrates a 3-phase bridge, which consists of 6 power MOSFETs connected as shown in Figure 1, each power MOSFET has an R with intrinsic fast freewheeling diode. Switching patterns are generated by the PWM current controller and the Hall effect sensor decoding logic (Chapter 4.3 on page 11). Cross conduction protection is implemented by using a dead time (t internal timing circuit between the turn-off and turn-on of two power MOSFETs in one leg of a bridge.
= 0.3 Ω (typical value @ 25 °C)
DS(ON)
= 1 µs typical value) set by
DT
Pins VS
and VSB must be connected together to the supply voltage (VS).
A
Using an N-channel power MOSFET for the upper transistors in the bridge requires a gate drive voltage above the power supply voltage. The bootstrapped supply (V
) is obtained
BOOT
through an internal oscillator and a few external components to realize a charge pump circuit, as shown in Figure 5. The oscillator output (pin VCP) is a square wave at 600 kHz (typically) with 10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown in Tab le 5 .

Table 5. Charge pump external component values

Component Value
C
BOOT
C
P
R
P
220 nF
10 nF
100 Ω
D1 1N4148
D2 1N4148

Figure 5. Charge pump circuit

V
S
D1
R
C
VCP VBOOT VS
C
D2
P
P
BOOT
VS
A
B
AM02559v1
Doc ID 018997 Rev 2 9/33
Circuit description L6235Q

4.2 Logic inputs

Pins FWD/REV, BRAKE, EN, H1, H2 and H3 are TTL/CMOS and µC compatible logic inputs. The internal structure is shown in Figure 6. Typical value for turn-on and turn-off thresholds are respectively V
Pin EN (enable) may be used to implement overcurrent and thermal protection by connecting it to the open collector DIAG output. If the protection and an external disable function are both desired, the appropriate connection must be implemented. When the external signal is from an open collector output, the circuit in Figure 7 may be used. For external circuits that are push-pull outputs the circuit in Figure 8 may be used. The resistor R
should be chosen in the range from 2.2 kΩ to 180 kΩ. Recommended values for REN
EN
and C
are respectively 100 kΩ and 5.6 nF. More information for selecting the values can
EN
be found in Section 4.7.

Figure 6. Logic inputs internal structure

=1.8 V and V
thon
PROTECTION
ESD
thoff
= 1.3 V.
5V

Figure 7. EN pins open collector driving

DIAG
OPEN
COLLECTOR
OUTPUT
5V
R
EN
C
EN

Figure 8. EN pins push-pull driving

R
PUSH-PULL
OUTPUT
EN
C
EN
AM02560v1
5V
EN
ESD
PROTECTION
AM02561v1
DIAG
5V
EN
ESD
PROTECTION
10/33 Doc ID 018997 Rev 2
AM02562v1
Loading...
+ 23 hidden pages