ST L6234 User Manual

L6234

Three phase motor driver

Features

Supply voltage from 7 to 52 V

5 A peak current

RDSon 0.3 Ω typ. value at 25 °C

Cross conduction protection

TTL compatible driver

Operating frequency up to 150 kHz

Thermal shutdown

Intrinsic fast free wheeling diodes

Input and enable function for each half bridge

10 V external reference available

Description

The L6234 is a triple half bridge to drive a brushless DC motor.

It is realized in BCDmultipower technology which combines isolated DMOS power transistors with CMOS and Bipolar circuits on the same chip.

By using mixed technology it has been possible to optimize the logic circuitry and the power stage to achieve the best possible performance.

32:(5 ',3

3RZHU62

The output DMOS transistors can sustain a very high current due to the fact that the DMOS structure is not affected by the second breakdown effect, the RMS maximum current is practically limited by the dissipation capability of the package.

All the logic inputs are TTL, CMOS and µP compatible. Each channel is controlled by two separate logic input.

L6234 is available in 20 pin PowerDIP package (16+2+2) and in PowerSO20.

Table 1.

Device summary

 

 

 

Order code

Package

Packing

 

 

 

 

 

L6234

PowerDIP20

Tube

 

 

 

 

 

L6234PD

PowerSO20

Tube

 

 

 

 

 

L6234PD013TR

PowerSO20

Tape and reel

 

 

 

 

November 2011

Doc ID 1107 Rev 10

1/16

www.st.com

Contents

L6234

 

 

Contents

1

Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 3

2

Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 4

3

Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

4.1

Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

5

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

6

Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

7

Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

8

Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

9

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2/16

Doc ID 1107 Rev 10

L6234

Block diagram

 

 

1 Block diagram

Figure 1. Block diagram

 

 

 

Μ)

 

Q)

Μ)

 

 

 

9&3

95()

9%227

1

 

&+$5*(

 

95()

 

 

3803

 

9

 

 

 

 

9V

 

Μ)

,1

 

WR 9

 

7+

Μ)

 

 

 

 

 

 

 

287

 

 

(1

 

7/

 

 

 

 

 

 

,1

 

7+

 

 

 

 

 

 

 

 

287

 

 

(1

 

7/

 

 

 

 

 

 

7+(50$/

 

6(16(

 

 

 

 

 

 

3527(&7,21

 

 

 

 

,1

 

7+

 

 

 

 

 

 

 

 

287

 

 

(1

 

7/

 

 

 

 

 

 

 

 

6(16(

 

 

 

 

*1'

56(16(

 

 

 

' ,1$

 

 

 

 

 

 

!-V

Doc ID 1107 Rev 10

3/16

Pin connections

L6234

 

 

2 Pin connections

Figure 2. Pin connections

287

 

 

287

*1'

 

 

*1'

,1

 

 

,1

6(16(

 

 

6(16(

(1

 

 

(1

(1

 

 

9%227

96

 

 

6(16(

,1

 

 

9&3

*1'

 

 

*1'

287

 

 

95()

*1'

 

 

*1'

287

 

 

287

 

 

 

 

96

 

 

6(16(

,1

 

 

,1

(1

 

 

(1

(1

 

 

9%227

96

 

 

96

,1

 

 

9&3

 

 

 

 

 

 

*1'

 

 

*1'

287

 

 

 

 

95()

 

 

 

 

 

32:(5 ',3

3RZHU62

 

!-V

Table 2.

Pin functions

 

PowerDIP

PowerSO20

Name

Function

 

 

 

 

1

6

OUT 1

 

20

5

OUT 2

Output of the channels 1/2/3.

10

15

OUT 3

 

 

 

 

 

2

7

IN 1

Logic input of channels 1/2/3. A logic HIGH level (when the

corresponding EN pin is HIGH) switches ON the upper DMOS

19

4

IN 2

Power Transistor, while a logic LOW switches ON the

9

14

IN 3

corresponding low side DMOS Power.

 

 

 

 

 

 

 

3

8

EN 1

Enable of the channels 1/2/3. A logic LOW level on this pin

18

3

EN 2

switches off both power DMOS of the related channel.

8

13

EN 3

 

 

 

 

 

4,7

9, 12

Vs

Power supply voltage.

 

 

 

 

14

19

SENSE2

A sense resistor connected to this pin provides feedback for

 

 

 

motor current control for the bridge 3.

 

 

 

 

17

2

SENSE1

A sense resistor connected to this pin provides feedback for

 

 

 

motor current control for the bridges 1 and 2.

 

 

 

 

 

 

 

Internal voltage reference. A capacitor connected from this pin

11

16

VREF

to GND increases the stability of the Power DMOS drive

 

 

 

circuit.

 

 

 

 

12

17

VCP

Bootstrap oscillator. Oscillator output for the external charge

pump.

 

 

 

 

 

 

 

13

18

VBOOT

Overvoltage input to drive the upper DMOS

 

 

 

 

5,6

1,10

GND

Common ground terminal. In PowerDIP and SO packages

15,16

11,20

these pins are used to dissipate the heat forward the PCB.

 

 

 

 

 

4/16

Doc ID 1107 Rev 10

ST L6234 User Manual

L6234

Thermal data

 

 

3 Thermal data

Table 3.

Thermal data

 

 

 

Symbol

Parameter

DIP16+2+2

PowerSO20

Unit

 

 

 

 

 

R

Thermal resistance, junction to pin

12 (1)

°C/W

th j-pin

 

 

 

 

R

Thermal resistance, junction to ambient

40 (2)

°C/W

th j-amb1

 

 

 

 

R

Thermal resistance, junction characteristics) to

50 (3)

°C/W

ambient

th j-amb2

 

 

 

 

 

 

 

 

Rth j-case

Thermal resistance junction-case

1.5

°C/W

1.The thermal resistance is referred to the thermal path from the dissipating region on the top surface of the silicon chip, to the points along the four central pins of the package, at a distance of 1.5 mm away from the stand-offs.

2.If a dissipating surface, thick at least 35 mm, and with a surface similar or bigger than the one shown in Figure 3, is created making use of the printed circuit. Such heatsinking surface is considered on the bottom side of an horizontal PCB (worst case).

3.If the power dissipating pins (the four central ones), as well as the others, have a minimum thermal connection with the external world (very thin strips only) so that the dissipation takes place through still air and through the PCB itself. It is the same situation of note 2, without any heatsinking surface created on purpose on the board.

Figure 3. Printed Heatsink

!-V

Doc ID 1107 Rev 10

5/16

Loading...
+ 11 hidden pages