ST L5988D User Manual

L5988D

4 A continuous (more than 5 A pulsed) step-down switching regulator with synchronous rectification

Features

4 A output current (more than 5 pulsed)

Operating input voltage from 2.9 V to 18 V

External 1.8 V ± 2% reference voltage

Output voltage from 0.6 to input voltage

MLCC compatible

200 ns TON

Programmable UVLO matches 3.3 V, 5 V and 12 V bus

FSW programmable up to 1 MHz

Voltage feed-forward

Zero-load current operation

Programmable current limit on both switches

Programmable sink current capability

Pre-bias start up capability

Thermal shutdown

HTSSOP 16

Applications

Consumer: STB, DVD, LCD TV, VCR, car radio, LCD monitors

Networking: XDSL, modems, routers and switches

Computer and peripherals: printers, audio / graphic cards, optical storage, hard disk drive

Industrial: DC-DC modules, factory automation

HC LED driving

Figure 1. Test application circuit

January 2010

Doc ID 15324 Rev 3

1/52

www.st.com

Contents

L5988D

 

 

Contents

1

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 6

2

Pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 7

3

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

5

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

5.1

Multifunction pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

5.2

Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

5.3

External voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

5.4

Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

5.5

Monitoring and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

5.5.1 Overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.5.2 Current limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.5.3 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5.4 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6 Minimum on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.7 Error amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

6.1

Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

6.2

Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

6.3

Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

6.4

Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

 

6.4.1

Type III compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

 

 

6.4.2

Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

6.5 R.M.S. current of the embedded power MOSFETs . . . . . . . . . . . . . . . . . 36 6.6 Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.7 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.8 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2/52

Doc ID 15324 Rev 3

L5988D

 

Contents

7

Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 45

8

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 48

9

Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 50

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 51

Doc ID 15324 Rev 3

3/52

List of table

L5988D

 

 

List of table

Table 1. Pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 3. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4. Electrical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 5. A/D voltage windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 6. UOS voltage biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 7. FSW resistor examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 8. ILIM-ADJ resistor examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 10. Input capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 11. Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 12. Output capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 13. Component list application circuit (fSW = 400 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 14. Component list application circuit (fSW = 600 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 15. HTSSOP16 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Table 16. Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Table 17. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4/52

Doc ID 15324 Rev 3

L5988D

List of figures

 

 

List of figures

Figure 1. Test application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. Voltage mode control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4. Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 5. Oscillator circuit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 6. Sawtooth: voltage feed forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7. Sawtooth: synchronization and frequency adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 8. Input RMS current of two synchronized regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 9. OVP not latched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 10. OVP latched . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 11. constant current protection at extreme duty cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 12. minimum TON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 13. Type III compensation network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 14. Open loop gain: module bode diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 15. Open loop gain bode diagram with ceramic output capacitor. . . . . . . . . . . . . . . . . . . . . . . 32 Figure 16. Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 17. Open loop gain: module bode diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 18. Open loop gain bode diagram with high ESR output capacitor . . . . . . . . . . . . . . . . . . . . . 35 Figure 19. Maximum continuos output current vs. duty cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 20. Switching losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 21. Estimation of the internal power losses (VIN = 12 V, VOUT = 1.2 V, fSW = 400 kHz) . . . . 38 Figure 22. Estimation of the internal power losses (VIN = 5 V, VOUT = 1.2 V, fSW = 400 kHz) . . . . . 39 Figure 23. Measurement of the thermal impedance of the evaluation board. . . . . . . . . . . . . . . . . . . . 40 Figure 24. Top board layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 25. Bottom board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 26. Demonstration board application circuit (fSW = 400 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure 27. Demonstration board application circuit (fSW = 600 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . 44 Figure 28. Junction temperature vs. fSW at VIN = 12 V, VOUT = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 29. Junction temperature vs. fSW at VIN = 5 V, VOUT = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 30. Junction temperature vs. fSW at VIN = 3.3 V, VOUT = 1.2 V. . . . . . . . . . . . . . . . . . . . . . . 45 Figure 31. Junction temperature vs. VOUT at VIN = 12 V, fSW = 400 kHz . . . . . . . . . . . . . . . . . . . . . 45 Figure 32. Junction temperature vs. VOUT at VIN = 5 V, fSW = 400 kHz. . . . . . . . . . . . . . . . . . . . . . 46 Figure 33. Junction temperature vs. VOUT at VIN = 3.3 V, fSW = 400 kHz . . . . . . . . . . . . . . . . . . . . 46 Figure 34. Efficiency vs. output current at VIN = 3.3 V, fSW = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 35. Efficiency vs. output current at VIN = 5 V, fSW = 250 kHz . . . . . . . . . . . . . . . . . . . . . . . . . 46 Figure 36. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 37. Load regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 38. Line regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 39. Load transient from 0 to 3 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 40. Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Figure 41. HTSSOP16 mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Doc ID 15324 Rev 3

5/52

Description

L5988D

 

 

1 Description

The L5988D is a monolithic step down power switching regulator able to deliver a continuos output current of 4 A to the load in most of the application conditions limited only by the thermal performance (see Chapter 6.5 for details). The device is able to deliver more than 5 A to the load for a maximum time which is dependent on the thermal impedance of the system and the specific operating conditions (see Chapter 6.6).

The input voltage can range from 2.9 V to 18 V. The device is capable of 100% duty cycle operation thanks to the embedded high side PMOS switch which doesn’t need external bootstrap capacitor to be driven.

The internal switching frequency is adjustable by external resistor and can be set continuously from 100 kHz to 1 MHz. The L5988D can also be synchronized to an external frequency signal driven to the SYNCH pin I/O pin.

The multifunction UOS pin allows to set-up properly the additional embedded features depending on the value of the voltage level.

U (UVLO): two UVLO thresholds can be selected to match the 3.3 V and 5 V or 12 V input buses

O (OVP): latched or not latched OVP protection selectable. In latched mode the switching activity is interrupted until an UVLO or INH event happens

S (SINK): the sink capability is always disabled during soft-start time to support prebiased output voltage. Afterwards the sink capability can be enabled or not depending on the voltage set on the multifunction pin.

During soft-start phase a constant current protection is active to deliver extra current necessary to load the output capacitor. The current limit protection is achieved by sensing the current flowing in both embedded switches to assure an effective protection even at extreme duty cycle operations. Finished the soft-start phase the current protection feature triggers the “HICCUP” mode forcing the soft-start capacitor to be discharged and recharged. The current thresholds of both switches can be adjusted in tracking by using an external resistor to dimension the current protection accordingly to the local application.

The soft-start time is based on a constant current charge of an external capacitor. As a consequence the time can be set accordingly to the value of the output capacitor.

The latest smart power technology BCD6 (Bipolar-CMOS-DMOS version 6) features a low resistance of the embedded switches (35 mΩ typical for a NMOS, 50 mΩ typical for a PMOS), achieving high efficiency levels.

The HTSSOP16 package with exposed pad accomplishes low RthJA (40 °C/W), useful in dissipating power internally generated during high output current / high frequency operations.

6/52

Doc ID 15324 Rev 3

L5988D

Pin function

 

 

2 Pin function

Figure 2. Pin connection

Table 1.

Pinout description

N.

Name

Description

 

 

 

1, 16

OUT

Regulator output

 

 

 

2, 3

VIN

Unregulated DC input voltage

 

 

 

4

VCC

Unregulated DC signal input voltage

 

 

 

 

 

 

 

 

 

An external logic signal (active LOW) disables the device. In case the pin is

5

 

 

 

floating the device deliver a constant current (22 μA typ.) to charge the

SS/INH

 

 

 

 

 

soft-start capacitor (see 5.4)

 

 

 

6

COMP

Error amplifier output for frequency compensation

 

 

 

 

 

 

 

 

 

Connecting a pull-up resistor to VREF or a pull-down resistor to GND the

7

ILIM-ADJ

internal current limit thresholds can be tuned to match the local application.

In case the pin is left floating no changes are applied to the default current

 

 

 

 

limit thresholds

 

 

 

 

 

 

 

 

 

Feedback input. Connecting the output voltage directly to this pin results in

8

FB

a regulation voltage of 600 mV. An external resistive divider is required for

 

 

 

 

higher output voltages

 

 

 

9

SYNCH

Master/slave synchronization

 

 

 

 

 

 

 

 

 

Connecting a pull-up resistor to VREF or a pull-down resistor to GND the

10

FSW

internal oscillator frequency will be increased or decreased respectively. In

case the pin is left floating the predefined oscillator frequency

 

 

 

 

 

 

 

 

(400 kHz ± 10%) is active

 

 

 

 

 

11

U/O/S

Multifunction pin used to program additional features: UVLO thresholds,

OVP latched/not latched, SINK enabled/disabled

 

 

 

 

 

 

 

12

VREF

1.8 V voltage reference

 

 

 

13

SGND

Signal ground

 

 

 

14, 15

PGND

Power ground

 

 

 

 

 

Doc ID 15324 Rev 3

7/52

Maximum ratings

L5988D

 

 

3 Maximum ratings

Table 2.

Absolute maximum ratings

 

 

Symbol

 

 

Parameter

Value

Unit

 

 

 

 

 

 

VCC

 

 

Input voltage

20

V

 

 

 

 

 

 

VOUT

 

 

Output DC voltage

-0.3 (1)to VCC

V

 

 

 

 

 

 

 

U/O/S, SS/INH,

 

 

 

COMP, SYNCH,

Analog pins

-0.3 to 4

V

Fsw, ILIM-ADJ

 

 

 

 

 

 

 

 

 

FB

 

 

Feedback voltage

1.5

V

 

 

 

 

 

 

Ptot

 

 

Power dissipation at TA < 60 °C

2.25

W

TJ

 

 

Junction temperature range

-40 to 150

°C

TSTG

 

 

Storage temperature range

-55 to 150

°C

1.During the switching activity the negative peak voltage could reach -1.5 V without any damage for the device

Table 3.

Thermal data

 

 

Symbol

 

Parameter

Value

Unit

 

 

 

 

 

R

 

Thermal resistance junction to ambient max

40 (1)

°C/W

thJA

 

 

 

 

1. HTSSOP16 package mounted on ST demonstration board

8/52

Doc ID 15324 Rev 3

L5988D

Electrical characteristics

 

 

4 Electrical characteristics

VCC = 12 V, TJ = 25 °C unless otherwise specified.

 

 

 

 

Table 4.

 

Electrical characteristic

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test condition

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

Operating input voltage

Vout = 0.6 V; Iout=3 A

 

2.9

 

18

V

 

 

range

 

 

R

 

HS

High side MOSFET on

Iout=1.0 A

 

75

85

95

 

 

 

 

 

 

 

 

 

 

 

 

 

DS(on)

 

resistance

 

 

(1)

111

120

132

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

 

LS

Low side MOSFET on

Iout=1.0 A

 

62

67

72

DS(on)

 

 

 

 

 

resistance

(1)

92

100

106

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IL HIGH SIDE

Maximum peak limiting

ILIM-ADJ = float

 

3.6

4

4.4

A

current

 

IL LOW SIDE

Maximum valley limiting

ILIM-ADJ = float

 

4.14

4.6

5.06

A

current

 

 

fSW

 

Switching frequency

FSW = floating

 

360

400

440

kHz

 

fSW ADJ

adjusted switching

RFSW PULL DWN = 27 kΩ

 

 

1000

 

kHz

 

frequency

 

 

 

 

D

 

Duty cycle

 

 

 

0

 

100

%

 

 

 

 

 

 

 

 

Selectable under voltage lock-out (UVLO)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turn ON Vcc threshold

 

 

 

 

2.7

2.8

V

 

 

 

 

 

 

 

 

 

3.3 V BUS

Turn OFF Vcc threshold

 

 

 

2.4

2.5

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hysteresis

 

 

 

 

200

 

mV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turn ON Vcc threshold

 

 

 

 

8

8.6

V

 

 

 

 

 

 

 

 

 

12 V BUS

Turn OFF Vcc threshold

 

 

 

6.8

7

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hysteresis

 

 

 

 

1

 

V

 

 

 

 

 

 

 

 

 

DC characteristic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISS

 

Soft-start current

VSS/INH

= 2 V

 

 

22

 

μA

 

 

VSS/INH

= 0

 

 

5

 

μA

 

 

 

 

 

 

 

 

INH

 

Device ON level

 

 

 

0.8

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

Device OFF level

 

 

 

 

 

0.3

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iq

 

Quiescent current

Duty Cycle = 0;

 

 

 

3

mA

 

 

VFB = 1 V

 

 

 

 

 

 

 

 

 

 

 

 

 

Iq st-by

Total stand-by quiescent

 

 

 

 

 

35

μA

 

current

 

 

 

 

 

Doc ID 15324 Rev 3

9/52

Electrical characteristics

 

 

 

 

 

L5988D

 

 

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristic (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test condition

 

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

Dynamic characteristic (see figure 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VFB

Voltage feedback in

2.9 V < VCC < 18 V

 

 

0.595

0.6

0.605

V

 

 

 

 

 

 

 

regulation

 

(1)

0.592

0.6

0.609

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VOH

High level output voltage

VFB = 0.2 V; SS floating

 

 

3.1

 

 

V

 

VOL

Low level output voltage

VFB = 1.0 V

 

 

 

 

0.1

V

 

IO SOURCE

Source output current

VFB = 0.2 V

 

(2)

 

25

 

mA

 

 

 

 

 

 

IO SRCE LIM

Source current limitation

VFB = 0.2 V, VCOMP = 3 V

 

 

2

 

mA

 

IO SINK

Sink output current

VFB = 1.0 V, VCOMP = 0.5 V

 

30

 

mA

 

AV0

DC open loop gain

 

 

(2)

 

100

 

dB

 

 

 

 

 

 

 

Sync function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High input voltage

 

 

 

2.9

 

4.0

V

 

 

 

 

 

 

 

 

 

 

 

 

Low input voltage

 

 

 

 

 

0.74

V

 

 

 

 

 

 

 

 

 

 

 

 

Slave sink current

VSYNC = 3.3 V;

 

 

 

1

 

mA

 

 

 

FSW = float

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Master output amplitude

ISOURCE = 5 mA

 

 

2.9

 

 

V

 

 

Output pulse width

SYNCH = floating

 

 

 

100

 

ns

 

 

 

 

 

 

 

 

 

 

 

 

Input pulse width

 

 

 

70

 

 

ns

 

 

 

 

 

 

 

 

 

 

 

Reference section

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VREF

Reference voltage

Vcc = 2.9 V to 18 V

 

 

1.756

1.8

1.837

V

 

 

 

 

 

 

 

 

 

(1)

1.754

1.8

1.852

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line regulation

Vcc = 2.9 V to 18 V

 

 

 

6

12

mV

 

 

IREF = 0 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Load regulation

IREF = 0 to 5 mA

 

 

 

7.5

15

mV

 

 

Short circuit current

 

 

 

12

18

24

mA

 

 

 

 

 

 

 

 

 

 

 

Protections

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VFB_OVP

Overvoltage trip

VFB rising

 

 

15

20

24

%

 

(VFB_OVP - VFB) / VFB

 

 

VFB

 

 

 

 

 

 

 

 

 

Bus thresholds

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 3.3 V bus

 

 

 

 

 

 

 

 

TH1

- OVP not latched

 

 

(3)

0

 

0.2

V

 

 

- No sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 3.3 V bus

 

 

 

 

 

 

 

 

TH2

- OVP not latched

 

 

(3)

0.26

 

0.425

V

 

 

- Sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10/52

Doc ID 15324 Rev 3

L5988D

 

 

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristic

(continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

Test condition

Min

Typ

Max

Unit

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 3.3 V bus

 

 

 

 

 

 

 

 

TH3

- OVP latched

 

 

(3)

0.48

 

0.65

V

 

 

- No sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 3.3 V bus

 

 

 

 

 

 

 

 

TH4

- OVP latched

 

 

(3)

0.71

 

0.875

V

 

 

- Sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 12 V bus

 

 

 

 

 

 

 

 

TH5

- OVP not latched

 

 

(3)

0.93

 

1.085

V

 

 

- No sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 12 V bus

 

 

 

 

 

 

 

 

TH6

- OVP not latched

 

 

(3)

1.16

 

1.31

V

 

 

- Sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 12 V bus

 

 

 

 

 

 

 

 

TH7

- OVP latched

 

 

(3)

1.385

 

1.525

V

 

 

- No sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- UVLO 12 V bus

 

 

 

 

 

 

 

 

TH8

- OVP latched

 

 

(3)

1.615

 

VREF

V

 

 

- Sink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Specification over the junction temperature range (TJ) of -40 to +125 °C are guaranteed by design, characterization and statistical correlation

2.Guaranteed by design

3.VCC = 4 V

Doc ID 15324 Rev 3

11/52

ST L5988D User Manual

Functional description

L5988D

 

 

5 Functional description

The L5988D is based on a voltage mode control loop. Therefore the duty ratio of the internal switch is obtained through a comparison between a saw-tooth waveform (generated by an oscillator) and the output voltage of the error amplifier as shown in Figure 3. The advantage of this technique is the very short conduction time of the power elements thanks to the proper operation of the control loop without a precise current sense, which instead is required in current mode regulators. Thanks to this architecture the L5988D supports extremely low conversion ratio (D = VOUT/VIN) even at very high switching frequency

(up to 1 MHz).

Figure 3. Voltage mode control loop

VOUT OSCILLATOR RAMP

VREF

-

+

PWM

+

E/A

-

 

The main internal blocks are represented in Figure 4.

Figure 4. Internal block diagram

12/52

Doc ID 15324 Rev 3

L5988D

Functional description

 

 

Below follows a brief description of the main blocks:

A voltage pre-regulator supplies the internal circuitry. The external 1.8 V voltage reference is supplied by this regulator.

A voltage monitor circuit that checks the input and internal voltages

A fully integrated sawtooth oscillator whose frequency is 400 kHz ± 10% when the Fsw pin is floating. Its frequency can be increased/decreased connecting a proper resistor to GND or VREF

The internal current limitation circuitry monitors the current flowing in both embedded switches to guarantee an effective protection even in extreme duty cycle conditions

The over voltage protection (OVP) monitors the feedback voltage. If the voltage of this pin overcomes the 20% of the internal reference value (600 mV ± 1%) it will force the conduction of the low side switch until the overshoot is present

A voltage mode amplifier. The inverting input and the output are externally available for compensation

A pulse width modulator (PWM) comparator and the relative logic to drive the embedded switches

The soft-start circuit charges an external capacitor with a constant current equal to 20 µA (typ.). The soft-start feature is realized clamping the output of the error amplifier until the voltage across the capacitor is below 2.7 V

The circuitry acting on the SYNCH pin provides external signal reference to slave devices when the regulator works as a master or accept the synchronization from an external reference source

The circuitry related to the UOS multifunction pin is composed of a 3 bit A/D converter and the decoding logic. It recognizes eight different voltage windows of a VREF voltage magnitude for selecting additional features.

An inhibit block for stand-by operation

A circuit to realize the thermal protection function

5.1Multifunction pin

The UOS pin is used to configure the device additional features accordingly to the voltage bias imposed through VREF voltage partitioning.

The selectable options are:

UVLO level: two pre-defined the under voltage lock out thresholds can be selected to match the 3.3 V and 5 V or 12 V power bus

SINK capability: this feature is always disabled during the soft-start period to be compatible with pre-biased output voltages. After the soft-start phase, the synchronous rectification can be enabled or not depending on the status of the UOS pin. Anyway, in case an overvoltage is detected, the sink capability is always enabled to bring the FB back to regulation as fast as possible

OVP management: in case the latched mode is selected and an overvoltage event recurs, the switching activity will be suspended until VCC is reapplied or the SS/INH pin is toggled. Otherwise when the overvoltage transient is ended the regulator will work accordingly to the load request without regulation discontinuity

The circuitry related to the UOS multifunction pin is composed of a 3 bit A/D converter and the decoding logic. Table 5 shows the internal thresholds of each voltage window

Doc ID 15324 Rev 3

13/52

Functional description

L5988D

 

 

composing the VREF magnitude. The voltage biasing of the multifunction can be set accordingly to table Table 6.

Table 5.

A/D voltage windows

 

 

 

 

UVLO

OVP

SINK

 

 

 

 

 

1.8

V

 

 

 

12 V BUS

LATCH

SINK

1.575 V

 

 

 

12 V BUS

LATCH

NO SINK

1.35

V

 

 

 

12 V BUS

NO LATCH

SINK

1.125

V

 

 

 

12 V BUS

NO LATCH

NO SINK

0.9

V

 

 

 

3.3 V BUS

LATCH

SINK

0.675 V

 

 

 

3.3 V BUS

LATCH

NO SINK

0.45 V

 

 

 

3.3 V BUS

NO LATCH

SINK

0.225 V

 

 

 

3.3 V BUS

NO LATCH

NO SINK

0 V

 

 

 

 

 

 

 

 

 

 

 

Table 6.

UOS voltage biasing

 

 

 

 

R1 (kΩ)

 

R2 (kΩ)

 

VOUS (V)

UVLO

OVP

SINK

 

 

 

 

 

 

 

 

0

 

N.C.

 

1.8

12 V BUS

LATCH

SINK

 

 

 

 

 

 

 

 

0.68

 

2.7

 

1.438

12 V BUS

LATCH

NO SINK

 

 

 

 

 

 

 

 

1.2

 

2.7

 

1.246

12 V BUS

NO LATCH

SINK

 

 

 

 

 

 

 

 

2

 

2.7

 

1.034

12 V BUS

NO LATCH

NO SINK

 

 

 

 

 

 

 

 

3.3

 

2.7

 

0.810

3.3 V BUS

LATCH

SINK

 

 

 

 

 

 

 

 

6.2

 

2.7

 

0.546

3.3 V BUS

LATCH

NO SINK

 

 

 

 

 

 

 

 

11

 

2.7

 

0.355

3.3 V BUS

NO LATCH

SINK

 

 

 

 

 

 

 

 

N.C.

 

0

 

0

3.3 V BUS

NO LATCH

NO SINK

 

 

 

 

 

 

 

 

14/52

Doc ID 15324 Rev 3

L5988D

Functional description

 

 

5.2Oscillator and synchronization

The generation of the internal saw-tooth waveform is based on the constant current charge / discharge of an internal capacitor. The current generator is designed to get a switching frequency of 400 kHz ± 10% in case the FSW pin is left floating.

The current mirror connected to FSW (see Figure 5.) pin acts increasing / decreasing the value of the internal charging current to adjust the oscillator frequency. Since the internal circuitry forces the FSW voltage bias at 1.235 V, the user can easily source / sink current in this pin connecting a pull up resistor to VREF or a pull down to GND respectively.

Figure 5. Oscillator circuit block diagram

VREF

 

Clock

 

Clock

SYNCH

Synchronization

Generator

 

Ramp

Sawtooth

Generator

 

The value of the pull up resistor versus VREF to decrease the oscillator frequency follows the formula:

R1(KΩ) =

8.5 103

+ 0.95

400----------------F----SW---------(--KHz-------------)

 

 

In the same way to increase the switching frequency the pull down resistor is selected using the formula:

R2

(KΩ) =

18 103

F----SW---------(--KHz-------------)---

------------- 2.1

 

 

400

Table 10 shows some resistor values to adjust the oscillator frequency

Doc ID 15324 Rev 3

15/52

Functional description

 

 

L5988D

 

 

 

 

 

 

 

Table 7.

FSW resistor examples

 

 

 

 

 

 

 

 

R1 (kΩ)

fSW (kHz)

R2 (kΩ)

fSW (kHz)

 

 

 

 

 

 

 

 

43

198

360

450

 

 

 

 

 

 

 

 

47

215

180

499

 

 

 

 

 

 

 

 

56

245

120

548

 

 

 

 

 

 

 

 

62

261

91

594

 

 

 

 

 

 

 

 

82

295

56

711

 

 

 

 

 

 

 

 

110

322

43

801

 

 

 

 

 

 

 

 

150

343

33

915

 

 

 

 

 

 

 

 

220

361

27

1022

 

 

 

 

 

 

To improve the line transient performance, the voltage feed forward is implemented by changing the slope of the sawtooth according to the input voltage change (see Figure 6 a).

Figure 6. Sawtooth: voltage feed forward

The slope of the sawtooth does not change if the oscillator frequency is increased by an external signal or adjusted by the external resistor (see Figure 7). As a consequence the gain of the PWM stage is a function of the switching frequency and its contribution must be taken in account when performing the calculations of the compensation network (see

Chapter 6.4.1 and Chapter 6.4.2).

Figure 7. Sawtooth: synchronization and frequency adjust

16/52

Doc ID 15324 Rev 3

Loading...
+ 36 hidden pages