ST L5986 User Manual

L5986

2.5 A step-down switching regulator

Features

2.5 A DC output current

2.9 V to 18 V input voltage

Output voltage adjustable from 0.6 V

250 kHz switching frequency, programmable up to 1 MHz

Internal soft-start and inhibit

Low dropout operation: 100 % duty cycle

Voltage feed-forward

Zero load current operation

Overcurrent and thermal protection

VFQFPN3x3-8L and HSOP8 package

Applications

Consumer: STB, DVD, DVD recorder, car audio, LCD TV and monitors

Industrial: chargers, PLD, PLA, FPGA

Networking: XDSL, modems, DC-DC modules

Computer: optical storage, hard disk drive, printers, audio/graphic cards

LED driving

VFQFPN8 3x3 mm

HSOP8 exposed

pad

 

 

 

Description

The L5986 is a step-down switching regulator with a 3.0 A (min.) current limited embedded power MOSFET, so it is able to deliver up to 2.5 A current to the load depending on the application conditions.

The input voltage can range from 2.9 V to 18 V, while the output voltage can be set starting from 0.6 V to VIN. Having a minimum input voltage of 2.9 V, the device is suitable also for 3.3 V bus.

Requiring a minimum set of external components, the device includes an internal 250 kHz switching frequency oscillator that can be externally adjusted up to 1 MHz.

The QFN and the HSOP packages with exposed

pad allow reducing the RthJA down to 60 °C/W and 40 °C/W respectively.

Figure 1. Application circuit

November 2010

Doc ID 14971 Rev 4

1/44

www.st.com

Contents

L5986

 

 

Contents

1

Pin settings

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 4

 

1.1

Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

 

1.2

Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

2

Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

3

Thermal data

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

5

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

5.1

Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

5.2

Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

5.3

Error amplifier and compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

5.4

Overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

5.5

Inhibit function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

 

5.6

Hysteretic thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

6

Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.1

Input capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

6.2

Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

6.3

Output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

 

6.4

Compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

 

 

6.4.1

Type III compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

 

6.4.2

Type II compensation network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

 

6.5

Thermal considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

6.6

Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

6.7

Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

7

Application ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

7.1

Positive buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

7.2

Inverting buck-boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

2/44

Doc ID 14971 Rev 4

L5986

 

Contents

8

Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 39

9

Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 42

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 43

Doc ID 14971 Rev 4

3/44

Pin settings

L5986

 

 

1 Pin settings

1.1Pin connection

Figure 2. Pin connection (top view)

OUT

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

SYNCH

 

 

 

 

GND

INH

 

 

 

 

FSW

 

 

 

 

COMP

 

 

 

 

FB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2Pin description

Table 1.

Pin description

N.

Type

Description

 

 

 

1

OUT

Regulator output

 

 

 

 

 

Master/slave synchronization. When it is left floating, a signal with a

 

 

phase shift of half a period with respect to the power turn on is present at

 

 

the pin. When connected to an external signal at a frequency higher than

2

SYNCH

the internal one, then the device is synchronized by the external signal,

with zero phase shift.

 

 

 

 

Connecting together the SYNCH pin of two devices, the one with the

 

 

higher frequency works as master and the other as slave; so the two turn

 

 

on powers have a phase shift of half a period.

 

 

 

3

INH

A logical signal (active high) disables the device. With INH higher than

1.9 V the device is OFF and with INH lower than 0.6 V the device is ON.

 

 

 

 

 

4

COMP

Error amplifier output to be used for loop frequency compensation

 

 

 

 

 

Feedback input. Connecting the output voltage directly to this pin the

5

FB

output voltage is regulated at 0.6 V. To have higher regulated voltages an

 

 

external resistor divider is required from Vout to the FB pin.

 

 

 

 

 

The switching frequency can be increased connecting an external

6

FSW

resistor from the FSW pin and ground. If this pin is left floating the device

 

 

works at its free-running frequency of 250 kHz.

 

 

 

7

GND

Ground

 

 

 

8

VCC

Unregulated DC input voltage

4/44

Doc ID 14971 Rev 4

L5986

Maximum ratings

 

 

2 Maximum ratings

Table 2.

Absolute maximum ratings

 

 

Symbol

Parameter

Value

Unit

 

 

 

 

 

 

Vcc

 

Input voltage

 

20

 

 

 

 

 

 

 

OUT

 

Output DC voltage

 

-0.3 to VCC

 

FSW, COMP, SYNCH

Analog pin

 

-0.3 to 4

V

INH

 

Inhibit pin

 

-0.3 to VCC

 

FB

 

Feedback voltage

 

-0.3 to 1.5

 

 

 

 

 

 

 

PTOT

 

Power dissipation at

VFQFPN

1.5.

W

 

TA < 60 °C

HSOP

2

 

 

 

 

 

 

 

 

 

 

TJ

 

Junction temperature range

-40 to 150

°C

Tstg

 

Storage temperature range

-55 to 150

°C

3 Thermal data

Table 3.

Thermal data

 

 

 

Symbol

Parameter

 

Value

Unit

 

 

 

 

 

 

RthJA

 

Maximum thermal resistance

VFQFPN

60

°C/W

 

 

 

 

junction-ambient (1)

 

 

 

HSOP

40

 

 

 

 

 

 

 

 

 

 

1. Package mounted on demonstration board.

Doc ID 14971 Rev 4

5/44

Electrical characteristics

L5986

 

 

4 Electrical characteristics

TJ = 25 °C, VCC = 12 V, unless otherwise specified.

Table 4.

Electrical characteristics

 

 

 

 

Symbol

Parameter

Test condition

 

Values

 

Unit

 

 

 

Min

Typ

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

Operating input voltage

(1)

2.9

 

18

 

range

 

 

 

 

 

 

 

 

 

 

V

VCCON

Turn on VCC threshold

(1)

 

 

2.9

 

 

 

 

VCCHYS

VCC UVLO hysteresis

(1)

0.175

 

0.3

 

 

 

 

RDS(on)

MOSFET on resistance

 

 

140

170

 

 

 

 

(1)

 

140

220

 

 

 

 

 

 

 

 

 

 

 

 

ILIM

Maximum limiting current

 

3.0

3.5

3.9

A

Oscillator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSW

Switching frequency

 

225

250

275

kHz

 

 

 

 

(1)

220

 

275

 

 

 

 

 

 

 

 

 

 

 

 

VFSW

FSW pin voltage

 

 

1.262

 

V

D

Duty cycle

 

0

 

100

%

 

 

 

 

 

 

 

 

FADJ

Adjustable switching

RFSW = 33 kΩ

 

1000

 

kHz

frequency

 

 

Dynamic characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

V

FB

Feedback voltage

2.9 V < V < 18 V (1)

0.593

0.6

0.607

V

 

 

CC

 

 

 

 

DC characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

IQ

Quiescent current

Duty cycle = 0,

 

 

2.4

mA

VFB = 0.8 V

 

 

 

 

 

 

 

 

 

IQST-BY

Total standby quiescent

 

 

20

30

μA

current

 

 

Inhibit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INH threshold voltage

Device ON level

 

 

0.6

V

 

 

 

 

 

 

 

 

Device OFF level

1.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INH current

INH = 0

 

7.5

10

μA

 

 

 

 

 

 

 

Soft-start

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSW pin floating

7.4

8.2

9.1

 

TSS

Soft-start duration

 

 

 

 

ms

F = 1 MHz,

 

 

 

 

 

 

SW

 

2

 

 

 

 

 

RFSW = 33 kΩ

 

 

 

 

 

 

 

 

 

 

6/44

Doc ID 14971 Rev 4

L5986

 

 

Electrical characteristics

 

 

 

 

 

 

 

 

 

Table 4.

Electrical characteristics (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Test condition

 

Values

 

Unit

 

 

 

 

 

Min

Typ

Max

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCH

High level output voltage

VFB < 0.6 V

3

 

 

V

 

VCL

Low level output voltage

VFB > 0.6 V

 

 

0.1

 

 

 

 

 

IFB

Bias source current

VFB = 0 V to 0.8 V

 

1

 

μA

 

IO SOURCE

Source COMP pin

VFB = 0.5 V,

 

20

 

mA

 

VCOMP = 1 V

 

 

 

 

 

 

 

 

 

 

IO SINK

Sink COMP pin

VFB = 0.7 V,

 

25

 

mA

 

VCOMP = 1 V

 

 

 

 

 

 

 

 

 

 

GV

Open loop voltage gain

(2)

 

100

 

dB

 

 

 

 

 

Synchronization function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

High input voltage

 

2

 

3.3

V

 

 

 

 

 

 

 

 

 

Low input voltage

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slave sink current

VSYNCH = 2.9 V

 

0.7

0.9

mA

 

 

Master output amplitude

ISOURCE = 4.5 mA

2.0

 

 

V

 

 

Output pulse width

SYNCH floating

 

110

 

ns

 

 

 

 

 

 

 

 

 

Input pulse width

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IFBDISC

FB disconnection source

 

 

1

 

μA

 

current

 

 

 

 

TSHDN

Thermal shutdown

 

 

150

 

°C

 

 

 

 

 

 

 

Hysteresis

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Specification referred to TJ from -40 to +125 °C. Specifications in the -40 to +125 °C temperature range are assured by design, characterization and statistical correlation.

2.Guaranteed by design.

Doc ID 14971 Rev 4

7/44

Functional description

L5986

 

 

5 Functional description

The L5986 is based on a “voltage mode”, constant frequency control. The output voltage VOUT is sensed by the feedback pin (FB) compared to an internal reference (0.6 V) providing an error signal that, compared to a fixed frequency sawtooth, controls the ON and OFF time of the power switch.

The main internal blocks are shown in the block diagram in Figure 3. They are:

A fully integrated oscillator that provides sawtooth to modulate the duty cycle and the synchronization signal. Its switching frequency can be adjusted by an external resistor. The voltage and frequency feed forward are implemented.

The soft-start circuitry to limit inrush current during the start-up phase

The voltage mode error amplifier

The pulse width modulator and the relative logic circuitry necessary to drive the internal power switch

The high-side driver for embedded p-channel power MOSFET switch

The peak current limit sensing block, to handle over load and short-circuit conditions

A voltage regulator and internal reference. It supplies internal circuitry and provides a fixed internal reference.

A voltage monitor circuitry (UVLO) that checks the input and internal voltages

A thermal shutdown block, to prevent thermal run-away

Figure 3. Block diagram

8/44

Doc ID 14971 Rev 4

L5986

Functional description

 

 

5.1Oscillator and synchronization

Figure 4 shows the block diagram of the oscillator circuit. The internal oscillator provides a constant frequency clock. Its frequency depends on the resistor externally connect to the FSW pin. In case the FSW pin is left floating the frequency is 250 kHz; it can be increased as shown in Figure 6 by external resistor connected to ground.

To improve the line transient performance, keeping the PWM gain constant versus the input voltage, the voltage feed forward is implemented by changing the slope of the sawtooth according to the input voltage change (see Figure 5.a).

The slope of the sawtooth also changes if the oscillator frequency is increased by the external resistor. In this way a frequency feed forward is implemented (Figure 5.b) in order to keep the PWM gain constant versus the switching frequency (see Section 6.4 for PWM gain expression).

The synchronization signal is generated on the SYNCH pin. This signal has a phase shift of 180° with respect to the clock. This delay is useful when two devices are synchronized connecting the SYNCH pins together. When SYNCH pins are connected, the device with a higher oscillator frequency works as master, so the slave device switches at the frequency of the master but with a delay of half a period. This minimizes the RMS current flowing through the input capacitor (see the L5988D; 4 A continuous (more than 5 A pulsed) stepdown switching regulator with synchronous rectification, datasheet).

Figure 4. Oscillator circuit block diagram

 

Clock

 

FSW

Clock

SYNCH

 

Synchronization

 

Generator

 

 

Ramp

Sawtooth

 

Generator

 

 

The device can be synchronized to work at a higher frequency feeding an external clock signal. The synchronization changes the sawtooth amplitude, changing the PWM gain (Figure 5.c). This change has to be taken into account when the loop stability is studied. To minimize the change of the PWM gain, the free running frequency should be set (with a resistor on the FSW pin) only slightly lower than the external clock frequency. This preadjusting of the frequency changes the sawtooth slope in order to render the truncation of sawtooth negligible, due to the external synchronization.

Doc ID 14971 Rev 4

9/44

ST L5986 User Manual

Functional description

L5986

 

 

 

 

Figure 5.

Sawtooth: voltage and frequency feed forward; external synchronization

 

 

 

 

 

 

Figure 6. Oscillator frequency vs. FSW pin resistor

10/44

Doc ID 14971 Rev 4

L5986

Functional description

 

 

5.2Soft-start

The soft-start is essential to assure correct and safe startup of the step-down converter. It avoids inrush current surge and makes the output voltage increase monothonically.

The soft-start is performed by a staircase ramp on the non-inverting input (VREF) of the error amplifier. So the output voltage slew rate is:

Equation 1

SROUT = SRVREF

 

1

R1

 

+ -------

 

 

 

R2

where SRVREF is the slew rate of the non-inverting input while R1 and R2 is the resistor divider to regulate the output voltage (see Figure 7). The soft-start staircase consists of 64

steps of 9.5 mV each, from 0 V to 0.6 V. The time base of one step is of 32 clock cycles. So the soft-start time and then the output voltage slew rate depend on the switching frequency.

Figure 7. Soft-start scheme

Soft-start time results:

Equation 2

32 64 SSTIME = -----------------

Fsw

For example, with a switching frequency of 250 kHz the SSTIME is 8 ms.

Doc ID 14971 Rev 4

11/44

Functional description

L5986

 

 

5.3Error amplifier and compensation

The error amplifier (E/A) provides the error signal to be compared with the sawtooth to perform the pulse width modulation. Its non-inverting input is internally connected to a 0.6 V voltage reference, while its inverting input (FB) and output (COMP) are externally available for feedback and frequency compensation. In this device the error amplifier is a voltage mode operational amplifier so with high DC gain and low output impedance.

The uncompensated error amplifier characteristics are the following:

Table 5. Uncompensated error amplifier characteristics

Parameter

Value

 

 

Low frequency gain

100 dB

 

 

GBWP

4.5 MHz

 

 

Slew rate

7 V/μs

 

 

Output voltage swing

0 to 3.3 V

 

 

Maximum source/sink current

25 mA/40 mA

 

 

In continuous conduction mode (CCM), the transfer function of the power section has two poles due to the LC filter and one zero due to the ESR of the output capacitor. Different kinds of compensation networks can be used depending on the ESR value of the output capacitor. In case the zero introduced by the output capacitor helps to compensate the double pole of the LC filter a type II compensation network can be used. Otherwise, a type III compensation network has to be used (see Section 6.4 for details of the compensation network selection).

However, the methodology to compensate the loop is to introduce zeros to obtain a safe phase margin.

12/44

Doc ID 14971 Rev 4

L5986

Functional description

 

 

5.4Overcurrent protection

The L5986 implements the overcurrent protection sensing current flowing through the power MOSFET. Due to the noise created by the switching activity of the power MOSFET, the current sensing is disabled during the initial phase of the conduction time. This avoids an erroneous detection of a fault condition. This interval is generally known as “masking time” or “blanking time”. The masking time is about 200 ns.

When the overcurrent is detected, two different behaviors are possible depending on the operating condition.

1.Output voltage in regulation. When the overcurrent is sensed, the power MOSFET is

switched off and the internal reference (VREF), that biases the non-inverting input of the error amplifier, is set to zero and kept in this condition for a soft-start time (TSS, 2048 clock cycles). After this time, a new soft-start phase takes place and the internal reference begins ramping (see Figure 8.a).

2.Soft-start phase. If the overcurrent limit is reached, the power MOSFET is turned off implementing the pulse by pulse overcurrent protection. During the soft-start phase, under the overcurrent condition, the device can skip pulses in order to keep the output current constant and equal to the current limit. If, at the end of the “masking time”, the current is higher than the overcurrent threshold, the power MOSFET is turned off and it skips one pulse. If, at the next switching on at the end of the “masking time”, the current is still higher than the threshold, the device skips two pulses. This mechanism is repeated and the device can skip up to seven pulses. While, if at the end of the “masking time” the current is lower than the overcurrent threshold, the number of skipped cycles is decreased by one unit. At the end of the soft-start phase the output voltage is in regulation and if the overcurrent persists, the behavior explained above takes place. (see Figure 8.b)

So the overcurrent protection can be summarized as a “hiccup” intervention when the output is in regulation and a constant current during the soft-start phase.

If the output is shorted to ground when the output voltage is in regulation, the overcurrent is triggered and the device starts cycling with a period of 2048 clock cycles between “hiccup” (power MOSFET off and no current to the load) and “constant current” with very short ON time and with reduced switching frequency (up to one eighth of normal switching frequency). See Figure 31. for short-circuit behavior.

Doc ID 14971 Rev 4

13/44

Functional description

L5986

 

 

Figure 8. Overcurrent protection strategy

5.5Inhibit function

The inhibit feature allows the device to be put into standby mode. With the INH pin higher than 1.9 V, the device is disabled and the power consumption is reduced to less than 30 μA. With the INH pin lower than 0.6 V, the device is enabled. If the INH pin is left floating, an internal pull-up ensures that the voltage at the pin reaches the inhibit threshold and the device is disabled. The pin is also VCC compatible.

5.6Hysteretic thermal shutdown

The thermal shutdown block generates a signal that turns off the power stage if the junction temperature goes above 150 °C. Once the junction temperature goes back to about 130 °C, the device restarts in normal operation. The sensing element is very close to the PDMOS area, therefore ensuring an accurate and fast temperature detection.

14/44

Doc ID 14971 Rev 4

Loading...
+ 30 hidden pages