ST L4972A User Manual

L4972A

2A SWITCHING REGULATOR

1 Features

2A OUTPUT CURRENT

5.1V TO 40V OUTPUT VOLTAGE RANGE

0 TO 90% DUTY CYCLE RANGE

INTERNAL FEED-FORWARD LINE REG.

INTERNAL CURRENT LIMITING

PRECISE 5.1V ± 2% ON CHIP REFERENCE

RESET AND POWER FAIL FUNCTIONS

INPUT/OUTPUT SYNC PIN

UNDER VOLTAGE LOCK OUT WITH HYSTERETIC TURN-ON

PWM LATCH FOR SINGLE PULSE PER PERIOD

VERY HIGH EFFICIENCY

SWITCHING FREQUENCY UP TO 200KHz

THERMAL SHUTDOWN

CONTINUOUS MODE OPERATION

2 Description

The L4972A is a stepdown monolithic power switching regulator delivering 2A at a voltage variable from 5.1 to 40V.

Realized with BCD mixed technology, the device

Figure 2. Block Diagram

Figure 1. Packages

PowerDIP20 (16+2+2)

SO20

 

 

Table 1. Order Codes

Part Number

Package

 

 

L4972A

DIP20 (16+2+20)

 

 

L4972AD

SO20

 

 

L4972AD013TR

SO20 in Tape & Reel

 

 

uses a DMOS output transistor to obtain very high efficiency and very fast switching times. Features of the L4972 include reset and power fail for microprocessors, feed forward line regulation, soft start, limiting current and thermal protection. The device is mounted in a Powerdip 16 + 2 + 2 and SO20 large plastic packages and requires few external components. Efficient operation at switching frequencies up to 200KHz allows reduction in the size and cost of external filter component.

 

Rev. 3

May 2005

1/22

 

 

L4972A

Table 2. Pin Description

Pin

Function

 

 

 

1

BOOTSTRAP

A Cboot capacitor connected between this terminal and the output allows to drive

 

 

properly the internal D-MOS transistor.

 

 

 

2

RESET DELAY

A Cd capacitor connected between this terminal and ground determines the reset

 

 

signal delay time.

 

 

 

3

RESET OUT

Open Collector Reset/power Failand the output voltages are safe. Signal Output.

 

 

This output is high when the supply

 

 

 

4

RESET INPUT

Input of Power Fail Circuit. The threshold is 5.1V. It may be connected via a divider

 

 

to the input for power fail function. It must be connected to the pin 14 an external

 

 

30KΩ resistor when power fail signal not required.

 

 

 

5, 6 15,

GROUND

Common Ground Terminal

16

 

 

 

 

 

7

FREQUENCY

A series RC network connected between this terminal and ground determines the

 

COMPENSATION

regulation loop gain characteristics.

 

 

 

8

SOFT START

Soft Start Time Constant. A capacitor is connected between the sterminal and

 

 

ground to define the soft start time constant.

 

 

 

9

FEEDBACK INPUT

The Feedback Terminal of the Regulation Loop. The output is connected directly to

 

 

this terminal for 5.1V operation; It is connected via a divider for higher voltages.

 

 

 

10

SYNC INPUT

Multiple L4972A’s are synchronized by connecting pin 10 inputs together or via an

 

 

external syncr. pulse.

 

 

 

11

SUPPLY VOLTAGE

Unregulated Input Voltage.

 

 

 

12, 19

N.C.

Not Connected.

 

 

 

13

Vref

5.1V Vref Device Reference Voltage.

14

Vstart

Internal Start-up Circuit to Drive the Power Stage.

17

OSCILLATOR

Rosc. External resistor connected to ground determines the constant charging

 

 

current of Cosc.

18

OSCILLATOR

Cosc. External capacitor connected to ground determines (with Rosc) the switching

 

 

frequency.

 

 

 

20

OUTPUT

Regulator Output.

 

 

 

Figure 3. Pin Connection (Top view)

BOOTSTRAP

1

20

 

OUTPUT

RESET DELAY

2

19

 

N.C.

RESET OUT

3

18

 

C OSC

P. FAIL INPUT

4

17

 

R OSC

GND

5

16

 

GND

GND

6

15

 

GND

FREQ. COMP.

7

14

 

Vstart

SOFT START

8

13

 

Vref

FEEDBACK IN.

9

12

 

N.C.

SYNC INPUT

 

10

11

 

Vi

 

 

DIP20

2/22

 

 

 

 

 

 

L4972A

Table 3. Absolute Maximum Ratings

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

Value

 

Unit

 

 

 

 

 

 

 

V11

Input Voltage

 

55

 

V

V11

Input Operating Voltage

 

50

 

V

V20

Output DC Voltage

 

-1

 

V

 

Output Peak Voltage at t = 0.1µs f = 200kHz

 

-5

 

V

 

 

 

 

 

 

I20

Maximum Output Current

 

Internally Limited

 

VI

Boostrap Voltage

 

65

 

V

 

Boostrap Operating Voltage

 

V11 + 15

V

V4, V8

Input Voltage at Pins 4, 12

 

12

 

V

V3

Reset Output Voltage

 

50

 

V

I3

Reset Output Sink Current

 

50

 

mA

V2, V7, V9,

Input Voltage at Pin 2, 7, 9, 10

 

7

 

V

V10

 

 

 

 

 

 

I2

Reset Delay Sink Current

 

30

 

mA

I7

Error Amplifier Output Sink Current

 

1

 

A

I8

Soft Start Sink Current

 

30

 

mA

Ptot

Total Power Dissipation at TPINS ≤ 90°C

 

5 / 3.75(*)

W

 

at Tamb = 70°C (No copper area on PCB)

1.3/1 (*)

W

 

 

 

 

 

 

TJ, Tstg

Junction and Storage Temperature

 

-40 to 150

°C

(*) SO-20

 

 

 

 

 

 

Table 4. Thermal Data

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

PowerDIP

 

SO20

Unit

 

 

 

 

 

 

 

Rth j-pins

Thermal Resistance Junction-Pins

max,

12

 

16

°C/W

Rth j-amb

Thermal Resistance Junction-ambient

max,

60

 

80

°C/W

3 Circuit Operation

The L4972A is a 2A monolithic stepdown switching regulator working in continuous mode realized in the new BCD Technology. This technology allows the integration of isolated vertical DMOS power transistors plus mixed CMOS/Bipolar transistors.

The device can deliver 2A at an output voltage adjustable from 5.1V to 40V and contains diagnostic and control functions that make it particularly suitable for microprocessor based systems.

3.1 BLOCK DIAGRAM

The block diagram shows the DMOS power transistors and the PWM control loop. Integrated functions include a reference voltage trimmed to 5.1V ± 2%, soft start, undervoltage lockout, oscillator with feedforward control, pulse by pulse current limit, thermal shutdown and finally the reset and power fail circuit. The reset and power fail circuit provides an output signal for a microprocessor indicating the status of the system.

Device turn on is around 11V with a typical 1V hysterysis, this threshold porvides a correct voltage for the driving stage of the DMOS gate and the hysterysis prevents instabilities.

An external bootstrap capacitor charge to 12V by an internal voltage reference is needed to provide correct gate drive to the power DMOS. The driving circuit is able to source and sink peak currents of around 0.5A to the gate of the DMOS transistor. A typical switching time of the current in the DMOS transistor is 50ns. Due to the fast commutation switching frequencies up to 200kHz are possible.

The PWM control loop consists of a sawtooth oscillator, error amplifier, comparator, latch and the output

3/22

L4972A

stage. An error signal is produced by comparing the output voltage with the precise 5.1V ± 2% on chip reference. This error signal is then compared with the sawtooth oscillator in order to generate frixed frequency pulse width modulated drive for the output stage. A PWM latch is included to eliminate multiple pulsing within a period even in noisy environments.

The gain and stability of the loop can be adjusted by an external RC network connected to the output of the error amplifier. A voltage feedforward control has been added to the oscillator, this maintains superior line regulation over a wide input voltage range. Closing the loop directly gives an output vol-tage of 5.1V, higher voltages are obtained by inserting a voltage divider.

At turn on, output overcurrents are prevented by the soft start function (fig. 5). The error amplifier is initially clamped by an external capacitor, Css, and allowed to rise linearly under the charge of an internal constant current source.

Output overload protection is provided by a current limit circuit. The load current is sensed by a internal metal resistor connected to a comparator. When the load current exceeds a preset threshold, the output of the comparator sets a flip flop which turns off the power DMOS. The next clock pulse, from an internal 40kHz oscillator, will reset the flip flop and the power DMOS will again conduct. This current protection method, ensures a constant current output when the system is overloaded or short circuited and limits the switching frequency, in this condition, to 40kHz. The Reset and Power fail diagram (fig. 7), generates an output signal when the supply voltage exceeds a threshold programmed by an external voltage divider. The reset signal, is generated with a delay time programmed by a external capacitor on the delay pin. When the supply voltage falls below the threshold or the output voltage goes below 5V, the reset output goes low immediately. The reset output is an open drain.

Fig. 7A shows the case when the supply voltage is higher than the threshold, but the output voltage is not yet 5V.

Fig. 7B shows the case when the output is 5.1V, but the supply voltage is not yet higher than the fixed threshold. The thermal protection disables circuit operation when the junction temperature reaches about 150°C and has a hysterysis to prevent unstable conditions.

Figure 4. Feedforward Waveform.

Figure 5. Soft Start Function.

4/22

ST L4972A User Manual

L4972A

Figure 6. Limiting Current Function.

Figure 7. Reset and Power Fail Functions

A

B

5/22

L4972A

4 Electrical Characteristcs

Table 5. Electrical Characteristcs

Refer to the test circuit, TJ = 25°C, Vi = 35V, R4 = 30KΩ, C9 = 2.7nF, fSW = 100KHz typ, unless otherwise specified.

Symbol

Parameter

Test Condition

Min.

Typ.

Max.

Unit

Fig.

 

 

 

 

 

 

 

 

DYNAMIC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vi

Input Volt. Range (pin 11)

Vo = Vref to 40V Io = 2A (**)

15

 

50

V

8

Vo

Output Voltage

Vi =15V to 50V Io= 1A;

5

5.1

5.2

V

8

 

 

Vo = Vref

 

 

 

 

 

∆Vo

Line Regulation

Vi =15V to 50V

 

12

30

mV

 

 

 

Io = 0.5A; Vo= Vref

 

 

 

 

 

∆Vo

Load Regulation

Vo = Vref Io= 0.5A to 2A

 

7

20

mV

 

Vd

Dropout Voltage between Pin

Io = 2A

 

0.25

0.4

V

 

 

11 and 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I20L

Max Limiting Current

Vi = 15V to 50V

2.5

2.8

3.5

A

 

 

 

Vo= Vref to 40V

 

 

 

 

 

η

Efficiency (*)

Io = 2A, f = 100KHz

75

85

 

%

 

 

 

Vo = Vref

 

 

 

 

Vo = 12V

 

90

 

%

 

SVR

Supply Voltage Ripple Rejection

Vi = 2VRMS; Io= 1A

56

60

 

dB

8

 

 

f = 100Hz; Vo= Vref

 

 

 

 

 

f

Switching Frequency

 

90

100

110

KHz

8

 

 

 

 

 

 

 

 

f/Vi

Voltage Stability of Switching

Vi = 15V to 45V

 

2

6

%

8

 

Frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∆f/Tj

Temperature Stability of

Tj = 0 to 125°C

 

1

 

%

8

 

Switching Frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fmax

Maximum Operating Switching

Vo= Vref R4 = 15KΩ

200

 

 

KHz

8

 

Frequency

Io = 2A C9= 2.2nF

 

 

 

 

 

(*) Only for DIP version (**) Pulse testing with a low duty cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

Vref SECTION (pin 13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V13

Reference Voltage

 

5

5.1

5.2

V

10

∆V13

Line Regulation

Vi = 15V to 50V

 

10

25

mV

10

∆V13

Load Regulation

I13 = 0 to 1mA

 

20

40

mV

10

∆V13 /∆T

Average Temperature

Tj = 0°C to 125°C

 

0.4

 

mV/°C

10

 

Coefficient Reference Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I13 short

Short Circuit Current Limit

V13 = 0

 

70

 

mA

10

VSTART SECTION (pin 15)

 

 

 

 

 

 

V14

Reference Voltage

 

11.4

12

12.6

V

10

∆V14

Line Regulation

Vi = 15 to 50V

 

0.6

1.4

V

10

V14

Load Regulation

I14 = 0 to 1mA

 

50

200

mV

10

I14 short

Short Circuit Current Limit

V15 = 0V

 

80

 

mA

10

DC CHARACTERISTICS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V11on

Turn-on Threshold

 

10

11

12

V

12

V11 Hyst

Turn-off Hysteresys

 

 

1

 

V

12

I11Q

Quiescent Current

V8 = 0; S1 = D

 

13

19

mA

12

I11OQ

Operating Supply Current

V8 = 0; S1 = B; S2 = B

 

16

23

mA

12

6/22

 

 

 

 

 

 

 

L4972A

Table 5. Electrical Characteristcs (continued)

Refer to the test circuit, TJ = 25°C, Vi = 35V, R4 = 30KΩ, C9 = 2.7nF, fSW = 100KHz typ, unless otherwise specified.

Symbol

Parameter

 

Test Condition

Min.

Typ.

Max.

Unit

Fig.

 

 

 

 

 

 

 

 

I20L

Out Leak Current

Vi = 55V; S3 = A; V8= 0

 

 

2

mA

12

SOFT START (pin 8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I8

Soft Start Source Current

V8 = 3V; V9= 0V

80

115

150

µA

13

V8

Output Saturation Voltage

I8 = 20mA; V11= 10V

 

 

1

V

13

 

 

I8= 200µA; V11= 10V

 

 

0.7

V

13

ERROR AMPLIFIER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V7H

High Level Out Voltage

I7 = 100µA; S1 = C; V9 = 4.7V

6

 

 

V

14

V7L

Low Level Out Voltage

I7 = 100µA; S1 = C; V9= 5.3V

 

 

1.2

V

14

I7H

Source Output Current

V7 = 1V; V7 = 4.7V

100

150

 

µA

14

-I7L

Sink Output Current

V7 = 6V; V9 = 5.3V

100

150

 

µA

14

I9

Input Bias Current

S1 = B; RS = 10KΩ

 

0.4

3

µA

14

GV

DC Open Loop Gain

S1 = A; RS= 10Ω

60

 

 

dB

14

SVR

Supply Voltage Rejection

15 < Vi < 50V

60

80

 

dB

14

VOS

Input Offset Voltage

RS= 50Ω S1 = A

 

2

10

mV

14

RAMP GENERATOR (pin 18)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V18

Ramp Valley

S1 = B; S2 = B

1.2

1.5

 

V

12

V18

Ramp Peak

S1 = B; S2 = B

 

 

 

 

 

 

 

Vi

= 15V

 

2.5

 

V

12

 

 

Vi

= 45V

 

5.5

 

V

12

I18

Min. Ramp Current

S1 = A; I17= 100µA

 

270

300

µA

12

I18

Max. Ramp Current

S1 = A; I17= 1mA

2.4

2.7

 

mA

12

SYNC FUNCTION (pin 10)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V10

Low Input Voltage

Vi = 15V to 50V; V8 = 0;

–0.3

 

0.9

V

12

 

 

S1 = B; S2 = B; S4 = B

 

 

 

 

 

 

 

 

 

 

 

 

 

V10

High Input voltage

V8 = 0; S1 = B; S2 = B; S4 = B

2.5

 

5.5

V

12

I10L

Sync Input Current with Low

V10= V18= 0.9V; S4 = B;

 

 

0.4

mA

12

 

Input Voltage

S1 = B; S2 = B

 

 

 

 

 

 

 

 

 

 

 

 

 

I10H

Input Current with High

V10= 2.5V

 

 

1.5

mA

12

 

Input Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V10

Output Amplitude

 

 

4

5

 

V

tW

Output Pulse Width

Vthr = 2.5V

0.3

0.5

0.8

µs

RESET AND POWER FAIL FUNCTIONS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V9R

Rising Thereshold Voltage (pin 9)

Vi = 15 to 50V

Vref

Vref

Vref

V

15

 

 

V4 = 5.3V

-130

-100

-80

mV

 

V9F

Falling Thereshold Voltage (pin 9)

Vi = 15 to 50V

4.77

Vref

Vref

V

15

 

 

V4 = 5.3V

 

-200

-160

mV

 

V2H

Delay High Threshold Volt.

Vi = 15 to 50V

4.95

5.1

5.25

V

15

 

 

V4 = 5.3V; V9 = V13

 

 

 

 

 

V2L

Delay Low Threshold Volt.

Vi = 15 to 50V;V4 = 4.7V; V9 = V13

1

1.1

1.2

V

15

I2SO

Delay Source Current

V4 = 5.3V; V2 = 3V

30

60

80

µA

15

I2SI

Delay Source Sink Current

V4 = 4.7V; V2 = 3V

10

 

 

mA

15

V3S

Output Saturation Voltage

I3 = 15mA; S1 = B V4 = 4.7V

 

 

0.4

V

15

I3

Output Leak Current

V3 = 50V; S1 = A

 

 

100

µA

15

 

 

 

 

 

 

 

 

7/22

Loading...
+ 15 hidden pages