ST L3GD20 User Manual

Features
Three selectable full scales (250/500/2000
dps)
2
C/SPI digital output interface
16 bit-rate value data output
8-bit temperature data output
Two digital output lines (interrupt and data
ready)
Integrated low- and high-pass filters with user-
selectable bandwidth
Wide supply voltage: 2.4 V to 3.6 V
Low voltage-compatible IOs (1.8 V)
Embedded power-down and sleep mode
Embedded temperature sensor
Embedded FIFO
High shock survivability
Extended operating temperature range (-40 °C
to +85 °C)
ECOPACK
®
RoHS and “Green” compliant
Applications
Gaming and virtual reality input devices
Motion control with MMI (man-machine
interface)
GPS navigation systems
Appliances and robotics
L3GD20
MEMS motion sensor:
three-axis digital output gyroscope
LGA-16
Description
The L3GD20 is a low-power three-axis angular rate sensor.
It includes a sensing element and an IC interface capable of providing the measured angular rate to the external world through a digital interface
2
(I
C/SPI).
The sensing element is manufactured using a dedicated micro-machining process developed by STMicroelectronics to produce inertial sensors and actuators on silicon wafers.
The IC interface is manufactured using a CMOS process that allows a high level of integration to design a dedicated circuit which is trimmed to better match the sensing element characteristics.
The L3GD20 has a full scale of ±250/±500/ ±2000 dps and is capable of measuring rates with a user-selectable bandwidth.
The L3GD20 is available in a plastic land grid array (LGA) package and can operate within a temperature range of -40 °C to +85 °C.
(4x4x1 mm)
Table 1. Device summary
Order code Temperature range (°C) Package Packing
L3GD20 -40 to +85 LGA-16 (4x4x1 mm) Tray
L3GD20TR -40 to +85 LGA-16 (4x4x1 mm) Tape and reel
August 2011 Doc ID 022116 Rev 1 1/44
www.st.com
44
Contents L3GD20
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 I2C - Inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4 Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.5 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.6 Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/44 Doc ID 022116 Rev 1
L3GD20 Contents
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Output register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.7 REFERENCE/DATACAPTURE (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.8 OUT_TEMP (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.10 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.13 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.14 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.15 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.16 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.17 INT1_THS_XH (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.18 INT1_THS_XL (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.19 INT1_THS_YH (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.20 INT1_THS_YL (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.21 INT1_THS_ZH (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.22 INT1_THS_ZL (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.23 INT1_DURATION (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 022116 Rev 1 3/44
List of tables L3GD20
List of tables
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 7. I2C slave timing values (TBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 9. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. I2C terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 11. SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 24
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 24
Table 16. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 17. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 18. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 19. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 20. DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 21. Power mode selection configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 22. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 23. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 24. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 25. High-pass filter cut off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 26. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 27. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 28. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 29. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 30. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 31. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 32. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 33. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 34. OUT_TEMP register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 35. OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 36. STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 37. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 38. REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 39. REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 40. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 41. FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 42. FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 43. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 44. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 45. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 46. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 47. INT1_THS_XH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 48. INT1_THS_XH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 49. INT1_THS_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4/44 Doc ID 022116 Rev 1
L3GD20 List of tables
Table 50. INT1_THS_XL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 51. INT1_THS_YH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 52. INT1_THS_YH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 53. INT1_THS_YL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 54. INT1_THS_YL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 55. INT1_THS_ZH register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 56. INT1_THS_ZH description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 57. INT1_THS_ZL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 58. INT1_THS_ZL description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 59. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 60. INT1_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 61. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 022116 Rev 1 5/44
List of figures L3GD20
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 5. L3GD20 electrical connections and external component values . . . . . . . . . . . . . . . . . . . . 15
Figure 6. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 7. Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Trigger stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 13. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 14. Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 15. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 16. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 18. INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 19. Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 20. Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 21. LGA-16: mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6/44 Doc ID 022116 Rev 1
L3GD20 Block diagram and pin description

1 Block diagram and pin description

Figure 1. Block diagram

+Ω
x,y,z
REFERENCE
TRIMMING
CIRCUITS
X+
Y+
Z+
Z-
Y-
X-
CHARGE AMP
M U X
DRIVING MASS
MIXER
Feedback loop
FIFO
LOW-PASS FILTER
T E M
S
P
E
E
N
R
S
A
O
T
R
U R E
CLOCK
PHASE GENERATOR
F
D
I
I
G
I T A
L
L T E R
I N G
CONTROL LOGIC
INTERRUPT GEN.
A D C 1
A D C 2
&
CS
I2C
SCL/SPC SDA/SDO/SDI
SPI
SDO
INT1
&
DRDY/INT2
AM10126V1
Note: The vibration of the structure is maintained by drive circuitry in a feedback loop. The sensing
signal is filtered and appears as a digital signal at the output.

1.1 Pin description

Figure 2. Pin connection

+Ω
Z
X
(TOP VIEW) DIRECTIONS OF THE
DETECTABLE
ANGULAR RATES
+Ω
+Ω
RES
GND
13 16
Y
X
RES
RES
RES
RES
12
BOTTOM
VIEW
8
RES
INT1
Vdd
RES
1
Vdd_IO
SCL/SPC
SDA/SDI/SDO
49
SDO/SA0
5
CS
DRDY/INT2
AM10127V1
Doc ID 022116 Rev 1 7/44
Block diagram and pin description L3GD20

Table 2. Pin description

Pin# Name Function
SCL SPC
SDA
SDI
SDO
(1)
Power supply for I/O pins
2
C serial clock (SCL)
I SPI serial port clock (SPC)
2
I
C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
1 Vdd_IO
2
3
4
SDO
SA0
5CS
SPI serial data output (SDO) I2C less significant bit of the device address (SA0)
2
I
C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled)
6 DRDY/INT2 Data ready/FIFO interrupt (Watermark/Overrun/Empty)
7 INT1 Programmable interrupt
8 Reserved Connect to GND
9 Reserved Connect to GND
10 Reserved Connect to GND
11 Reserved Connect to GND
12 Reserved Connect to GND
13 GND 0 V supply
14 Reserved Connect to GND with ceramic capacitor
15 Reserved Connect to Vdd
16 Vdd
1. 100 nF filter capacitor recommended.
2. 1 nF min value must be guaranteed under 11 V bias condition.
3. 100 nF plus 10 µF capacitors recommended.
(3)
Power supply
(2)
8/44 Doc ID 022116 Rev 1
L3GD20 Mechanical and electrical specifications

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

@ Vdd = 3.0 V, T = 25 °C unless otherwise noted.

Table 3. Mechanical characteristics

Symbol Parameter Test condition Min. Typ.
FS Measurement range User-selectable
FS = 250 dps 8.75
So Sensitivity
FS = 2000 dps 70
SoDr
Sensitivity change vs. temperature
From -40 °C to +85 °C ±2 %
FS = 250 dps ±10
DVoff Digital zero-rate level
FS = 2000 dps ±75
OffDr
Zero-rate level change vs. temperature
FS = 250 dps ±0.03 dps/°C
FS = 2000 dps ±0.04 dps/°C
NL Non linearity Best fit straight line 0.2 % FS
Rn Rate noise density 0.03
(1)
±250
±2000
(2)
Max. Unit
dps±500
mdps/digitFS = 500 dps 17.50
dpsFS = 500 dps ±15
dps Hz(
ODR Digital output data rate
Top
1. The product is factory calibrated at 3.0 V. The operational power supply range is specified in Table 4.
2. Typical specifications are not guaranteed.
Operating temperature range
-40 +85 °C
95/190/
380/760
Doc ID 022116 Rev 1 9/44
Hz
Mechanical and electrical specifications L3GD20

2.2 Electrical characteristics

@ Vdd =3.0 V, T=25 °C unless otherwise noted.

Table 4. Electrical characteristics

Symbol Parameter Test condition Min. Typ.
(1)
(2)
Max. Unit
Vdd Supply voltage 2.4 3.0 3.6 V
Vdd_IO I/O pins supply voltage
(3)
1.71 Vdd+0.1 V
Idd Supply current 6.1 mA
IddSL
IddPdn
VIH
VIL
To p
1. The product is factory calibrated at 3.0 V.
2. Typical specifications are not guaranteed.
3. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses; in this condition the measurement chain is powered off.
4. Sleep mode introduces a faster turn-on time relative to power-down mode.
Supply current in sleep mode
(4)
Supply current in power-down mode
Digital high level input voltage
Digital low level input voltage
Operating temperature range
Selectable by digital interface
Selectable by digital interface
2mA
5 µA
0.8*Vdd_I O
0.2*Vdd_I O
-40 +85 °C
V
V

2.3 Temperature sensor characteristics

@ Vdd =3.0 V, T=25 °C unless otherwise noted.

Table 5. Electrical characteristics

Symbol Parameter Test condition Min. Typ.
Temperature sensor
TSDr
TODR Temperature refresh rate 1 Hz
To p
1. The product is factory calibrated at 3.0 V.
2. Typical specifications are not guaranteed.
10/44 Doc ID 022116 Rev 1
output change vs. temperature
Operating temperature range
(1)
(2)
Max. Unit
-1 °C/digit
-
-40 +85 °C
L3GD20 Mechanical and electrical specifications
W
W
W
W
W
W
W
W

2.4 Communication interface characteristics

2.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
(1)
Val ue
Symbol Parameter
Min Max
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
th(CS) CS hold time 8
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 6
tdis(SO) SDO output disable time 50
Unit
ns
1. Values are guaranteed at a 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results; not tested in production.
(a)
K6,
Y62
F63&
K62
K&6
/6%,1
GLV62
/6%287
!-V
Figure 3. SPI slave timing diagram
&6

VX&6
63&

VX6,
6',
6'2


06%,1
06%287




a. Measurement points are at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output port.
Doc ID 022116 Rev 1 11/44
Mechanical and electrical specifications L3GD20
W
W
W
W
W
W
W
W
W
W
W
W

2.4.2 I2C - Inter IC control interface

Subject to general operating conditions for Vdd and Top.
Table 7. I2C slave timing values (TBC)
Symbol Parameter
I2C standard mode
(1)
I2C fast mode
Min Max Min Max
(1)
Unit
f
(SCL)
t
w(SCLL)
t
w(SCLH)
t
su(SDA)
t
h(SDA)
t
r(SDA) tr(SCL)
t
f(SDA) tf(SCL)
t
h(ST)
t
su(SR)
t
su(SP)
t
w(SP:SR)
1. Data based on standard I2C protocol requirement; not tested in production.
2. Cb = total capacitance of one bus line, in pF.
Figure 4. I
SCL clock frequency 0 100 0 400 kHz
SCL clock low time 4.7 1.3
SCL clock high time 4.0 0.6
SDA setup time 250 100 ns
SDA data hold time 0 3.45 0 0.9 µs
SDA and SCL rise time 1000
SDA and SCL fall time 300
START condition hold time 4 0.6
Repeated START condition setup time
4.7 0.6
STOP condition setup time 4 0.6
Bus free time between STOP and START condition
2
C slave timing diagram
67$57
(b)
4.7 1.3
20 + 0.1C
20 + 0.1C
µs
(2)
b
(2)
b
300
ns
300
µs
5(3($7('
67$57
6'$
I6'$
U6'$
VX6'$
K6'$
6&/
Z6&//
K67
b. Measurement points are at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Z6&/+
U6&/
I6&/
12/44 Doc ID 022116 Rev 1
VX65
VX63
Z6365
67$57
6723
!-V
L3GD20 Mechanical and electrical specifications

2.5 Absolute maximum ratings

Stresses above those listed as “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
T
ESD Electrostatic discharge protection
Storage temperature range -40 to +125 °C
STG
Sg Acceleration g for 0.1 ms 10,000 g
2 (HBM) kV
1.5 (CDM) kV
200 (MM) V
Vin
Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
Note: Supply voltage on any pin should never exceed 4.8 V
This is a mechanical shock sensitive device, improper handling can cause permanent damage to the part
This is an ESD sensitive device, improper handling can cause permanent damage to the part
-0.3 to Vdd_IO +0.3 V
Doc ID 022116 Rev 1 13/44
Mechanical and electrical specifications L3GD20

2.6 Terminology

2.6.1 Sensitivity

An angular rate gyroscope is a device that produces a positive-going digital output for counter-clockwise rotation around the sensitive axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time.

2.6.2 Zero-rate level

Zero-rate level describes the actual output signal if there is no angular rate present. Zero­rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time.

2.7 Soldering information

The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems
.
14/44 Doc ID 022116 Rev 1
L3GD20 Application hints
9nF

3 Application hints

Figure 5. L3GD20 electrical connections and external component values

Vdd GND
+
Z
X
(TOP VIEW) DIRECTIONS OF THE
DETECTABLE ANGULA RATES
+Ω
+
Y
X
SDA_SDI_SDO
Vdd_IO
SCL/SPC
SDO/SA0
GND
14
10nF(25V)*
C1
1316
12
10 µF
100 nF
Vdd
1
TOP
VIEW
49
5
8
GND
GND
AM10128V1
* C1 must guarantee 1 nF value under
11 V bias condition
DR
CS
SCL/SPC
SDA_SDI_SDO
Pull-up to be added when I2C interface is used
INT
Vdd I2C bus
Rpu
Rpu = 10kOhm
Power supply decoupling capacitors (100 nF + 10 µF) should be placed as near as possible to the device (common design practice).
If Vdd and Vdd_IO are not connected together, 100 nF and 10 µF decoupling capacitors must be placed between Vdd and common ground, and 100 nF between Vdd_IO and common ground. Capacitors should be placed as near as possible to the device (common design practice).
Doc ID 022116 Rev 1 15/44
Digital main blocks L3GD20

4 Digital main blocks

4.1 Block diagram

Figure 6. Block diagram

Out_Sel
00 01
DataReg
ADC

4.2 FIFO

LPF1
HPF
0
1
HPen
LPF2
10 11
INT_Sel
10 11
01
00
FIFO
32x16x3
Interrupt
generator
I2C
SPI
SCR REG
CONF REG
INT1
AM07230v1
The L3GD20 embeds 32 slots of 16-bit data FIFO for each of the three output channels: yaw, pitch and roll. This allows consistent power saving for the system, since the host processor does not need to continuously poll data from the sensor, but can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-to­Stream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in the FIFO_CTRL_REG (2Eh). Programmable Watermark level, FIFO_empty or FIFO_Full events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3 (22h) and event detection information is available in FIFO_SRC_REG (2Fh). Watermark level can be configured to WTM4:0 in FIFO_CTRL_REG (2Eh).
16/44 Doc ID 022116 Rev 1
L3GD20 Digital main blocks

4.2.1 Bypass mode

In Bypass mode, the FIFO is not operational and for this reason it remains empty. As described in Figure 7 below, for each channel only the first address is used. The remaining FIFO slots are empty. When new data is available, the old data is overwritten.
Figure 7. Bypass mode
xi,yi,z
empty

4.2.2 FIFO mode

In FIFO mode, data from the yaw, pitch and roll channels is stored in the FIFO. A watermark interrupt can be enabled (I2_WMK bit into CTRL_REG3 (22h)) in order to be raised when the FIFO is filled to the level specified in the WTM 4:0 bits of FIFO_CTRL_REG (2Eh). The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO stops collecting data from the input channels. To restart data collection, the FIFO_CTRL_REG (2Eh) must be written back to Bypass mode.
i
x
0
x
1
x
2
x
31
y
y
i
0
y
1
y
2
y
31
l
z
0
z
1
z
2
z
31
AM07231v1
FIFO mode is represented in Figure 8: FIFO mode.
Doc ID 022116 Rev 1 17/44
Digital main blocks L3GD20
Figure 8. FIFO mode
xi,yi,z
i

4.2.3 Stream mode

In Stream mode, data from yaw, pitch and roll measurement are stored in the FIFO. A watermark interrupt can be enabled and set as in the FIFO mode.The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new data arrives. Programmable watermark level events can be enabled to generate dedicated interrupts on the DRDY/INT2 pin (configured through CTRL_REG3 (22h).
x
0
x
1
x
2
x
31
y
y
i
0
y
1
y
2
y
31
z
0
z
1
z
2
z
31
AM07232v1
Stream mode is represented in Figure 9: Stream mode.
18/44 Doc ID 022116 Rev 1
L3GD20 Digital main blocks
Figure 9. Stream mode
xi,yi,z
i
x
0
y
0
z
0
x
1
x
2
x
30
x
31
y
1
y
2
y
30
y
31
z
1
z
2
z
30
z
31
AM07234v1
Doc ID 022116 Rev 1 19/44
Digital main blocks L3GD20

4.2.4 Bypass-to-stream mode

In Bypass-to-stream mode, the FIFO begins operating in Bypass mode and once a trigger event occurs (related to INT1_CFG (30h) register events), the FIFO starts operating in Stream mode. Refer to Figure 10 below.
Figure 10. Bypass-to-stream mode
xi,yi,z
Empty
i
x
x
x
x
y
y
0
y
1
y
2
y
31
z
i
0
1
2
31
0
z
1
z
2
z
31
xi,yi,z
i
x
x
x
x
x
y
0
y
1
y
2
y
30
y
31
z
0
1
2
30
31
0
z
1
z
2
z
30
z
31
Bypass mode

4.2.5 Stream-to-FIFO mode

In Stream-to-FIFO mode, data from yaw, pitch and roll measurement is stored in the FIFO. A watermark interrupt can be enabled on pin DRDY/INT2 by setting the I2_WTM bit in CTRL_REG3 (22h) in order to be raised when the FIFO is filled to the level specified in the WTM4:0 bits of FIFO_CTRL_REG (2Eh). The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as the new data arrives. Once a trigger event occurs (related to INT1_CFG (30h) register events), the FIFO starts operating in FIFO mode. Refer to Figure 11 below.
Figure 11. Trigger stream mode
xi,yi,z
i
x
0
x
1
x
2
x
30
x
31
y
0
y
1
y
2
y
30
y
31
Stream mode
Trigge r ev e nt
xi,yi,z
z
0
z
1
z
2
z
30
z
31
i
x
0
x
1
x
2
x
31
y
y
i
0
y
1
y
2
y
31
AM07235v1
z
0
z
1
z
2
z
31
Stream Mode
Trigger event
20/44 Doc ID 022116 Rev 1
FIFO Mode
AM07236v1
L3GD20 Digital main blocks

4.2.6 Retrieve data from FIFO

FIFO data is read through OUT_X (Addr reg 28h,29h), OUT_Y (Addr reg 2Ah,2Bh) and OUT_Z (Addr reg 2Ch,2Dh). When the FIFO is in Stream, Trigger or FIFO mode, a read operation of the OUT_X, OUT_Y or OUT_Z registers provides the data stored in the FIFO. Each time data is read from the FIFO, the oldest pitch, roll and yaw data is placed in the OUT_X, OUT_Y and OUT_Z registers and both single read and read_burst (X,Y & Z with auto-incrementing address) operations can be used. When data included in OUT_Z_H (2Dh) is read, the system restarts to read information from addr OUT_X_L (28h).
Doc ID 022116 Rev 1 21/44
Digital interfaces L3GD20

5 Digital interfaces

The registers embedded in the L3GD20 may be accessed through both the I2C and SPI serial interfaces. The latter may be SW-configured to operate either in 3-wire or 4-wire interface mode.
The serial interfaces are mapped onto the same pins. To select/exploit the I CS line must be tied high (i.e connected to Vdd_IO).

Table 9. Serial interface pin description

Pin name Pin description
2
I
CS
SCL/SPC
SDA/SDI/SDO
SDO
C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI
communication mode / I2C disabled)
2
I
C serial clock (SCL)
SPI serial port clock (SPC)
I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)
SPI serial data output (SDO) I2C less significant bit of the device address
2
C interface, the

5.1 I2C serial interface

The L3GD20 I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back.
The relevant I

Table 10. I2C terminology

Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both lines are high.
2
The I
C interface is compliant with fast mode (400 kHz) I2C standards as well as with normal
mode.
2
C terminology is given in the table below.
Term Description
The device which initiates a transfer, generates clock signals and terminates a transfer
Slave The device addressed by the master
22/44 Doc ID 022116 Rev 1
L3GD20 Digital interfaces

5.1.1 I2C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the Master.
The Slave ADdress (SAD) associated with the L3GD20 is 110101xb. The SDO pin can be used to modify the less significant bit of the device address. If the SDO pin is connected to voltage supply, LSb is ‘1’ (address 1101011b). Otherwise, if the SDO pin is connected to ground, the LSb value is ‘0’ (address 1101010b). This solution allows to connect and address two different gyroscopes to the same I
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obligated to generate an acknowledge after each byte of data received.
2
The I
C embedded in the L3GD20 behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address is transmitted: the 7 LSb represent the actual register address while the MSb enables address auto-increment. If the MSb of the SUB field is 1, the SUB (register address) will be automatically incremented to allow multiple data read/write.
2
C bus.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. Table 11 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 11. SAD+read/write patterns
Command SAD[6:1] SAD[0] = SDO R/W SAD+R/W
Read 110101 0 1 11010101 (D1h)
Write 110101 0 0 11010100 (D0h)
Read 110101 1 1 11010111 (D3h)
Write 110101 1 0 11010110 (D2h)
Table 12. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
Doc ID 022116 Rev 1 23/44
Digital interfaces L3GD20
Table 13. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 14. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Data is transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes sent per transfer is unlimited. Data is transferred with the most significant bit (MSb) first. If a receiver cannot receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL, LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub­address field. In other words, SUB(7) must be equal to ‘1’ while SUB(6-0) represents the address of the first register to be read.
In the communication format presented, MAK is Master Acknowledge and NMAK is No Master Acknowledge.

5.2 SPI bus interface

The SPI is a bus slave. The SPI allows writing and reading the registers of the device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and SDO.
24/44 Doc ID 022116 Rev 1
L3GD20 Digital interfaces

Figure 12. Read and write protocol

CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10129V1
SDO
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
CS is the Serial Port Enable and is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the Serial Port Clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are respectively the Serial Port Data Input and Output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the Read Register and Write Register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple bytes read/write. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0: RW
bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS
bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address will be auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written to the device (MSb
first).
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).
In multiple read/write commands, further blocks of 8 clock periods will be added. When the MS
bit is 0, the address used to read/write data remains the same for every block. When the
MS
bit is 1, the address used to read/write data is incremented at every block.
The function and the behavior of SDI and SDO remain unchanged.
Doc ID 022116 Rev 1 25/44
Digital interfaces L3GD20

5.2.1 SPI read

Figure 13. SPI read protocol
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3DO2 DO1DO0
AM10130V1
The SPI read command is performed with 16 clock pulses. The multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS
bit. When 0 do not increment address; when 1 increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reading.
Figure 14. Multiple byte SPI read protocol (2-byte example)
C S
SPC
SDI
RW
AD5 AD4AD3 AD2 AD1 AD0
M S
SDO
DO7DO6DO5DO4DO3 DO 2 DO 1DO 0
DO15 DO 14 DO 13 DO12 DO 11 DO 10 D O9 D O8
AM10131V1
26/44 Doc ID 022116 Rev 1
L3GD20 Digital interfaces

5.2.2 SPI write

Figure 15. SPI write protocol
CS
SPC
SDI
RW
AD5 AD 4 AD 3 AD2 AD1 AD0MS
The SPI Write command is performed with 16 clock pulses. The multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
DI7 DI6 DI5 DI4 DI3 DI 2 DI1 DI 0
AM10132V1
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that will be written to the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writing.
Figure 16. Multiple byte SPI write protocol (2-byte example)
CS
SPC
SDI
RW
MS
AD5 AD4 AD3 AD2 AD1 AD 0

5.2.3 SPI read in 3-wire mode

DI7 DI6 DI 5 D I4 DI 3 DI2 DI1 DI 0 DI15 D I1 4 DI13 DI12 DI11 DI 10 DI9 DI8
AM10133V1
3-wire mode is entered by setting the bit SIM (SPI serial interface mode selection) to ‘1’ in CTRL_REG2.
Doc ID 022116 Rev 1 27/44
Digital interfaces L3GD20
Figure 17. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
RW
AD5 AD4 AD3 AD2 AD1 AD 0MS
The SPI Read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
DO7 DO6 DO5 DO4 DO3 DO2 DO 1 DO0
AM10134V1
bit 1: MS
bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
Multiple read command is also available in 3-wire mode.
28/44 Doc ID 022116 Rev 1
L3GD20 Output register mapping

6 Output register mapping

The table below provides a listing of the 8-bit registers embedded in the device, and the related addresses:

Table 16. Register address map

Register address
Name Type
Hex Binary
Reserved - 00-0E - -
WHO_AM_I r 0F 000 1111 11010100
Reserved - 10-1F - -
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
CTRL_REG4 rw 23 010 0011 00000000
CTRL_REG5 rw 24 010 0100 00000000
REFERENCE rw 25 010 0101 00000000
OUT_TEMP r 26 010 0110 output
Default
STATUS_REG r 27 010 0111 output
OUT_X_L r 28 010 1000 output
OUT_X_H r 29 010 1001 output
OUT_Y_L r 2A 010 1010 output
OUT_Y_H r 2B 010 1011 output
OUT_Z_L r 2C 010 1100 output
OUT_Z_H r 2D 010 1101 output
FIFO_CTRL_REG rw 2E 010 1110 00000000
FIFO_SRC_REG r 2F 010 1111 output
INT1_CFG rw 30 011 0000 00000000
INT1_SRC r 31 011 0001 output
INT1_TSH_XH rw 32 011 0010 00000000
INT1_TSH_XL rw 33 011 0011 00000000
INT1_TSH_YH rw 34 011 0100 00000000
INT1_TSH_YL rw 35 011 0101 00000000
INT1_TSH_ZH rw 36 011 0110 00000000
INT1_TSH_ZL rw 37 011 0111 00000000
INT1_DURATION rw 38 011 1000 00000000
Doc ID 022116 Rev 1 29/44
Output register mapping L3GD20
Registers marked as Reserved must not be changed. Writing to these registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.
30/44 Doc ID 022116 Rev 1
L3GD20 Register description

7 Register description

The device contains a set of registers which are used to control its behavior and to retrieve angular rate data. The register address, consisting of 7 bits, is used to identify them and to write the data through the serial interface.

7.1 WHO_AM_I (0Fh)

Table 17. WHO_AM_I register

11010100
Device identification register.

7.2 CTRL_REG1 (20h)

Table 18. CTRL_REG1 register

DR1 DR0 BW1 BW0 PD Zen Xen Yen

Table 19. CTRL_REG1 description

DR1-DR0 Output data rate selection. Refer to Table 20
BW1-BW0 Bandwidth selection. Refer to Table 20
PD
Zen Z axis enable. Default value: 1
Yen Y axis enable. Default value: 1
Xen X axis enable. Default value: 1
Power-down mode enable. Default value: 0 (0: power-down mode, 1: normal mode or sleep mode)
(0: Z axis disabled; 1: Z axis enabled)
(0: Y axis disabled; 1: Y axis enabled)
(0: X axis disabled; 1: X axis enabled)
DR<1:0> is used for ODR selection. BW <1:0> is used for Bandwidth selection.
In the Table 20 all frequencies resulting in combinations of DR / BW bits are reported.

Table 20. DR and BW configuration setting

DR <1:0> BW <1:0> ODR [Hz] Cut-Off
00 00 95 12.5
00 01 95 25
00 10 95 25
Doc ID 022116 Rev 1 31/44
Register description L3GD20
Table 20. DR and BW configuration setting (continued)
DR <1:0> BW <1:0> ODR [Hz] Cut-Off
00 11 95 25
01 00 190 12.5
01 01 190 25
01 10 190 50
01 11 190 70
10 00 380 20
10 01 380 25
10 10 380 50
10 11 380 100
11 00 760 30
11 01 760 35
11 10 760 50
11 11 760 100
A combination of PD, Zen, Yen, Xen is used to set device to different modes (power-down / normal / sleep mode) in accordance with Table 21 below.

Table 21. Power mode selection configuration

Mode PD Zen Yen Xen
Power-down 0 - - -
Sleep 1 0 0 0
Normal 1 - - -

7.3 CTRL_REG2 (21h)

Table 22. CTRL_REG2 register

(1)
0
1. These bits must be set to ‘0’ to ensure proper operation of the device

Table 23. CTRL_REG2 description

HPM1­HPM0
HPCF3­HPCF0
(1)
0
High-pass filter mode selection. Default value: 00 Refer to Table 24
High-pass filter cutoff frequency selection Refer to Table 25
HPM1 HPM1 HPCF3 HPCF2 HPCF1 HPCF0
32/44 Doc ID 022116 Rev 1
L3GD20 Register description

Table 24. High-pass filter mode configuration

HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset reading HP_RESET_FILTER)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event

Table 25. High-pass filter cut off frequency configuration [Hz]

HPCF3-0 ODR=95 Hz ODR=190 Hz ODR=380 Hz ODR=760 Hz
0000 7.2 13.5 27 51.4
0001 3.5 7.2 13.5 27
0010 1.8 3.5 7.2 13.5
0011 0.9 1.8 3.5 7.2
0100 0.45 0.9 1.8 3.5
0101 0.18 0.45 0.9 1.8
01100.090.180.450.9
0111 0.045 0.09 0.18 0.45
1000 0.018 0.045 0.09 0.18
1001 0.009 0.018 0.045 0.09

7.4 CTRL_REG3 (22h)

Table 26. CTRL_REG1 register

I1_Int1 I1_Boot H_Lactive PP_OD I2_DRDY I2_WTM I2_ORun I2_Empty

Table 27. CTRL_REG3 description

I1_Int1 Interrupt enable on INT1 pin. Default value 0. (0: disable; 1: enable)
I1_Boot Boot status available on INT1. Default value 0. (0: disable; 1: enable)
H_Lactive Interrupt active configuration on INT1. Default value 0. (0: high; 1:low)
PP_OD Push-pull / Open drain. Default value: 0. (0: push- pull; 1: open drain)
I2_DRDY Date-ready on DRDY/INT2. Default value 0. (0: disable; 1: enable)
I2_WTM FIFO watermark interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
I2_ORun FIFO overrun interrupt on DRDY/INT2 Default value: 0. (0: disable; 1: enable)
I2_Empty FIFO empty interrupt on DRDY/INT2. Default value: 0. (0: disable; 1: enable)
Doc ID 022116 Rev 1 33/44
Register description L3GD20

7.5 CTRL_REG4 (23h)

Table 28. CTRL_REG4 register

BDU BLE FS1 FS0 - 0
1. This value must not be changed.

Table 29. CTRL_REG4 description

BDU Block data update. Default value: 0
(0: continuos update; 1: output registers not updated until MSb and LSb read­ing)
BLE Big/little endian data selection. Default value 0.
(0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS1-FS0 Full scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
(1)
(1)
0
SIM

7.6 CTRL_REG5 (24h)

Table 30. CTRL_REG5 register

BOOT FIFO_EN -- HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0

Table 31. CTRL_REG5 description

BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
HPen High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled See Figure 20)
INT1_Sel1­INT1_Sel0
Out_Sel1­Out_Sel1
INT1 selection configuration. Default value: 0 (See Figure 20)
Out selection configuration. Default value: 0 (See Figure 20)
34/44 Doc ID 022116 Rev 1
L3GD20 Register description

Figure 18. INT1_Sel and Out_Sel configuration block diagram

Out_Sel <1:0>
0
LPF2
ADC
LPF1
HPF
1
HPen

7.7 REFERENCE/DATACAPTURE (25h)

Table 32. REFERENCE register

Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
00 01
10 11
INT1_Sel <1:0>
10
11
01
00
DataReg
FIFO
32x16x3
Interrupt
generator
AM07949V2

Table 33. REFERENCE register description

Ref 7-Ref0 Reference value for interrupt generation. Default value: 0

7.8 OUT_TEMP (26h)

Table 34. OUT_TEMP register

Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0

Table 35. OUT_TEMP register description

Temp7-Temp0 Temperature data
Temperature data (1LSB/deg - 8-bit resolution). The value is expressed as two's complement.
Doc ID 022116 Rev 1 35/44
Register description L3GD20

7.9 STATUS_REG (27h)

Table 36. STATUS_REG register

ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA

Table 37. STATUS_REG description

X, Y, Z -axis data overrun. Default value: 0
ZYXOR
(0: no overrun has occurred; 1: new data has overwritten the previous data before it was read)
ZOR
YOR
XOR
ZYXDA X, Y, Z -axis new data available. Default value: 0
ZDA Z axis new data available. Default value: 0
YDA Y axis new data available. Default value: 0
XDA X axis new data available. Default value: 0
Z axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
Y axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data)
X axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data)
(0: a new set of data is not yet available; 1: a new set of data is available)
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
(0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available)
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)

7.10 OUT_X_L (28h), OUT_X_H (29h)

X-axis angular rate data. The value is expressed as two’s complement.

7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh)

Y-axis angular rate data. The value is expressed as two’s complement.

7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh)

Z-axis angular rate data. The value is expressed as two’s complement.

7.13 FIFO_CTRL_REG (2Eh)

Table 38. REFERENCE register

FM2 FM1 FM0 WTM4 WTM3 WTM2 WTM1 WTM0
36/44 Doc ID 022116 Rev 1
L3GD20 Register description

Table 39. REFERENCE register description

FM2-FM0 FIFO mode selection. Default value: 00 (see Table 40)
WTM4-WTM0 FIFO threshold. Watermark level setting

Table 40. FIFO mode configuration

FM2 FM1 FM0 FIFO mode
0 0 0 Bypass mode
0 0 1 FIFO mode
0 1 0 Stream mode
0 1 1 Stream-to-FIFO mode
1 0 0 Bypass-to-Stream mode

7.14 FIFO_SRC_REG (2Fh)

Table 41. FIFO_SRC register

WTM OVRN EMPTY FSS4 FSS3 FSS2 FSS1 FSS0

Table 42. FIFO_SRC register description

WTM Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1 FIFO stored data level

7.15 INT1_CFG (30h)

Table 43. INT1_CFG register

AND/OR LIR ZHIE ZLIE YHIE YLIE XHIE XLIE
Doc ID 022116 Rev 1 37/44
Register description L3GD20

Table 44. INT1_CFG description

AND/OR
LIR
ZHIE
ZLIE
YHIE
YLIE
XHIE
AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events
Latch interrupt request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC reg.
Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
Enable interrupt generation on X low event. Default value: 0
XLIE
(0: disable interrupt request; 1: enable interrupt request on measured value lower than preset threshold)

7.16 INT1_SRC (31h)

Interrupt source register. Read only register.

Table 45. INT1_SRC register

0 IA ZHZLYHYLXHXL

Table 46. INT1_SRC description

IA
ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0 (0: no interrupt, 1: X High event has occurred)
XL X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)
38/44 Doc ID 022116 Rev 1
L3GD20 Register description
Reading at this address clears INT1_SRC IA bit (and eventually the interrupt signal on the INT1 pin) and allows the refresh of data in the INT1_SRC register if the latched option was chosen.

7.17 INT1_THS_XH (32h)

Table 47. INT1_THS_XH register

- THSX14 THSX13 THSX12 THSX11 THSX10 THSX9 THSX8

Table 48. INT1_THS_XH description

THSX14 - THSX9 Interrupt threshold. Default value: 0000 0000

7.18 INT1_THS_XL (33h)

Table 49. INT1_THS_XL register

THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THSX0

Table 50. INT1_THS_XL description

THSX7 - THSX0 Interrupt threshold. Default value: 0000 0000

7.19 INT1_THS_YH (34h)

Table 51. INT1_THS_YH register

- THSY14 THSY13 THSY12 THSY11 THSY10 THSY9 THSY8

Table 52. INT1_THS_YH description

THSY14 - THSY9 Interrupt threshold. Default value: 0000 0000

7.20 INT1_THS_YL (35h)

Table 53. INT1_THS_YL register

THSR7 THSY6 THSY5 THSY4 THSY3 THSY2 THSY1 THSY0

Table 54. INT1_THS_YL description

THSY7 - THSY0 Interrupt threshold. Default value: 0000 0000
Doc ID 022116 Rev 1 39/44
Register description L3GD20

7.21 INT1_THS_ZH (36h)

Table 55. INT1_THS_ZH register

- THSZ14 THSZ13 THSZ12 THSZ11 THSZ10 THSZ9 THSZ8

Table 56. INT1_THS_ZH description

THSZ14 - THSZ9 Interrupt threshold. Default value: 0000 0000

7.22 INT1_THS_ZL (37h)

Table 57. INT1_THS_ZL register

THSZ7 THSZ6 THSZ5 THSZ4 THSZ3 THSZ2 THSZ1 THSZ0

Table 58. INT1_THS_ZL description

THSZ7 - THSZ0 Interrupt threshold. Default value: 0000 0000

7.23 INT1_DURATION (38h)

Table 59. INT1_DURATION register

WAIT D6 D5 D4 D3 D2 D1 D0

Table 60. INT1_DURATION description

WAIT WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0 Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen.
The WAIT bit has the following definitions:
Wait = ‘0’: the interrupt falls immediately if the signal crosses the selected threshold
Wait = ‘1’: if the signal crosses the selected threshold, the interrupt falls only after the duration has counted the number of samples at the selected data rate, written into the duration counter register.
40/44 Doc ID 022116 Rev 1
L3GD20 Register description

Figure 19. Wait disabled

Figure 20. Wait enabled

Doc ID 022116 Rev 1 41/44
Package information L3GD20

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK
®
packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 21. LGA-16: mechanical data and package dimensions

Dimensions
Ref.
A1 1.000 0.0394
A2 0.7850.0309
A3 0.200 0.0079
d0.300 0.0118
D1 3.850 4.000 4.150 0.1516 0.1575 0.1634
E1 3.850 4.000 4.150 0.1516 0.1575 0.1634
L2 1.950 0.0768
M 0.100 0.0039
N1 0.650 0.0256
N2 0.975 0.0384
P1 1.750 0.0689
P2 1.525 0.0600
T1 0.400 0.0157
T2 0.300 0.0118
k 0.050 0.0020
mm inch
Min. Typ. Max. Min. Typ. Max.
Land Grid Array Package
Outline and
mechanical data
LGA-16 (4x4x1mm)
42/44 Doc ID 022116 Rev 1
8125097_A
L3GD20 Revision history

9 Revision history

Table 61. Document revision history

Date Revision Changes
18-Aug-2011 1 Initial release.
Doc ID 022116 Rev 1 43/44
L3GD20
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
44/44 Doc ID 022116 Rev 1
Loading...