ST AN4027 APPLICATION NOTE

AN4027

Application note

12 V - 150 W resonant converter with synchronous rectification using the L6563H, L6699 and SRK2000

By Claudio Spini

Introduction

This application note describes the EVL6699-150W-SR demonstration board features, a 12 V - 150 W converter tailored to a typical specification of an all-in-one (AIO) computer power supply or a high power adapter.

The architecture is based on a two-stage approach: a front-end PFC pre-regulator based on the L6563H TM PFC controller and a downstream LLC resonant half bridge converter using the new L6699 resonant controller. The L6699 integrates some very innovative functions such as self-adjusting adaptive deadtime, anti-capacitive mode protection and proprietary “safe-start” procedure preventing hard switching at startup.

Thanks to the chipset used, the main features of this power supply are very high efficiency, compliant with ENERGY STAR® eligibility criteria for adapters (ENERGY STAR® rev. 2.0 for external power supplies) and with the latest ENERGY STAR® qualification criteria for computers (ENERGY STAR® ver. 6.0 for computers). The power supply also has very good efficiency at light load too, and compliance to the new EuP Lot 6 Tier 2 requirements. No load input power consumption is very low as well, within the international regulation limits.

Figure 1. EVL6699-150W-SR: 150 W SMPS demonstration board

July 2012

Doc ID 022604 Rev 1

1/38

www.st.com

Contents

AN4027

 

 

Contents

1

Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . .

. 5

 

1.1

Standby power saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

 

1.2

Startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

1.3

L6563H brownout protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

1.4

L6563H fast voltage feed-forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

 

1.5

L6699 overload and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . .

9

 

1.6

L6699 anti-capacitive protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

1.7

Output voltage feedback loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

1.8

Open loop protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

2

Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

2.1

ENERGY STAR® for external power supplies ver. 2.0 compliance verification

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

 

2.2

ENERGY STAR® for computers ver. 6.0 compliance verification . . . . . . .

13

 

2.3

Light load operation efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

Measurement procedure: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3

Harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

4

Functional check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

4.1

Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19

 

4.2

Burst mode operation at light load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20

 

4.3

Overcurrent and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . .

21

 

4.4

Anti-capacitive mode protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

5

Thermal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

6

Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . .

26

7

Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

8

PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

 

8.1

General description and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2/38

Doc ID 022604 Rev 1

AN4027

Contents

 

 

8.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 8.3 Electrical diagram and winding characteristics . . . . . . . . . . . . . . . . . . . . . 33 8.4 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8.5 Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9

Transformer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

9.1

General description and characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .

34

 

9.2

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

 

9.3

Electrical diagram and winding characteristics . . . . . . . . . . . . . . . . . . . . .

35

 

9.4

Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

 

9.5

Manufacturer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

10

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

Doc ID 022604 Rev 1

3/38

List of tables

AN4027

 

 

List of tables

Table 1. Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 2. Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 3. ENERGY STAR® for external power supplies ver. 2.0 compliance verification . . . . . . . . . 14 Table 4. ENERGY STAR® for computers ver. 6.0 compliance verification. . . . . . . . . . . . . . . . . . . . 14 Table 5. Light load efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 6. Thermal maps reference points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 7. EVL6699-150W-SR demonstration board: motherboard bill of material. . . . . . . . . . . . . . . 27 Table 8. EVL6699-150W-SR demonstration board: daughterboard bill of material . . . . . . . . . . . . . 31 Table 9. PFC coil winding data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 10. Transformer winding data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 11. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4/38

Doc ID 022604 Rev 1

AN4027

List of figures

 

 

List of figures

Figure 1. EVL6699-150W-SR: 150 W SMPS demonstration board. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Burst-mode circuit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 3. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4. Graph of efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 5. Light load efficiency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 6. Compliance to EN61000-3-2 at 230 Vac - 50 Hz, full load . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 7. Compliance to JEITA-MITI at 100 Vac - 50 Hz, full load . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 8. Mains voltage and current waveforms at 230 V - 50 Hz - full load . . . . . . . . . . . . . . . . . . . 17

Figure 9. Mains voltage and current waveforms at 100 V - 50 Hz - full load . . . . . . . . . . . . . . . . . . . 17

Figure 10. Resonant stage waveforms at 115 Vac - 60 Hz - full load. . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11. SRK2000 key signals at 115 Vac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 12. HB transition at full load - rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 13. HB transition at full load - falling edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 14. HB transition at 0.25 A - rising edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 15. HB transition at 0.25 A - falling edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 16. L6699 pin signals-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 17. L6699 pin signals-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 18. Startup at 90 Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 19. Startup at 265 Vac - no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 20. Startup at 115 Vac - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 21. Startup at full load - detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 22. Pout = 250 mW operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 23. Pout = 250 mW operation - detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 24. Transition full load to no load at 115 Vac - 60 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 25. Transition no load to full load at 115 Vac - 60 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 26. Short-circuit at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 27. Short-circuit at full load – detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 28. Short-circuit - hiccup mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 29. Thermal map at 115 Vac - 60 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 30. Thermal map at 230 Vac - 50 Hz - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 31. CE average measurement at 115 Vac - 60 Hz and full load. . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 32. CE average measurement at 230 Vac - 50 Hz and full load. . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 33. PFC coil electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 34. PFC coil mechanical aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 35. Transformer electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Figure 36. Transformer overall drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Doc ID 022604 Rev 1

5/38

Main characteristics and circuit description

AN4027

 

 

1 Main characteristics and circuit description

The SMPS main features are listed below:

Table 1.

Main characteristics and circuit description

 

Parameter

Value

 

 

Input mains range

90 - 264 Vac - frequency 45 to 65 Hz

Output voltage

12 V at 12.5 A continuous operation

 

 

Mains harmonics

Meets EN61000-3-2 Class-D and JEITA-MITI Class-D

 

 

No load mains consumption

< 0.17 W at 230 Vac, according to ENERGY STAR® 2.0

 

 

for external power supplies

 

 

 

Avg. efficiency

> 91% at 115 V , according to ENERGY STAR® 2.0

ac

 

 

for external power supplies

 

 

Light load efficiency

According to EuP Lot 6 Tier 2 requirements

 

 

 

EMI

 

Within EN55022 Class-B limits

 

 

 

Safety

 

Meets EN60950

 

 

 

Dimensions

 

65 x 154 mm, 28 mm component maximum height

 

 

 

PCB

 

Double side, 70 µm, FR-4, mixed PTH/SMT

 

 

 

The circuit is made up of two stages: a front-end PFC using the L6563H, an LLC resonant converter based on the L6699, and the SRK2000, controlling the SR MOSFETs on the secondary side. The SR driver and the rectifier MOSFETs are mounted on a daughterboard.

The L6563H is a current mode PFC controller operating in transition mode and implements a high-voltage startup to power on the converter.

The L6699 integrates all the functions necessary to properly control the resonant converter with a 50 % fixed duty cycle and working with variable frequency.

The output rectification is managed by the SRK2000, an SR driver dedicated to LLC resonant topology.

The PFC stage works as pre-regulator and powers the resonant stage with a constant voltage of 400 V. The downstream converter operates only if the PFC is on and regulating. In this way, the resonant stage can be optimized for a narrow input voltage range.

The L6699 LINE pin (pin 7) is dedicated to this function. It is used to prevent the resonant converter from working with too low input voltage that can cause incorrect Capacitive mode operation. If the bulk voltage (PFC output) is below 380 V, the resonant startup is not allowed. The L6699 LINE pin internal comparator has a current hysteresis allowing the turnon and turn-off voltage to be independently set. The turn-off threshold has been set to 300 V to let the resonant stage operate in the case of mains sag and consequent PFC output dip.

The transformer uses the integrated magnetic approach, incorporating the resonant series inductance. Therefore, no external, additional coil is needed for the resonance. The transformer configuration chosen for the secondary winding is centre tap.

On the secondary side, the SRK2000 core function is to switch on each synchronous rectifier MOSFET whenever the corresponding transformer half-winding starts conducting

6/38

Doc ID 022604 Rev 1

AN4027

Main characteristics and circuit description

 

 

(i.e. when the MOSFET body diode starts conducting) and then to switch it off when the flowing current approaches zero. For this purpose, the IC is provided with two pins (DVS1 and DVS2) sensing the MOSFETs drain voltage level.

The SRK2000 automatically detects light load operation and enters sleep mode, disabling MOSFET driving and decreasing its own consumption. This function allows great power saving at light load with respect to benchmark SR solutions.

In order to decrease the output capacitors size, aluminium solid capacitors with very low ESR were preferred to standard electrolytic ones. Therefore, high frequency output voltage ripple is limited and an output LC filter is not required. This choice allows the saving of output inductor power dissipation which can be significant in the case of high output current applications such as this.

1.1Standby power saving

The board has a burst mode function implemented that allows power saving during light load operation.

The L6699 STBY pin (pin 5) senses the optocoupler’s collector voltage (U3), which is related to the feedback control. This signal is compared to an internal reference (1.24 V). If the voltage on the pin is lower than the reference, the IC enters an idle state and its quiescent current is reduced. As the voltage exceeds the reference by 30 mV, the controller restarts the switching. The burst mode operation load threshold can be programmed by properly choosing the resistor connecting the optocoupler to pin RFMIN (R34). Basically, R34 sets the switching frequency at which the controller enters burst mode. Since the power at which the converter enters burst mode operation heavily influences converter efficiency at light load, it must be properly set. However, despite this threshold being well set, if its tolerance is too wide, the light load efficiency of mass production converters has a considerable spread.

The main factors affecting the burst mode threshold tolerance are the control circuitry tolerances and, even more influential, the tolerances of the resonant inductance and resonant capacitor. Slight changes of resonance frequency can affect the switching frequency and, consequently, notably change the burst mode threshold. Typical production spread of these parameters, which fits the requirements of many applications, are no longer acceptable if very low power consumption in standby must be guaranteed.

As reducing production tolerance of the resonant components causes a rise in cost, a new cost-effective solution is necessary.

The key point of the proposed solution is to directly sense the output load to set the burst mode threshold. In this way the resonant elements parameters no longer affect this threshold. The implemented circuit block diagram is shown in Figure 2.

Doc ID 022604 Rev 1

7/38

Main characteristics and circuit description

AN4027

 

 

Figure 2. Burst-mode circuit block diagram

 

 

 

 

TO POWER TRANSFORMER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2#3

TO LOAD

 

 

 

 

 

 

 

 

 

 

 

TO &" OPTOCOUPLER

 

 

 

 

 

 

 

, !

2&-).

2LIM

43-

 

 

43#

 

 

 

 

 

 

 

 

 

 

 

6

2&"

 

 

 

 

 

 

60

 

 

 

 

 

##

/54

 

 

 

 

 

 

 

% !

 

 

 

 

 

 

 

 

6?2%&

 

 

6-

 

 

 

 

 

 

 

 

 

 

 

 

 

34"9

 

##?/54

 

2(

 

 

 

 

 

#OMP

6

 

 

3TANDBY

 

 

 

 

 

 

 

#OMP

 

 

 

 

##

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

2"-

2"-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2(TS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

!-6

The output current is sensed by a resistor (RCS); the voltage drop across this resistor is amplified by the TSC101, a dedicated high-side current sense amplifier; its output is compared to a set reference by the TSM1014; if the output load is high, the signal fed into the CCpin is above the reference voltage, CC_OUT stays down and the optocoupler transistor pulls up the L6699 STBY pin to the RFMIN voltage (2 V), setting continuous switching operation (no burst mode); if the load decreases, the voltage on CCfalls below the set threshold, CC_OUT goes high opening the connection between RFMIN and STBY and allowing burst mode operation by the L6699. RCS is dimensioned considering two constraints. The first is the maximum power dissipation allowed, based on the efficiency target. The second limitation is imposed by the need to feed a reasonable voltage signal into the TSM1014A inverting input. In fact, signals which are too small would affect system accuracy.

On this board, the maximum acceptable power dissipation has been set to Ploss,MAX = 500 mW. RCS maximum value is calculated as follows:

Equation 1

RCS,MAX = PIlo2 ss,MAX = 3.2mΩ out,MAX

The burst mode threshold is set at 5 W corresponding to IBM = 417 mA output current at

12 V. Choosing VCC+min = 50 mV as minimum reference of the TSM1014A, which permits a good signal to noise ratio, the RCS minimum value is calculated as follows:

Equation 2

RCS,min =

VCC+min

= 1.2mΩ

100

I

 

 

BM

 

The actual value of the mounted resistor is 2 mΩ, corresponding to Ploss = 312 mW power losses at full load. The actual resistor value at the burst mode threshold current provides an output voltage by the TSC101 of 83 mV. The reference voltage of TSM1014 Vcc+ must be

8/38

Doc ID 022604 Rev 1

AN4027

Main characteristics and circuit description

 

 

set at this level. The resistor divider setting the TSM1014 threshold RH and RL should be in the range of kΩ to minimize dissipation. Selecting RL = 22 KΩ, the right RH value is obtained as follows:

Equation 3

RH = RL (1.25V − VBM ) = 309kΩ

VBM

The value of the mounted resistor is 330 kΩ.

RHts sets a small debouncing hysteresis and is in the range of mega ohms. Rlim is in the range of tens of kΩ and limits the current flowing through the optocoupler's diode. Both L6699 and L6563H implement their own burst mode function but, in order to improve the power supply overall efficiency, at light load the L6699 drives the L6563H via the PFC_STOP pin and enables the PFC burst mode: as soon as the L6699 stops switching due to load drops, its PFC_STOP pin pulls down the L6563H PFC_OK pin, disabling PFC switching. Thanks to this simple circuit, the PFC is forced into idle state when the resonant stage is not switching and rapidly wakes up when the downstream converter restarts switching.

1.2Startup sequence

The PFC acts as master and the resonant stage can operate only if the PFC output is delivering the rated output voltage. Therefore, the PFC starts first and then the LLC converter turns on. At the beginning, the L6563H is supplied by the integrated high-voltage startup circuit; as soon as the PFC starts switching, a charge pump circuit connected to the PFC inductor supplies both PFC and resonant controllers, therefore, the HV internal current source is disabled. Once both stages have been activated, the controllers are supplied also by the auxiliary winding of the resonant transformer, assuring correct supply voltage even during standby operation. As the L6563H integrated HV startup circuit is turned off, it greatly contributes to power consumption reduction when the power supply operates at light load.

1.3L6563H brownout protection

Brownout protection prevents the circuit from working with abnormal mains levels. It is easily achieved using the RUN pin (pin 12) of the L6563H: this pin is connected through a resistor divider to the VFF pin (pin 5), which provides the information of the mains voltage peak value. An internal comparator enables the IC operations if the mains level is correct, within the nominal limits. At startup, if the input voltage is below 90 Vac (typ.), circuit operations are inhibited.

1.4L6563H fast voltage feed-forward

The voltage on the L6563H VFF pin (pin 5) is the peak value of the voltage on the MULT pin (pin 3). The RC network (R15+R26, C12) connected to VFF completes a peak-holding circuit. This signal is necessary to derive information from the RMS input voltage to compensate the loop gain that is mains voltage dependent.

Generally speaking, if the time constant is too small, the voltage generated is affected by a considerable amount of ripple at twice the mains frequency, therefore causing distortion of

Doc ID 022604 Rev 1

9/38

Main characteristics and circuit description

AN4027

 

 

the current reference (resulting in higher THD and lower PF). If the time constant is too large, there is a considerable delay in setting the right amount of feed-forward, resulting in excessive overshoot or undershoot of the pre-regulator's output voltage in response to large line voltage changes.

To overcome this issue, the L6563H implements the fast voltage feed-forward function. As soon as the voltage on the VFF pin decreases by a set threshold (40 mV typically), a mains dip is assumed and an internal switch rapidly discharges the VFF capacitor via a 10 kΩ resistor. Thanks to this feature, it is possible to set an RC circuit with a long time constant, assuring a low THD, keeping a fast response to mains dip.

1.5L6699 overload and short-circuit protection

The current into the primary winding is sensed by the lossless circuit R41, C27, R78, R79, and C25 and it is fed into the ISEN pin (pin 6). In the case of overload, the voltage on the pin surpasses an internal threshold (0.8 V) that triggers a protection sequence. An internal switch is turned on for 5 µs and discharges the soft-start capacitor C18. This quickly increases the oscillator frequency and thereby limits energy transfer. Under output shortcircuit conditions, this operation results in a peak primary current that periodically oscillates below the maximum value allowed by the sense resistor R78.

The converter runs under this condition for a time set by the capacitor (C45) on pin DELAY (pin 2). During this condition, C45 is charged by an internal 150 µA current generator and is slowly discharged by the external resistor (R24). If the voltage on the pin reaches 2 V, the soft-start capacitor is completely discharged so that the switching frequency is pushed to its maximum value. As the voltage on the pin exceeds 3.5 V, the IC stops switching and the internal generator is turned off, so that the voltage on the pin decays because of the external resistor. The IC is soft-restarted as the voltage drops below 0.3 V. In this way, under shortcircuit conditions, the converter works intermittently with very low input average power.

This procedure allows the converter to handle an overload condition for a time lasting less than a set value, avoiding IC shutdown in the case of short overload or peak power transients. On the other hand, in the case of dead short, a second comparator referenced to

1.5 V immediately disables switching and activates a restart procedure.

1.6L6699 anti-capacitive protection

The LLC resonant half bridge converter must operate with the resonant tank current lagging behind the square-wave voltage applied by the half bridge leg. This is a necessary condition in order to obtain correct soft switching by the half bridge MOSFETs. If the phase relationship reverses, i.e. the resonant tank current leads the applied voltage, like in circuits having a capacitive reactance, soft switching is lost. This condition is called capacitive mode and must be avoided because of significant drawbacks coming from hard switching (refer to the L6699 datasheet).

Resonant converters work in capacitive mode when their switching frequency falls below a critical value that depends on the loading conditions and the input-to-output voltage ratio. They are especially prone to run in capacitive mode when the input voltage is lower than the minimum specified and/or the output is overloaded or short-circuited. Designing a converter so that it never works in capacitive mode, even under abnormal operating conditions, is certainly possible but this may pose unacceptable design constraints in some cases.

To prevent the severe drawbacks of capacitive mode operation, while enabling a design that needs to ensure Inductive mode operation only in the specified operating range, neglecting

10/38

Doc ID 022604 Rev 1

AN4027

Main characteristics and circuit description

 

 

abnormal operating conditions, the L6699 provides the capacitive mode detection function. The IC monitors the phase relationship between the tank current circuit sensed on the ISEN pin and the voltage applied to the tank circuit by the half bridge, checking that the former lags behind the latter (Inductive mode operation). If the phase shift approaches zero, which is indicative of impending capacitive mode operation, the monitoring circuit activates the overload procedure described above so that the resulting frequency rise keeps the converter away from that dangerous condition. Also in this case, the DELAY pin is activated, so that the OLP function, if used, is eventually tripped after a time TSH causing intermittent operation and reducing thermal stress.

If the phase relationship reverses abruptly (which may happen in the case of dead short at the converter's output), the L6699 is stopped immediately, the soft-start capacitor C18 is totally discharged and a new soft-start cycle is initiated after 50 µs idle time. During this idle period the PFC_STOP pin is pulled low to stop the PFC stage as well.

1.7Output voltage feedback loop

The feedback loop is implemented by means of a typical circuit using the dedicated operational amplifier of the TSM1014A modulating the current in the optocoupler diode. The second operational amplifier embedded in the TSM1014A, usually dedicated to constant current regulation, is here utilized for burst mode as previously described.

On the primary side, R34 and D17 connect the RFMIN pin (pin 4) to the optocoupler's photo transistor closing the feedback loop. R31, which connects the same pin to ground, sets the minimum switching frequency. The RC series R44 and C18 sets both soft-start maximum frequency and duration.

1.8Open loop protection

Both circuit stages, PFC and resonant, are equipped with their own overvoltage protection. The PFC controller L6563H monitors its output voltage via the resistor divider connected to a dedicated pin (PFC_OK, pin 7) protecting the circuit in case of loop failures or disconnection. If a fault condition is detected, the internal circuitry latches the L6563H operations and, by means of the PWM_LATCH pin (pin 8), it latches the L6699 as well via the DIS pin (pin 8). The converter is kept latched by the L6563H internal HV startup circuit that supplies the IC by charging the Vcc capacitor periodically. To resume converter operation, mains restart is necessary. The LLC open loop protection is realized by monitoring the output voltage through sensing the Vcc voltage. If Vcc voltage overrides the D12 breakdown voltage, Q9 pulls down the L6563H INV pin latching the converter. Even in this case, to resume converter operation, mains restart is necessary.

Doc ID 022604 Rev 1

11/38

ST AN4027 APPLICATION NOTE

12/38

1 Rev 022604 ID Doc

 

 

 

 

 

 

 

 

 

 

D3

 

 

 

 

 

 

 

 

 

 

 

 

 

1N4005

 

 

 

 

F1

 

L1

 

D1

 

 

L2

2

1

R6

 

 

J1

FUSE T4A

 

 

 

 

 

 

 

C20

 

 

2019.0002

 

GBU8J

 

1975.0004

 

NTC 2R5-S237

 

MKDS 1,5/ 3-5,08

 

 

2

4

9

5

2

1

 

2N2-Y1

1

C2

1

2

~

+

 

 

 

 

 

 

11

3

 

D4

 

 

2N2-Y1

 

C4

 

 

 

 

 

 

 

2

C1

 

 

 

 

 

 

 

 

STTH5L06

 

 

3

470N-X2

 

470N-X2

 

 

 

C5

 

 

 

C9

C21

90-264Vac

C3

4

3

3

~

_

1

 

 

 

 

100uF - 450V

2N2-Y1

2N2-Y1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

470N - 520V

 

 

 

R7

R17

 

 

 

 

 

 

 

 

R5

C7

D5

2M2

2M2

 

 

 

 

 

 

 

 

 

75R

100N

LL4148

 

 

 

2

1

1

 

 

 

 

D2

 

C8

 

 

 

 

 

 

 

LL4148

2

10uF-50V

 

R3

R11

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2M2

2M2

6M8

 

 

 

 

 

 

 

 

 

Q8

 

 

D21

 

 

 

 

 

 

 

 

 

 

 

 

BC847C

 

LL4148

 

 

 

 

2

 

3

 

1

2

 

R2

 

2

 

1

 

 

 

R8

R12

5M6

 

D7

 

R69

 

 

 

 

 

 

2M2

2M2

 

 

 

 

D20

 

 

 

1

STPS140Z

 

24K

 

 

 

 

 

 

 

2

BZV55-B15

 

 

 

 

 

R10

 

 

 

 

 

 

R13

C14

R9

 

 

 

 

 

 

9K1

68N

160K

56K

 

 

 

 

 

 

 

R14

100K

 

 

 

C11

 

 

 

2N2

 

 

R37

 

 

 

220K

 

R75

 

D13

 

 

N.M.

 

0R0

1

C12

 

 

2

1uF

R15

3

 

 

56K

BC847C

1

 

Q9

R76

1N0

2

 

33K

C52

2

R26

D12

1M0

BZV55-C43

 

1

 

1K0

R77

0R0

R54

 

 

 

 

U1

C15

C39

R19

 

 

 

 

 

 

L6563H

47uF-50V

100N

 

 

 

 

 

 

56K

 

 

C13

R18

 

 

 

 

 

 

 

1

 

VCC16

 

 

 

 

 

 

680N 82K

INV

 

 

 

 

D14

R45

 

 

 

 

 

 

 

 

 

LL4148 3R3

 

 

2

COMP

GD 15

 

 

 

 

1

2

 

 

3

MULT

GND14

 

 

 

 

R21

 

 

4

CS

ZCD13

 

 

 

 

22R

 

 

 

 

 

 

 

 

 

 

5

VFF

RUN12

 

C16

 

R55

R20

C33

 

 

 

 

 

 

 

33R

 

C22

6

TBO PWM-STOP11

 

2N2

 

2K7

 

1N5

 

220pF

7

 

NC 10

 

 

 

 

R52

 

 

 

PFC-OK

 

3

 

2

1K5

 

C10

 

8

PWM-LATCHHVS9

 

 

 

 

 

 

 

 

 

D6

 

1N0

C31

 

 

 

 

Q2

 

 

 

 

 

 

 

 

1

LL4148

 

 

N.M.

 

 

 

 

BC857

R53

 

 

 

 

 

 

R27

 

 

 

2K2

 

 

 

 

 

 

470R

 

 

 

 

 

 

Q1

2 STF21NM65M5

1

R46

3

100K

R22 R23

0R22 0R22

HS1

HEAT-SINK

R67

R29 N.M.

1K0

1

C46

N.M.

R60

10K

Q7

 

 

 

 

 

 

N.M.

 

 

 

 

 

 

2

 

C45

 

 

 

 

C18

220NF

R24

 

 

 

 

 

 

 

 

 

 

 

 

 

4u7F

 

1M0

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D16

 

 

R4

R16

1

N.M.

 

R44

N.M.

2K7

 

 

R33

 

C6

 

2

 

6K2

 

 

 

N.M.

 

330NC17

 

 

 

 

 

 

 

330PF

 

 

R31

 

 

 

 

 

 

20K

R32

R36 C44

 

 

 

47R

1M8

1.5NF

 

R34

C23

 

 

 

 

10N

 

 

 

 

8K2

 

C43

 

R30

 

 

 

 

 

 

 

4N7

 

10R

 

U2

 

C19

 

 

 

L6699D

 

 

 

 

 

100N

 

 

1

CSS

 

VBOOT16

 

 

2

DELAY

HVG15

 

 

3

CF

 

OUT14

 

 

4

RFMIN

NC 13

 

 

5

STBY

 

VCC12

 

 

6

ISEN

 

LVG 11

 

 

7

LINE

 

GND10

C40

C26

8

DIS

PFC-STOP9

100N 10uF-50V

 

 

R28 R35

33K 180K

D18

 

 

Q3

 

 

 

 

STF8NM50N

LL4148

 

 

 

2

 

1

2

 

 

 

 

 

 

 

1

 

 

R25

 

R58

 

3

 

56R

 

100K

 

 

 

D19

 

 

 

 

LL4148

 

2

 

 

1

2

 

 

 

 

 

 

1

 

 

 

R38

R59

3

Q4

 

56R

100K

STF8NM50N

 

 

 

 

JPX1

 

 

 

C27

 

 

 

R79

 

 

 

220PF-630V R41

 

 

 

270R

 

100R

 

C25

R39

R78

 

1.5NF N.M.

33R

D9 R40

STPS2H100A 0R68

1 2

C24

220uF-50V

CONNECTION MADE BY REWORK

D17

LL4148

2

1

97v13AM11

 

RX1

 

R504

 

 

 

R503

 

 

 

 

 

 

 

10R

 

 

 

0R0

 

150K

 

 

 

 

 

 

 

 

 

 

 

 

 

JP501

 

 

C502

 

 

 

 

 

1

C501

R505

 

 

 

 

 

100NF

 

 

C503

D501

 

2

4nF7

33k

 

 

Q501

3

 

U501

 

1uF

BAS316

4

 

 

 

 

STL140N4LLF5

5

 

 

 

SRK2000

 

 

 

6

 

 

1 SGND VCC8

 

 

 

7

 

 

 

R501

 

8

 

 

 

 

 

 

 

10R

 

9

R506

 

2

EN

GD1

7

 

 

10

330R

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

12

 

 

3

DVS1 PGND6

 

R502

 

13

R508

C504

 

 

 

N.M.

4 DVS2

GD2 5

 

10R

 

 

N.M.

 

 

 

 

 

D503

 

 

 

 

 

 

 

Q502

 

N.M.

 

 

 

 

 

 

 

STL140N4LLF5

 

 

 

C505

 

 

 

 

D502

 

 

R507R509

 

 

 

 

 

BAS316

 

 

 

N.M.

 

 

 

 

 

 

 

330RN.M.

 

 

 

 

 

 

 

 

 

D505

 

 

 

 

 

 

 

 

 

N.M.

 

 

 

 

 

 

 

 

EVLSRK2000-L-40

 

 

 

 

 

 

 

 

 

T1

1860.0069

2

 

4

8

 

9

C28

10

22NF 11 12

6

13

14

7

1

2

3

4

5

6

7

8

9

10

11

12 13

 

 

 

 

 

 

 

U6

 

 

 

 

 

 

1

Out Vcc 5

 

 

 

 

 

 

2 GND

 

 

 

 

 

 

3

Vp Vm 4

 

 

 

 

 

 

 

TSC101

 

 

 

 

 

 

 

R57

 

 

 

 

 

 

 

R002

 

 

 

 

1

 

 

 

 

 

 

 

D15

 

 

R66

C29

 

 

 

N.M.

 

R65

N.M.

 

 

 

 

 

N.M.

470uF-16V C30

C49

C50

C37

R562

 

 

470uF-16V 470uF-16V 470uF-16V 470uF-16V

 

3

Q6

 

1

 

 

 

 

N.M.

3

N.M.

 

 

 

 

1

 

Q5

 

 

 

 

 

 

N.M.2

 

R62

2

N.M.

 

 

 

R42

R43

 

 

 

 

 

 

 

 

 

 

 

 

1K0

51R

 

 

 

 

 

 

 

 

 

 

 

 

 

C36

 

 

 

 

 

 

 

 

R74

 

 

 

 

1uF - 50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C48

 

 

 

 

N.M.

 

 

 

 

 

 

 

 

 

 

 

 

R73

 

 

 

 

 

 

 

 

1N0

 

U5

 

 

R68

 

 

 

 

 

 

 

 

 

 

 

22R

 

 

 

 

 

R71

 

R72

 

TSM1014AIST

 

5K6

 

 

 

 

 

 

330K

1 V_REF VCC8

 

C51

 

 

 

 

 

1K0

 

 

C41

 

 

 

 

 

 

 

 

 

 

 

100N

 

 

 

 

 

 

 

2 CCCC_OUT7

 

N.M.

4

1

 

 

C32

 

 

 

 

 

 

R47

 

 

470N

 

 

3

 

 

6

 

 

 

 

R49

 

 

 

 

CC+

GND

 

 

 

 

N.M.

 

 

 

 

 

 

 

 

U3

 

 

91K

 

 

C47

R70

4 CVCV_OUT5

 

 

3

2

 

 

 

22K

 

 

SFH617A-2

 

 

 

 

1N0

 

 

 

 

 

 

 

 

C34

R48

R50

R51

 

 

 

 

 

 

 

 

 

 

100N

47K

 

 

 

 

 

 

 

 

 

 

 

 

12K

91K

 

R64

 

 

 

 

 

 

 

 

 

 

 

 

 

10Meg

 

 

 

 

 

 

 

C35

 

 

 

 

 

 

Rev 1.3

 

 

 

 

 

N.M.

 

 

 

 

 

 

 

 

 

 

 

 

U4

 

 

 

 

 

 

 

 

 

 

 

 

 

SFH617A-2

 

 

 

 

 

 

 

 

 

 

 

 

4

1

 

 

 

 

 

 

 

 

 

 

 

 

3

2

 

 

 

 

 

 

 

 

 

 

 

R63

0R0 C42

100N

12V-12.5A J3

FASTON

C38

R61 100N N.M.

J2

FASTON

diagram Electrical .3 Figure

circuit and characteristics Main

 

description

AN4027

Loading...
+ 26 hidden pages