ST AN2492 Application note

AN2492
Application note
Wide range 400W L6599-based
HB LLC resonant converter for PDP application
Introduction
This note describes the performances of a 400 W reference board, with wide-range mains operation and power-factor-correction (PFC) and presents the results of its bench evaluation. The electrical specification refers to a power supply for a typical high-end PDP application.
The main features of this design are the very low no-load input consumption (<0.5 W) and the very high global efficiency, better than 90% at full load and nominal mains voltage (115 ­230 V
The circuit consists of three main blocks. The first is a front-end PFC pre-regulator based on the L6563 PFC controller. The second stage is a multi-resonant half-bridge converter with an output voltage of +200 V/400 W, whose control is implemented through the L6599 resonant controller. A further auxiliary flyback converter based on the VIPer12A off-line primary switcher completes the architecture. This third block, delivering a total power of 7 W on two output voltages (+3.3 V and +5 V), is mainly intended for microprocessor supply and display power management operations.
AC
).
L6599 & L6563 400W demo board (EVAL6599-400W-S)
June 2007 Rev 3 1/35
www.st.com
Contents AN2492
Contents
1 Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . . . 4
2 Electrical test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Resonant stage operating waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Stand-by and no-load power consumption . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Thermal tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . . 20
5 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7 Resonant power transformer specification . . . . . . . . . . . . . . . . . . . . . 29
7.1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Auxiliary flyback power transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.1 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9 Board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/35
AN2492 List of figures
List of figures
Figure 1. PFC pre-regulator electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Resonant converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. Auxiliary converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Compliance to EN61000-3-2 for harmonic reduction: full load . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 5. Compliance to EN EN61000-3-2 for harmonic reduction: 70 W load . . . . . . . . . . . . . . . . . . 9
Figure 6. Compliance to JEIDA-MITI standard for harmonic reduction: full load . . . . . . . . . . . . . . . . . 9
Figure 7. Compliance to JEIDA-MITI standard for harmonic reduction: 70 W load . . . . . . . . . . . . . . . 9
Figure 8. Power factor vs. Vin & load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 9. Total harmonic distortion vs. Vin & load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 10. Overall efficiency versus output power at nominal mains voltages. . . . . . . . . . . . . . . . . . . 10
Figure 11. Overall efficiency versus input mains voltage at various output power levels . . . . . . . . . . 12
Figure 12. Resonant circuit primary side waveforms at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. Resonant circuit primary side waveforms at light load (about 30 W output power) . . . . . . 13
Figure 14. Resonant circuit primary side waveforms at no load condition . . . . . . . . . . . . . . . . . . . . . . 14
Figure 15. Resonant circuit secondary side waveforms: +200 V output . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 16. Low frequency (100 Hz) ripple voltage on the +200 V output . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 17. Load transition (0.4 A - 2 A) on +200 V output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 18. +200 V output short-circuit waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 19. Thermal map @115 V Figure 20. Thermal map at 230 V Figure 21. Peak measurement on LINE at 115 V Figure 22. Peak measurement on NEUTRAL at 115 V Figure 23. Peak measurement on LINE at 230 V Figure 24. Peak measurement on NEUTRAL at 230 V
Figure 25. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 26. Pin side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 27. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 28. Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 29. Winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 30. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 31. Auxiliary transformer winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 32. Copper tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 33. Thru-hole component placing and top silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 34. SMT component placing and bottom silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
- full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AC
- full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
AC
and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AC
AC
and full load . . . . . . . . . . . . . . . . . . . . . . . . 20
AC
and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
and full load . . . . . . . . . . . . . . . . . . . . . . . . 21
AC
3/35
Main characteristics and circuit description AN2492

1 Main characteristics and circuit description

The main characteristics of the SMPS are listed below:
Universal input mains range: 90 to 264 V
Output voltages: 200 V @ 2 A - 3.3 V @ 0.7 A - 5 V @ 1 A
Mains harmonics: Compliance with EN61000-3-2 specifications
Stand-by mains consumption: Typical 0.5 W @230 V
Overall efficiency: better than 88% at full load, 90-264 V
EMI: Compliance with EN55022-class B specifications
Safety: Compliance with EN60950 specifications
PCB single layer: 132x265 mm, mixed PTH/SMT technologies
The circuit consists of three stages. A front-end PFC pre-regulator implemented by the controller L6563 (Figure 1), a half-bridge resonant DC/DC converter based on the resonant controller L6599 (Figure 2) and a 7 W flyback converter intended for stand-by management (Figure 3) utilizing the VIPer12A off-line primary switcher.
The PFC stage delivers a stable 400 VDC supply to the downstream converters (resonant + flyback) and provides for the reduction of the current harmonics drawn from the mains, in order to meet the requirements of the European norm EN61000-3-2 and the JEIDA-MITI norm for Japan.
- 45 to 65 Hz
AC
AC
AC
The PFC controller is the L6563 (U1), integrating all functions needed to operate the PFC and interface the downstream resonant converter. Though this controller chip is designed for Transition-Mode (TM) operation, where the boost inductor works next to the boundary between Continuous (CCM) and Discontinuous Conduction Mode (DCM), by adding a simple external circuit, it can be operated in LM-FOT (line-modulated fixed off-time) mode, allowing Continuous Conduction Mode operation, normally achievable with more expensive control chips and more complex architectures. This operative mode allows the use of this device at a high power level, usually covered by CCM topologies. For a detailed and complete description of the LM-FOT operating mode, see the application note AN1792. The external components to configure the circuit in LM-FOT mode are: C15, C17, D5, Q3, R14, R17 and R29.
The power stage of the PFC is a conventional boost converter, connected to the output of the rectifier bridge through a differential mode filtering cell (C5, C6 and L3) for EMI reduction. It includes a coil (L4), a diode (D3), and two capacitors (C7 and C8). The boost switch consists of two Power MOSFETs (Q1 and Q2), connected in parallel, which are directly driven by the L6563 output drive thanks to the high current capability of the IC. The divider (R30, R31 and R32) connected to MULT pin 3 brings the information of the instantaneous voltage that is used to modulate the boost current and to derive further information like the average value of the AC line used by the VFF (voltage feed-forward) function. This function is used to keep the output voltage almost independent of the mains.
The divider (R3, R6, R8, R10 and R11) is dedicated to detecting the output voltage while a further divider (R5, R7, R9, R16 and R25) is used to protect the circuit in case of voltage loop failure.
The second stage is an LLC resonant converter, with half-bridge topology implementation, working in ZVS (zero voltage switching) mode. The controller is the L6599 integrated circuit that incorporates the necessary functions to properly drive the two half-bridge MOSFETs by a 50% fixed duty cycle with fixed dead-time, changing the frequency according to the
4/35
AN2492 Main characteristics and circuit description
feedback signal in order to regulate the output voltages against load and input voltage variations.
The main features of the L6599 are a non-linear soft-start, a current protection mode used to program the hiccup mode timing, a dedicated pin for sequencing or brown-out (LINE) and a stand-by pin (STBY) for burst mode operation at light loads (not used in this design).
The transformer (T1) uses the magnetic integration approach, incorporating the resonant series and shunt inductances of the LLC resonant tank. Thus, no additional external coils are needed for the resonance. For a detailed analysis of the LLC resonant converter, please refer to the application note AN2450.
The secondary side power circuit is configured with a single-ended transformer winding and full-bridge rectification (diodes D8A, D8B, D10A, D10B), which is more suitable for the current design. In fact, with this configuration, the total junction capacitance of the output diodes reflected at primary side is one half the capacitance in case of center-tap transformer. This capacitance at transformer primary side may affect the behavior of the resonant tank, changing the circuit from LLC to LLCC type, with the risk that the converter, in light-load/no-load condition (when the feedback loop increases the operating frequency) can no longer control the output voltage. If the converter has to operate down to zero load, this capacitance needs to be minimized. An inherent advantage of the full-bridge rectification is that the voltage rating of the output diodes in this configuration is one half the rating necessary for center-tap and two diodes circuit, which translates into a lower junction capacitance device, with consequent lower reflected capacitance at primary side.
The feedback loop is implemented by means of a classical configuration using a TL431 (U4) to adjust the current in the optocoupler diode (U3). The optocoupler transistor modulates the current from controller Pin 4, so the frequency will change accordingly, thus achieving the output voltage regulation. Resistors R46 and R54 set the maximum operating frequency. In case of a short circuit, the current entering the primary winding is detected by the lossless circuit (C34, C39, D11, D12, R43, and R45) and the resulting signal is fed into L6599 Pin 6.
In case of overload, the voltage on Pin 6 will exceed an internal threshold that triggers a protection sequence via Pin 2, keeping the current flowing in the circuit at a safe level.
The third stage is a small flyback converter based on the VIPer12A, a current mode controller with integrated Power MOSFET, capable of delivering about 7 W total output power on the output voltages (5 V and 3.3 V). The regulated output voltage is the 3.3 V output and, also in this case, the feedback loop uses the TL431 (U7) and optocoupler (U6) to control the output voltage. This converter is able to operate in the whole mains voltage range, even when the PFC stage is not working. From the auxiliary winding on the primary side of the flyback transformer (T2), a voltage Vs is available, intended to supply the other controllers (L6563 and L6599) in addition to the VIPer12A itself.
The PFC stage and the resonant converter can be switched on and off through the circuit based mainly on components Q7, Q8, D22 and U8, which, depending on the level of the signal ST-BY, supplies or removes the auxiliary voltage (VAUX) necessary to start up the controllers of the PFC and resonant stages. When the AC input voltage is applied to the power supply, the small flyback converter switches on first. Then, when the ST-BY signal is low, the PFC pre-regulator becomes operative, and the resonant converter can deliver the output power to the load. Note that if Pin 9 of Connector J3 is left floating (no signal ST-BY present), the PFC and resonant converter will not operate, and only +5 V and +3.3 V supplies are available on the output. In order to enable the +200 V output, Pin 9 of Connector J3 must be pulled down to ground.
5/35
Main characteristics and circuit description AN2492
Figure 1. PFC pre-regulator electrical diagram
Vdc
+400V
C9
2nF2-Y1
330uF/450V
C8
R2
NTC 2R5-S237
C7
470nF/630V
D3
STTH8R0 6
1-2
D1
1N5406
L4
PQ40-500uH
5-6
D4
LL4148
Q2
STP12NM50FP
Q1
STP12NM50FP
D6
LL4148
R18
R15
6R8
6R8
R24
0R39
R23
0R39
R22
0R39
R21
0R39
R19
1k0
C18
330pF
Vrect
C6
470nF/630V
L3
DM-51uH-6A
C5
470nF/630V
Vaux
+
-
D2
D15XB60
~
~
C11
C4
L2
CM-10m H-5A
C3
L1
CM-1.5mH-5A
C2
R1
F1
8A/250V
1
J1
2nF2-Y2
680nF-X2
C10
2nF2-Y2
330nF-X2
470nF-X2
1M5
2
CON2-IN
R4
47
C13
10uF/50V
C12
100nF
R6
680kR8680k
R3
680k
R5
Vdc
2M2
R11
R10
R7
2M2
R9
D5
C15
100pF
R14
3k3
R17
C17
15k
U1
L6563
100k
R13
56k
C14
100nF
C16
1uF
2M2
CSCS
LL4148
15k
220pF
GD
VCC
INV
COMP
ZCD
GND
MULTCSVFF
PWM-Latch
R29
1k5
Q3
BC857C
R20
1k0
C21
2nF2
R28
RUN
PWM-STOP
TBO
PFC-OK PWM-LATCH
R16
5k1
LINE
240k
R26
150k
C20
470nF
C19
10nF
R25
30k
C22
10nF
R32
10k
R31
620k
R30
620k
Vrect
6/35
AN2492 Main characteristics and circuit description
Figure 2. Resonant converter electrical diagram
1234567
J2
+200V
8
CON8
C59
47nF
R86
470R
R61
R53
75k
R58
75k
C38
C25
22uF/250V
C29
100uF/250V
100uF/250V
R51
330k
2k2
R60
12k
L5
10uH
C30
100uF/250V
D8A
D8B
D10A
STTH803
STTH803
T1
T-RES-ER49
C28
47nF/630V
Vdc
Q5
R33
D7
Q6
STP14NK50Z
0R
R35
47
LL4148
STP14NK50Z
R39
0R
R40
47
D9
LL4148
C37
100uF/250V
STTH803
D10B
STTH803
R43
150
C34
220pF/630V
Vaux
C32
100nF
R38
47
C31
10uF/50V
D11
LL4148
D12
LL4148
R45
75R
C39
1uF0
C41
R85
R50
R49
R48
10uF/50V
120k
D13
C-12V
330k
R59
R56
330k
R52
330k
1k0
3k3
U3A
SFH617A-2
1k0
C44
47nF
U4
TL431
C27 100nF
NC
LVG
OUT
VCC
HVG
VBOOT
U2
L6599
CSS
DELAYCFRFMIN
STBY
ISEN
LINE GND
R36
0R
R34
3k9
C23
4uF7
C24
470nF
C26
270pF
R37
1M0
R41
DIS PFC-STOP
C33
4nF7
R42
10
16k
LINE
C40
10nF
R47
10k
R46
1k5
PWM-Latch
U3B
SFH617A-2
C60
470nF
R87
220R
R54
1k5
7/35
Main characteristics and circuit description AN2492
Figure 3. Auxiliary converter electrical diagram
J3
+5Vst-by
L7
T2
123456789
+5Vst-by
T-FLY -AUX-E20
+3V3
C46
100uF/10V
33uH
C45
1000uF/10V
D15
1N5822
D14
10
CON10
St-By
C49
100uF/10V
L8
33uH
C47
1000uF/10V
D16
1N5821
D20
PKC-136
Vs
C51
100nF
R77
R64
1k6
C54
100nF
R67
1k0
C53
2nF2
R73
8k2
R62
47
U6A
SFH617A-2
+5Vst-by
R68
BAV103
C50
10uF/50V
R66
1k0
St-By
22k
R71
10k
Q8
BC847C
R69
0R
4k7
U7
TL431
+200V
R76
150k
R75
150k
D21
B-15V
R80
30k
R79
2k2
Vdc
+400V
D19
C-30V
D
D
D
SSFB
U5
VIPER-12A
U6B
SFH617A-2
Vdd D
D17
LL4148
D18
B-10V
C52
C48
10uF/50V
8/35
47nF
Q9
BC857C
U8A
R72
22R
10k
R74
C55
10uF/50V
Vdc
+400V
R83
Q11
BC557C
SFH617A-2
1M0
R84
C58
10nF
150k
Vs
Q7
BC547C
R70
Vaux
C56
100nF
Q10
BC847C
U8B
SFH617A-2
10k
D22
C-15V
C57
1nF0
AN2492 Electrical test results

2 Electrical test results

2.1 Harmonic content measurement

The current harmonics drawn from the mains have been measured according to the European rule EN61000-3-2 Class-D and Japanese rule JEIDA-MITI Class-D, at full load and 70 W output power, at both nominal input voltages (230 V in Figure 4., Figure 5., Figure 6. and Figure 7. show that the measured current harmonics are well below the limits imposed by the regulations, both at full load and at 70 W load.
and 100 VAC). The pictures
AC
Figure 4. Compliance to EN61000-3-2 for
10
1
0.1
0.01
0.001
0.0001
harmonic reduction: full load
Measurements @ 230Vac Full load EN61000-3-2 class D limit s
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 5 16 17 18 19 20
Harmoni c Orde r ( n)
Figure 6. Compliance to JEIDA-MITI standard
10
1
0.1
0.01
0.001
for harmonic reduction: full load
Measurements @ 100Vac Full load JEI DA- M ITI c l ass D l im it s
Figure 5. Compliance to EN EN61000-3-2 for
harmonic reduction: 70 W load
Measurement s @ 230Vac 70W EN61 00 0-3-2 class D limits
1
0.1
0.01
0.001
0.0001 1234567891011121314151617181920
Harmoni c Order (n)
Figure 7. Compliance to JEIDA-MITI standard
for harmonic reduction: 70 W load
Measurement s @ 100V ac 70W JEI DA -MI TI cla s s D limits
1
0.1
0.01
0.001
0.0001 1234567891011121314151617181920
Harmoni c Orde r (n )
The Power Factor (PF) and the Total Harmonic Distortion (THD) are reported in Figure 8. and Figure 9. It is evident from the picture that the PF stays close to unity in the whole mains voltage range at full load and at half load, while it decreases at high mains at low load (70W). The THD has similar behavior, remaining within 25% overall the mains voltage range and increasing at low load (70 W) at high mains voltage.
0.0001 1234567891011121314151617181920
Harmoni c Orde r ( n)
9/35
Electrical test results AN2492
60%
65%
70%
75%
80%
85%
90%
95%
100%
0 50 100 150 200 250 300 350 400 450
Output Power (W)
Eff. (%)
@230Vac @115Vac
Figure 8. Power factor vs. Vin & load Figure 9. Total harmonic distortion vs. Vin &
PF
1.00
0.98
0.95
0.93
0.90
0.88
0.85 80 120 160 200 240 280
400W 200W 70W
Vin [Vrms]
THD [%]
35.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00 80 120 160 200 240 280
load
400W 200W 70W
Vin [Vrms]

2.2 Efficiency measurements

Table 1. and Tab l e 2 . show the output voltage measurements at the nominal mains voltages
of 115 V load and at light load operations, the input power is measured using a Yokogawa WT-210 digital power meter. Particular attention has to be paid when measuring input power at full load in order to avoid measurement errors due to the voltage drop on cables and connections.
and 230 VAC, with different load conditions. For all measurements, both at full
AC
Figure 10. shows the overall circuit efficiency, measured at each load condition, at both
nominal input mains voltages of 115 V
and 230 VAC. The values were measured after 30
AC
minutes of warm-up at maximum load. The high efficiency of the PFC pre-regulator working in FOT mode and the very high efficiency of the resonant stage working in ZVS (i.e. with negligible switching losses), provides for an overall efficiency better than 88% at full load in the complete mains voltage range. This is a significant high value for a two-stage converter, especially at low input mains voltage where PFC conduction losses increase. Even at lower loads, the efficiency still remains high.
Figure 10. Overall efficiency versus output power at nominal mains voltages
10/35
AN2492 Electrical test results
The global efficiency at full load has been measured even at the limits of the input voltage range, with good results:
At VIN = 90 V
At VIN = 264 V
- full load, the efficiency is 88.48%
AC
- full load, the efficiency is 93.70%
AC
Also at light load, at an output power of about 10% of the maximum level, the overall efficiency is very good, reaching a value better than 79% over the entire input mains voltage range. Figure 11. shows the efficiency measured at various output power levels versus input mains voltage.
Table 1. Efficiency measurements @V
+200 V@load(A) +5 V @load(A) +3.3 V @load(A) POUT(W) PIN(W) Efficiency
202.50 1.989 4.84 0.968 3.33 0.695 409.77 451.38 90.78%
202.50 1.751 4.84 0.968 3.33 0.695 361.58 397.70 90.92%
202.50 1.501 4.84 0.968 3.33 0.695 310.95 341.39 91.08%
202.50 1.251 4.84 0.968 3.33 0.695 260.33 285.86 91.07%
202.50 1.000 4.84 0.968 3.33 0.695 209.50 230.96 90.71%
202.53 0.751 4.84 0.968 3.33 0.695 159.10 176.63 90.08%
202.53 0.500 4.84 0.968 3.33 0.695 108.26 122.62 88.29%
202.53 0.250 4.84 0.968 3.33 0.695 57.63 69.04 83.48%
202.56 0.150 4.84 0.293 3.33 0.309 32.83 41.14 79.80%
202.67 0.051 4.84 0.293 3.33 0.309 12.78 20.34 62.85%
= 115 V
IN
AC
Table 2. Efficiency measurements @VIN = 230 V
+200 V@load(A) +5 V @load(A) +3.3 V @load(A) POUT(W) PIN(W) Efficiency
202.50 1.987 4.84 0.968 3.33 0.695 409.37 437.79 93.51%
202.50 1.750 4.84 0.968 3.33 0.695 361.37 386.90 93.40%
202.50 1.500 4.84 0.968 3.33 0.695 310.75 333.33 93.23%
202.50 1.250 4.84 0.968 3.33 0.695 260.12 279.65 93.02%
202.50 1.000 4.84 0.968 3.33 0.695 209.50 226.68 92.42%
202.50 0.750 4.84 0.968 3.33 0.695 158.87 174.10 91.25%
202.53 0.500 4.84 0.968 3.33 0.695 108.26 121.54 89.08%
202.53 0.250 4.84 0.968 3.33 0.695 57.63 68.96 83.57%
202.54 0.150 4.84 0.293 3.33 0.309 32.83 41.80 78.54%
202.67 0.050 4.84 0.293 3.33 0.309 12.58 19.86 63.35%
AC
11/35
Loading...
+ 24 hidden pages