ST AN2492 Application note

AN2492

Application note

Wide range 400W L6599-based

HB LLC resonant converter for PDP application

Introduction

This note describes the performances of a 400 W reference board, with wide-range mains operation and power-factor-correction (PFC) and presents the results of its bench evaluation. The electrical specification refers to a power supply for a typical high-end PDP application.

The main features of this design are the very low no-load input consumption (<0.5 W) and the very high global efficiency, better than 90% at full load and nominal mains voltage (115 - 230 VAC).

The circuit consists of three main blocks. The first is a front-end PFC pre-regulator based on the L6563 PFC controller. The second stage is a multi-resonant half-bridge converter with an output voltage of +200 V/400 W, whose control is implemented through the L6599 resonant controller. A further auxiliary flyback converter based on the VIPer12A off-line primary switcher completes the architecture. This third block, delivering a total power of 7 W on two output voltages (+3.3 V and +5 V), is mainly intended for microprocessor supply and display power management operations.

L6599 & L6563 400W demo board (EVAL6599-400W-S)

June 2007

Rev 3

1/35

www.st.com

Contents

AN2492

 

 

Contents

1

Main characteristics and circuit description . . . . . . . . . . . . . . . . . . . .

. 4

2

Electrical test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

2.1

Harmonic content measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

2.2

Efficiency measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

2.3

Resonant stage operating waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

 

2.4

Stand-by and no-load power consumption . . . . . . . . . . . . . . . . . . . . . . . .

15

 

2.5

Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

 

2.6

Overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

3

Thermal tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

4

Conducted emission pre-compliance test . . . . . . . . . . . . . . . . . . . . . .

20

5

Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

6

PFC coil specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

6.1

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

 

6.2

Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

7

Resonant power transformer specification . . . . . . . . . . . . . . . . . . . . .

29

 

7.1

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29

8

Auxiliary flyback power transformer . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

8.1

Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

9

Board layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

10

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

11

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

2/35

AN2492

List of figures

 

 

List of figures

Figure 1. PFC pre-regulator electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 2. Resonant converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 3. Auxiliary converter electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 4. Compliance to EN61000-3-2 for harmonic reduction: full load . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 5. Compliance to EN EN61000-3-2 for harmonic reduction: 70 W load . . . . . . . . . . . . . . . . . . 9 Figure 6. Compliance to JEIDA-MITI standard for harmonic reduction: full load . . . . . . . . . . . . . . . . . 9 Figure 7. Compliance to JEIDA-MITI standard for harmonic reduction: 70 W load . . . . . . . . . . . . . . . 9 Figure 8. Power factor vs. Vin & load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9. Total harmonic distortion vs. Vin & load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 10. Overall efficiency versus output power at nominal mains voltages. . . . . . . . . . . . . . . . . . . 10 Figure 11. Overall efficiency versus input mains voltage at various output power levels . . . . . . . . . . 12 Figure 12. Resonant circuit primary side waveforms at full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 13. Resonant circuit primary side waveforms at light load (about 30 W output power) . . . . . . 13 Figure 14. Resonant circuit primary side waveforms at no load condition. . . . . . . . . . . . . . . . . . . . . . 14 Figure 15. Resonant circuit secondary side waveforms: +200 V output . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 16. Low frequency (100 Hz) ripple voltage on the +200 V output. . . . . . . . . . . . . . . . . . . . . . . 15 Figure 17. Load transition (0.4 A - 2 A) on +200 V output voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 18. +200 V output short-circuit waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 19. Thermal map @115 VAC - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 20. Thermal map at 230 VAC - full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 21. Peak measurement on LINE at 115 VAC and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 22. Peak measurement on NEUTRAL at 115 VAC and full load . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 23. Peak measurement on LINE at 230 VAC and full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 24. Peak measurement on NEUTRAL at 230 VAC and full load . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 25. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 26. Pin side view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 27. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure 28. Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 29. Winding position on coil former. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 30. Electrical diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 31. Auxiliary transformer winding position on coil former . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 32. Copper tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Figure 33. Thru-hole component placing and top silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 34. SMT component placing and bottom silk screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3/35

Main characteristics and circuit description

AN2492

 

 

1 Main characteristics and circuit description

The main characteristics of the SMPS are listed below:

Universal input mains range: 90 to 264 VAC - 45 to 65 Hz

Output voltages: 200 V @ 2 A - 3.3 V @ 0.7 A - 5 V @ 1 A

Mains harmonics: Compliance with EN61000-3-2 specifications

Stand-by mains consumption: Typical 0.5 W @230 VAC

Overall efficiency: better than 88% at full load, 90-264 VAC

EMI: Compliance with EN55022-class B specifications

Safety: Compliance with EN60950 specifications

PCB single layer: 132x265 mm, mixed PTH/SMT technologies

The circuit consists of three stages. A front-end PFC pre-regulator implemented by the controller L6563 (Figure 1), a half-bridge resonant DC/DC converter based on the resonant controller L6599 (Figure 2) and a 7 W flyback converter intended for stand-by management (Figure 3) utilizing the VIPer12A off-line primary switcher.

The PFC stage delivers a stable 400 VDC supply to the downstream converters (resonant + flyback) and provides for the reduction of the current harmonics drawn from the mains, in order to meet the requirements of the European norm EN61000-3-2 and the JEIDA-MITI norm for Japan.

The PFC controller is the L6563 (U1), integrating all functions needed to operate the PFC and interface the downstream resonant converter. Though this controller chip is designed for Transition-Mode (TM) operation, where the boost inductor works next to the boundary between Continuous (CCM) and Discontinuous Conduction Mode (DCM), by adding a simple external circuit, it can be operated in LM-FOT (line-modulated fixed off-time) mode, allowing Continuous Conduction Mode operation, normally achievable with more expensive control chips and more complex architectures. This operative mode allows the use of this device at a high power level, usually covered by CCM topologies. For a detailed and complete description of the LM-FOT operating mode, see the application note AN1792. The external components to configure the circuit in LM-FOT mode are: C15, C17, D5, Q3, R14, R17 and R29.

The power stage of the PFC is a conventional boost converter, connected to the output of the rectifier bridge through a differential mode filtering cell (C5, C6 and L3) for EMI reduction. It includes a coil (L4), a diode (D3), and two capacitors (C7 and C8). The boost switch consists of two Power MOSFETs (Q1 and Q2), connected in parallel, which are directly driven by the L6563 output drive thanks to the high current capability of the IC. The divider (R30, R31 and R32) connected to MULT pin 3 brings the information of the instantaneous voltage that is used to modulate the boost current and to derive further information like the average value of the AC line used by the VFF (voltage feed-forward) function. This function is used to keep the output voltage almost independent of the mains.

The divider (R3, R6, R8, R10 and R11) is dedicated to detecting the output voltage while a further divider (R5, R7, R9, R16 and R25) is used to protect the circuit in case of voltage loop failure.

The second stage is an LLC resonant converter, with half-bridge topology implementation, working in ZVS (zero voltage switching) mode. The controller is the L6599 integrated circuit that incorporates the necessary functions to properly drive the two half-bridge MOSFETs by a 50% fixed duty cycle with fixed dead-time, changing the frequency according to the

4/35

AN2492

Main characteristics and circuit description

 

 

feedback signal in order to regulate the output voltages against load and input voltage variations.

The main features of the L6599 are a non-linear soft-start, a current protection mode used to program the hiccup mode timing, a dedicated pin for sequencing or brown-out (LINE) and a stand-by pin (STBY) for burst mode operation at light loads (not used in this design).

The transformer (T1) uses the magnetic integration approach, incorporating the resonant series and shunt inductances of the LLC resonant tank. Thus, no additional external coils are needed for the resonance. For a detailed analysis of the LLC resonant converter, please refer to the application note AN2450.

The secondary side power circuit is configured with a single-ended transformer winding and full-bridge rectification (diodes D8A, D8B, D10A, D10B), which is more suitable for the current design. In fact, with this configuration, the total junction capacitance of the output diodes reflected at primary side is one half the capacitance in case of center-tap transformer. This capacitance at transformer primary side may affect the behavior of the resonant tank, changing the circuit from LLC to LLCC type, with the risk that the converter, in light-load/no-load condition (when the feedback loop increases the operating frequency) can no longer control the output voltage. If the converter has to operate down to zero load, this capacitance needs to be minimized. An inherent advantage of the full-bridge rectification is that the voltage rating of the output diodes in this configuration is one half the rating necessary for center-tap and two diodes circuit, which translates into a lower junction capacitance device, with consequent lower reflected capacitance at primary side.

The feedback loop is implemented by means of a classical configuration using a TL431 (U4) to adjust the current in the optocoupler diode (U3). The optocoupler transistor modulates the current from controller Pin 4, so the frequency will change accordingly, thus achieving the output voltage regulation. Resistors R46 and R54 set the maximum operating frequency. In case of a short circuit, the current entering the primary winding is detected by the lossless circuit (C34, C39, D11, D12, R43, and R45) and the resulting signal is fed into L6599 Pin 6.

In case of overload, the voltage on Pin 6 will exceed an internal threshold that triggers a protection sequence via Pin 2, keeping the current flowing in the circuit at a safe level.

The third stage is a small flyback converter based on the VIPer12A, a current mode controller with integrated Power MOSFET, capable of delivering about 7 W total output power on the output voltages (5 V and 3.3 V). The regulated output voltage is the 3.3 V output and, also in this case, the feedback loop uses the TL431 (U7) and optocoupler (U6) to control the output voltage. This converter is able to operate in the whole mains voltage range, even when the PFC stage is not working. From the auxiliary winding on the primary side of the flyback transformer (T2), a voltage Vs is available, intended to supply the other controllers (L6563 and L6599) in addition to the VIPer12A itself.

The PFC stage and the resonant converter can be switched on and off through the circuit based mainly on components Q7, Q8, D22 and U8, which, depending on the level of the signal ST-BY, supplies or removes the auxiliary voltage (VAUX) necessary to start up the controllers of the PFC and resonant stages. When the AC input voltage is applied to the power supply, the small flyback converter switches on first. Then, when the ST-BY signal is low, the PFC pre-regulator becomes operative, and the resonant converter can deliver the output power to the load. Note that if Pin 9 of Connector J3 is left floating (no signal ST-BY present), the PFC and resonant converter will not operate, and only +5 V and +3.3 V supplies are available on the output. In order to enable the +200 V output, Pin 9 of Connector J3 must be pulled down to ground.

5/35

6/35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main

 

 

 

 

 

 

 

 

 

 

 

 

Vrect

 

 

 

 

 

.1 Figure

characteristics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1N5406

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D2

L3

 

 

L4

 

 

 

 

description circuit and

 

 

 

 

 

 

 

 

 

 

D15XB60

 

 

 

 

 

 

F1

 

 

 

CM-1.5mH-5A

 

 

CM-10mH-5A

 

 

 

 

5-6

2

 

D3

R2

 

 

 

 

 

 

 

 

 

 

 

~

+

 

1-

 

 

 

Vdc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J1

 

 

 

L1

 

 

L2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8A/250V

 

 

 

 

 

 

 

 

 

 

DM-51uH-6A

 

PQ40-500uH

 

STTH8R06

NTC 2R5-S237

+400V

1

R1

C2

 

 

 

C3

 

 

 

C4

C5

C6

 

 

 

C7

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C8

1M5

470nF-X2

 

 

330nF-X2

 

 

 

680nF-X2

470nF/630V

470nF/630V

 

 

 

470nF/630V

330uF/450V

 

 

 

 

 

 

 

 

 

CON2-IN

 

 

 

 

 

 

 

 

 

~

-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C10

 

C11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2nF2-Y1

 

 

 

 

 

 

 

 

2nF2-Y2

 

2nF2-Y2

 

 

 

 

 

 

electrical regulatorPFCpre-

Vdc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R4

 

 

 

 

 

 

 

 

 

 

 

R3

 

 

 

 

 

Vaux

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

47

 

 

 

 

 

 

 

 

 

 

 

680k

 

 

 

 

 

 

 

 

 

 

 

 

R5

 

 

 

 

 

R6

 

C12

C13

 

 

 

 

 

 

 

2M2

 

 

 

 

 

680k

 

100nF

10uF/50V

 

 

 

 

 

 

 

R7

 

 

 

 

 

R8

 

 

 

 

 

 

 

 

 

 

2M2

 

 

 

 

 

680k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diagram

 

 

 

 

 

 

R10

R11

 

 

 

 

 

 

 

 

 

 

 

 

2M2

C14

 

 

 

 

 

 

 

 

C15

 

D4

 

 

 

 

 

 

 

 

 

 

100k

15k

 

 

 

 

 

 

 

 

 

 

 

 

 

100nF

 

 

 

 

 

 

 

 

100pF

 

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R14

 

R15

 

Q1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STP12NM50FP

 

 

 

 

C16

R13

 

 

U1

 

 

 

 

3k3

 

6R8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L6563

 

 

 

 

R17

D5

D6

 

 

 

 

 

 

 

 

1uF

56k

 

 

 

 

 

 

 

C17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15k

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

INV

 

VCC

 

 

 

220pF

 

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R18

 

 

 

Q2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMP

 

GD

 

 

 

 

 

 

 

 

 

STP12NM50FP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MULT

 

GND

 

 

 

 

 

6R8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CS

CS

 

ZCD

 

 

 

 

CS

R19

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R16

 

 

 

VFF

 

RUN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5k1

 

 

 

TBO

PWM-STOP

 

 

 

 

 

1k0

 

 

 

 

 

 

 

 

 

 

 

 

R20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LINE

 

 

 

 

PFC-OK

PWM-LATCH

 

 

 

PWM-Latch

 

C18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R21

R22

R23

R24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k0

 

 

 

330pF

 

 

 

 

 

 

 

 

C19

 

 

 

 

 

 

 

 

 

 

 

0R39

0R39

0R39

0R39

 

 

 

R25

 

 

 

R26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C20

 

 

R28

C21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R29

 

 

 

 

 

 

 

 

 

 

 

 

 

470nF

 

 

240k

2nF2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k5

 

 

 

 

 

 

 

 

 

R30

R31

 

 

 

 

 

 

 

 

Q3

 

 

 

 

 

 

 

 

 

Vrect

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BC857C

 

 

 

 

 

 

 

 

 

620k

620k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R32

C22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

10nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2492

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN2492

 

 

 

 

 

 

 

 

 

Vdc

 

 

 

 

 

 

 

2 Figure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

C23

 

 

 

 

D7

 

R33

 

 

 

 

 

 

 

 

Resonant

 

 

 

 

 

 

 

 

 

 

Q5

 

 

 

 

 

 

 

+200V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4uF7

 

 

 

 

LL4148

R35

0R

 

 

 

 

 

 

 

 

 

 

 

R34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3k9

 

 

 

 

 

47

STP14NK50Z

 

T1

 

 

L5

 

 

J2

 

 

 

 

R36

 

 

 

 

 

 

 

T-RES-ER49

D8A

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

C24

0R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

D9

 

R39

 

 

STTH803

 

10uH

C25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

Q6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

470nF

 

U2

 

 

 

 

 

 

 

D8B

 

 

22uF/250V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

R37

 

 

L6599

 

 

LL4148

R40

0R

 

 

 

 

 

 

 

converter

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

C28

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

C27

100nF

 

 

 

 

 

STTH803

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1M0

 

 

CSS

VBOOT

 

 

47

STP14NK50Z

 

47nF/630V

 

 

 

 

 

CON8

 

 

 

C26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DELAY

HVG

 

 

 

 

 

 

D10A

 

C30

C29

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

270pF

 

CF

OUT

 

 

 

 

 

 

 

 

100uF/250V

100uF/250V

 

 

 

 

R41

 

 

 

 

 

 

 

 

STTH803

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RFMIN

NC

R38

 

 

 

 

 

D10B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16k

 

 

STBY

VCC

 

 

Vaux

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISEN

LVG

47

 

 

 

 

 

STTH803

 

 

 

 

 

electrical

 

LINE

R42

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LINE

GND

 

 

 

 

 

 

 

 

C37

C38

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

C33

 

DIS

PFC-STOP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C34

 

 

100uF/250V

100uF/250V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4nF7

 

 

 

C31

C32

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220pF/630V

 

 

 

 

 

 

 

 

 

 

 

 

 

10uF/50V

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

characteristics Main

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diagram

 

 

 

 

 

 

 

 

 

 

 

D12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LL4148

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C39

R45

D11

 

 

 

 

 

 

PWM-Latch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1uF0

75R

LL4148

 

 

 

 

 

 

 

 

R46

R47

C40

 

 

 

 

 

 

R48

R49

R50

R85

 

 

 

 

 

1k5

10k

10nF

 

 

 

 

 

 

330k

330k

330k

120k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

330k

 

 

 

 

 

 

 

 

 

 

 

 

 

R52

 

D13

C41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R53

C59

 

 

 

 

 

 

 

 

 

 

 

3k3

 

C-12V

10uF/50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75k

47nF

 

 

R54

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k5

C60

U3B

 

 

 

 

 

 

U3A

R56

 

 

 

R58

R86

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

470nF

 

 

 

 

 

 

 

SFH617A-2

1k0

 

 

 

75k

470R

 

and

 

 

 

 

SFH617A-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R87

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

circuit

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R60

R61

 

 

 

 

 

 

 

 

 

 

 

 

 

C44

R59

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12k

2k2

 

 

 

 

 

 

 

 

 

 

 

 

 

47nF

1k0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U4

 

 

 

 

 

 

 

description

 

 

 

 

 

 

 

 

 

 

 

TL431

 

 

 

 

 

 

 

7/35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8/35

 

 

 

 

 

 

 

 

 

 

 

 

+5Vst-by

 

 

 

 

 

 

 

 

T2

 

 

L7

 

 

J3

 

 

 

 

 

Vdc

 

T-FLY-AUX-E20

D15

 

 

 

+5Vst-by

1

 

 

U5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

VIPER-12A

 

+400V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

1N5822

C45

33uH

C46

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

D

 

 

D14

 

 

1000uF/10V

 

100uF/10V

 

5

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

+3V3

 

 

S

D

 

 

 

 

 

 

 

 

7

 

 

 

 

PKC-136

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

L8

 

St-By

 

 

FB

D

 

 

 

 

 

 

 

9

 

 

 

 

 

 

D16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vdd D

 

 

 

 

 

 

 

 

 

CON10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vs

 

1N5821

C47

33uH

C49

 

 

 

C48

LL4148 U6B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1000uF/10V

 

100uF/10V

 

 

 

10uF/50V

D17

SFH617A-2

 

D20

 

 

 

 

 

 

 

 

 

 

 

 

 

BAV103

 

 

 

 

 

 

 

 

D18

 

D19

 

C50

 

 

 

 

 

 

 

 

 

B-10V

 

C-30V

 

10uF/50V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R62

R64

C51

 

 

 

 

 

 

 

 

 

 

 

47

1k6

100nF

 

 

C52

 

 

 

 

 

 

 

 

 

 

 

 

 

47nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R83

Vdc

 

 

 

 

 

U6A

 

 

 

Q11

 

 

 

 

 

 

 

 

SFH617A-2

 

R67

 

 

 

 

 

 

 

 

 

 

 

 

BC557C

 

 

 

+400V

 

 

 

 

 

 

 

 

 

 

C58

 

1M0

 

 

 

 

 

 

 

 

1k0

 

 

 

R84

 

 

 

R66

 

 

 

 

 

 

 

 

10nF

 

 

 

 

 

 

 

+5Vst-by

 

 

 

 

 

 

150k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U8A

1k0

 

 

 

 

 

 

 

 

 

 

 

SFH617A-2

 

 

 

 

 

 

C53

 

 

 

 

 

 

 

 

 

R68

 

 

 

 

 

Vaux

 

Vs

 

 

 

R69

 

22k

 

 

 

2nF2

 

 

 

 

 

 

 

 

R71

 

 

 

R73

C54

 

 

Q7

 

 

 

 

0R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R70

BC547C

 

 

 

 

Q8

 

 

St-By

 

 

 

 

 

 

 

 

 

 

BC847C

 

 

 

8k2

100nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

U7

 

 

 

22R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C55

 

 

 

R72

 

 

 

 

 

TL431

 

 

 

10uF/50V

 

 

 

10k

 

 

 

 

 

 

 

R77

 

 

R74

 

 

 

 

D21

R75

R76

 

 

 

 

 

 

 

 

 

 

Q9

 

 

 

+200V

 

 

4k7

 

 

 

 

 

 

BC857C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10k

 

 

 

 

B-15V

150k

150k

 

 

 

 

 

 

 

 

 

Q10

 

 

 

 

 

 

 

 

 

 

 

 

 

BC847C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C56

 

 

 

 

 

 

 

 

C57

D22

 

 

 

 

R79

R80

 

 

 

 

 

 

 

 

 

U8B

 

100nF

 

 

 

 

 

 

 

 

1nF0

C-15V

 

SFH617A-2

 

2k2

30k

 

 

 

 

 

 

.3 Figure

characteristics Main

converter Auxiliary

description circuit and

diagram electrical

 

AN2492

ST AN2492 Application note

AN2492

Electrical test results

 

 

2 Electrical test results

2.1Harmonic content measurement

The current harmonics drawn from the mains have been measured according to the European rule EN61000-3-2 Class-D and Japanese rule JEIDA-MITI Class-D, at full load and 70 W output power, at both nominal input voltages (230 VAC and 100 VAC). The pictures in Figure 4., Figure 5., Figure 6. and Figure 7. show that the measured current harmonics are well below the limits imposed by the regulations, both at full load and at 70 W load.

Figure 4. Compliance to EN61000-3-2 for

Figure 5. Compliance to EN EN61000-3-2 for

harmonic reduction: full load

harmonic reduction: 70 W load

 

 

 

 

 

Measurements@230Vac Full load

EN61000-3-2 classDlimit s

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ha r monic Or de r ( n)

 

 

 

 

 

 

Measurement s@230Vac 70W

EN61000-3-2 classDlimit s

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ha r moni c Or de r ( n)

Figure 6. Compliance to JEIDA-MITI standard Figure 7.

Compliance to JEIDA-MITI standard

for harmonic reduction: full load

for harmonic reduction: 70 W load

Measurement s@100Vac Full load JEIDA-MITI classD limit s

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ha r moni c Or de r ( n)

 

 

 

 

 

 

Measurement s@100Vac 70W

JEIDA-MITI classD limit s

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Ha r moni c Or de r ( n)

The Power Factor (PF) and the Total Harmonic Distortion (THD) are reported in Figure 8. and Figure 9. It is evident from the picture that the PF stays close to unity in the whole mains voltage range at full load and at half load, while it decreases at high mains at low load (70W). The THD has similar behavior, remaining within 25% overall the mains voltage range and increasing at low load (70 W) at high mains voltage.

9/35

Electrical test results

AN2492

 

 

Figure 8. Power factor vs. Vin & load

Figure 9. Total harmonic distortion vs. Vin &

 

load

PF

 

 

 

 

 

THD [%]

 

 

 

 

 

1.00

 

 

 

 

 

35.00

 

 

 

 

 

0.98

 

 

 

 

 

30.00

 

400W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25.00

 

200W

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.95

 

 

 

 

 

 

 

70W

 

 

 

 

 

400W

 

 

 

20.00

 

 

 

 

 

0.93

 

200W

 

 

 

 

 

 

 

 

 

 

 

70W

 

 

 

15.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.00

 

 

 

 

 

0.88

 

 

 

 

 

5.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.85

 

 

 

 

 

0.00

 

 

 

 

 

80

120

160

200

240

280

80

120

160

200

240

280

 

 

 

Vin [Vrms]

 

 

 

 

 

Vin [Vrms]

 

 

2.2Efficiency measurements

Table 1. and Table 2. show the output voltage measurements at the nominal mains voltages of 115 VAC and 230 VAC, with different load conditions. For all measurements, both at full load and at light load operations, the input power is measured using a Yokogawa WT-210 digital power meter. Particular attention has to be paid when measuring input power at full load in order to avoid measurement errors due to the voltage drop on cables and connections.

Figure 10. shows the overall circuit efficiency, measured at each load condition, at both nominal input mains voltages of 115 VAC and 230 VAC. The values were measured after 30 minutes of warm-up at maximum load. The high efficiency of the PFC pre-regulator working in FOT mode and the very high efficiency of the resonant stage working in ZVS (i.e. with negligible switching losses), provides for an overall efficiency better than 88% at full load in the complete mains voltage range. This is a significant high value for a two-stage converter, especially at low input mains voltage where PFC conduction losses increase. Even at lower loads, the efficiency still remains high.

Figure 10. Overall efficiency versus output power at nominal mains voltages

 

 

 

 

 

@230Vac

@115Vac

 

 

 

 

 

100%

 

 

 

 

 

 

 

 

 

 

95%

 

 

 

 

 

 

 

 

 

 

90%

 

 

 

 

 

 

 

 

 

 

85%

 

 

 

 

 

 

 

 

 

(%)

80%

 

 

 

 

 

 

 

 

 

Eff.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75%

 

 

 

 

 

 

 

 

 

 

70%

 

 

 

 

 

 

 

 

 

 

65%

 

 

 

 

 

 

 

 

 

 

60%

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

Output Power (W)

10/35

AN2492

Electrical test results

 

 

The global efficiency at full load has been measured even at the limits of the input voltage range, with good results:

At VIN = 90 VAC - full load, the efficiency is 88.48%

At VIN = 264 VAC - full load, the efficiency is 93.70%

Also at light load, at an output power of about 10% of the maximum level, the overall efficiency is very good, reaching a value better than 79% over the entire input mains voltage range. Figure 11. shows the efficiency measured at various output power levels versus input mains voltage.

Table 1.

Efficiency measurements @VIN = 115 VAC

 

 

 

+200 V@load(A)

+5 V @load(A)

+3.3 V @load(A)

POUT(W)

PIN(W)

Efficiency

 

 

 

 

 

 

 

 

 

202.50

1.989

4.84

0.968

3.33

0.695

409.77

451.38

90.78%

 

 

 

 

 

 

 

 

 

202.50

1.751

4.84

0.968

3.33

0.695

361.58

397.70

90.92%

 

 

 

 

 

 

 

 

 

202.50

1.501

4.84

0.968

3.33

0.695

310.95

341.39

91.08%

 

 

 

 

 

 

 

 

 

202.50

1.251

4.84

0.968

3.33

0.695

260.33

285.86

91.07%

 

 

 

 

 

 

 

 

 

202.50

1.000

4.84

0.968

3.33

0.695

209.50

230.96

90.71%

 

 

 

 

 

 

 

 

 

202.53

0.751

4.84

0.968

3.33

0.695

159.10

176.63

90.08%

 

 

 

 

 

 

 

 

 

202.53

0.500

4.84

0.968

3.33

0.695

108.26

122.62

88.29%

 

 

 

 

 

 

 

 

 

202.53

0.250

4.84

0.968

3.33

0.695

57.63

69.04

83.48%

 

 

 

 

 

 

 

 

 

202.56

0.150

4.84

0.293

3.33

0.309

32.83

41.14

79.80%

 

 

 

 

 

 

 

 

 

202.67

0.051

4.84

0.293

3.33

0.309

12.78

20.34

62.85%

 

 

 

 

 

 

 

 

 

Table 2.

Efficiency measurements @VIN = 230 VAC

 

 

 

+200 V@load(A)

+5 V @load(A)

+3.3 V @load(A)

POUT(W)

PIN(W)

Efficiency

 

 

 

 

 

 

 

 

 

202.50

1.987

4.84

0.968

3.33

0.695

409.37

437.79

93.51%

 

 

 

 

 

 

 

 

 

202.50

1.750

4.84

0.968

3.33

0.695

361.37

386.90

93.40%

 

 

 

 

 

 

 

 

 

202.50

1.500

4.84

0.968

3.33

0.695

310.75

333.33

93.23%

 

 

 

 

 

 

 

 

 

202.50

1.250

4.84

0.968

3.33

0.695

260.12

279.65

93.02%

 

 

 

 

 

 

 

 

 

202.50

1.000

4.84

0.968

3.33

0.695

209.50

226.68

92.42%

 

 

 

 

 

 

 

 

 

202.50

0.750

4.84

0.968

3.33

0.695

158.87

174.10

91.25%

 

 

 

 

 

 

 

 

 

202.53

0.500

4.84

0.968

3.33

0.695

108.26

121.54

89.08%

 

 

 

 

 

 

 

 

 

202.53

0.250

4.84

0.968

3.33

0.695

57.63

68.96

83.57%

 

 

 

 

 

 

 

 

 

202.54

0.150

4.84

0.293

3.33

0.309

32.83

41.80

78.54%

 

 

 

 

 

 

 

 

 

202.67

0.050

4.84

0.293

3.33

0.309

12.58

19.86

63.35%

 

 

 

 

 

 

 

 

 

11/35

Loading...
+ 24 hidden pages