ST AN2383 Application note

AN2383
Application note
A single plate induction cooker
with the ST7FLITE09Y0
Introduction
This application note describes an induction cooking design which can be used to evaluate ST components or to get started quickly with your own induction cooking development project.
Induction cooking is not a radically new invention; it has been widely used all around the world. With recent improvements in technology and the consequent reduction of component costs, Induction cooking equipment is now more affordable than ever.
The design provides an opportunity to understand how an induction cooker works and to make an in-depth examination of the various blocks and parts of this type of cooking application such as the driving topology, how the resonant tank works, how the pot gets hot and how to remove it safely from the cooking element.
The design is entirely controlled by a simple ST7FLITE09Y0 8-bit microcontroller, which provides the PWM driving signals, communicates information to the user interface, and drives the fan and relay control to the plate feedback.
September 2009 Doc ID 12433 Rev 3 1/39
www.st.com
Contents AN2383
Contents
1 Induction heating basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Mains, DC link voltage and zero voltage switching . . . . . . . . . . . . . . . . . . . 8
3.2 Isolated power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Power stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Feedbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 MCU pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 How the system works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Standby (system off) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 System on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Safety relay and fan management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Measurements at 50 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 Standby (system off) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Powering the plate (without pot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Powering the plate (with pot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Working level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Working level 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Real-time current adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.7 Removing the pot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Measurements at PWM frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Powering the plate (with pot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Working level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Working level 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 Current waveform at 50 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Alarm management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/39 Doc ID 12433 Rev 3
AN2383 Contents
8 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1 Keyboard schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Display schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 Software management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10 Thermal conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
12 Demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13 References and related materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Doc ID 12433 Rev 3 3/39
List of tables AN2383
List of tables
Table 1. Bill of material (part 1 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 2. Bill of material (part 2 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 3. Bill of material (part 3 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 4. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4/39 Doc ID 12433 Rev 3
AN2383 List of figures
List of figures
Figure 1. Induction cooking design block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Mains and +325 volt DC link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Isolated power supply, 5 and 15 volt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. L6384 IGBT driver and power stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. Current peak, current phase and alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. MCU pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. System in standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8. Plate power-on (without pot on the plate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 9. Plate power-on (with pot on the plate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 10. System working at level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 11. System working at level 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 12. Plate power-on (with pot on the plate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 13. System working at level 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 14. System working at level 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 15. Current waveform at 50 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 16. The analog keyboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 17. Display circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 18. The six most important software events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 19. Demonstration board photo (no cooking plate connected) . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 20. User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 21. Resonant capacitors (in blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 22. Reverse angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Doc ID 12433 Rev 3 5/39
Induction heating basics AN2383

1 Induction heating basics

Put simply, an induction cooking element (what on a gas stove would be called a "burner") is a special kind of transformer. When a good-sized piece of magnetically conducting material such as, for example, a cast-iron frying pan, is placed in the magnetic field created by the cooking element, the field transfers ("induces") energy into the metal. That transferred energy causes the metal - the cooking vessel - to become hot.
By controlling the intensity of the magnetic field, we can control the amount of heat being generated in the cooking vessel and we can change that amount instantaneously.
Induction cooking has several advantages over traditional methods of cooking:
Speed: conductive heat transfer to the food is very direct because the cookware is
heated uniformly and from within. Induction cooking is even faster than gas cooking
Safety: there are no open flames. This reduces the chances of fire and the cold stove
top is also more child safe
Efficiency: around 90%. Heat is generated directly in the pot, while for electric and gas
the efficiency is around 65% and 55% respectively due to heat transfer loss.
Induction cooking functions based on the principle of the series L-C resonant circuit, where the inductance L is the cooking element itself.
By changing the switching frequency of the high voltage half-bridge driver, the alternating current flowing through the cooking element changes its value. The intensity of the magnetic field and therefore the heating energy can be controlled this way.
6/39 Doc ID 12433 Rev 3
AN2383 Block diagram

2 Block diagram

Figure 1. Induction cooking design block diagram

USER INTERFACE FAN
PLATE
DRIVER 2x IGBTs
MCU
ST7LITE
RELAY
POWER SUPPLY
5 / 15V
PLATE FEEDBACK
AI12605
The induction cooking design consists of a small number of simple blocks.
The isolated power supply is obtained directly from the mains, 220 V AC 50 Hz. 15 volts are used to supply the IGBT driver, fan, relay and feedback circuitry, while 5 volts are needed to supply the rest of the ICs, including the MCU.
The ST7FLITE09Y0 microcontroller controls the whole process and communicates with the user interface (buttons and display), drives the fan and the relay, receives feedback from the cooking element (referred to in this document as “plate” for simplicity) and generates the PWM signal to drive the IGBTs.
Doc ID 12433 Rev 3 7/39
Schematic AN2383

3 Schematic

Although the schematic is not very complex, this section presents the different parts as separate topics:
Mains, DC link and zero voltage switching
Isolated power supply
Power stage
Feedbacks
MCU pin configuration
The user interface schematic is not presented in this section. It is discussed and analyzed in
Section 8.

3.1 Mains, DC link voltage and zero voltage switching

Figure 2. Mains and +325 volt DC link

FST1
FST2 LI N E
NEUTRAL
1
2
C1 1µF
275V X2
1
2 FS T3 EAR TH
1
2
RV1
460V
124
R1
470K
1W
L1
TDK_TF 2510H
AC N
C2
C4
3n3 Y1
3
C3
3n3 Y1
RELAY
1µF
275V X2
AC L
R2
4K7
C5 1µF
275V X2
RL1 12V
16A 250VAC
R3 10K
2
7
+15V
3
6 1 8
1N4 007
Q3 BC 337
D1
R4 8K2
4
5
DL1
LED
470K
RV2 275V
R5
1W
~
+
­270K
D2
~
25A
R8
R9
8K2
R6 220K
R7 220K
+325V
R10 4K7
C6 22nF
TP1 4
VLINK
R11 4K3
R12 4K3
R13
4K3
R14 4K3
ACL
R15 4K3
50Hz
R17 4K3
D13 1N4007
2
PC817
R16 2K2
1
ISO2
4
+5V
3
TP17
The mains is filtered and is not applied directly to the power diode bridge: for safety reasons, it goes through a relay. This means that the DC link voltage is not applied to the IGBT while the system is off.
The 14 V DC relay is driven by the MCU through a classic NPN transistor. An LED is also present.
When the system is on - and the AC line is applied to the power diode bridge - the IGBTs are supplied with +325 V. The resistive divider sends an image of the DC link voltage to the MCU (label VLINK). The last part of the schematic is an isolated zero voltage switching (ZVS): a square waveform at 50 Hz synchronized with the mains (label 50 Hz).
8/39 Doc ID 12433 Rev 3
AI12612
AN2383 Schematic

3.2 Isolated power supply

Figure 3. Isolated power supply, 5 and 15 volt

AC L
AC N
L3 330µH
D15 PKC-13 6
8
~
2
V
DD
FB
Source11Source2
U4 VIPer2 2A
F
~
D16 1,5A
+
+C23
+C22
10µF
10µF
400V
400V
R29 10
4
Drain15Drain26Drain37Drain4
3
+C25
10µF 35V
D14 BAR4 6
C40 22nF
T1 TRONIC
348
2
1
C4 1 2n2 Y
1 2
ISO1
5
815
U5 TL431I
43
D10 STPS2H100
R38 1K
R39 1K
C24 100nF
R47 24K
R46 4K7
R48 4K7
R30 n.c.
+15V
+
TP 15
C26 330µF 35V
+15V+15V
+
U6 L7805CV
VIN1
C27 330nF
C38
100µF
35V
GND
2
V
OUT
C28 100 nF
C29 10µF 16V
AI12611
An isolated power supply is connected immediately after the mains filtering, without passing through the safety relay. A VIPer22A and a simple voltage regulator provide 15 and 5 volts respectively. The power supply ground is isolated from the system ground.
+5V
TP 16
3
+
Doc ID 12433 Rev 3 9/39
Schematic AN2383

3.3 Power stage

Figure 4. L6384 IGBT driver and power stage

PLATE
Q1
Q2
T2 TDKCT034 1:20
41
32
R22 11R
R2147R
C36 47nF
R25 11R
R24 47R
0
D8 STTH102
C15 1µF
D9 STTH102
8 7 6 5
V
BOOT
HVG V
OUT
LVG
D17 STTH102
V
CC
DT/SD
GND
U2 L6384
+15V
D18 ST TH102
1
IN
2 3 4
R26 220K
C16 2n2
R27
PWM0
1K
C17
+
10µF 35V
C37 47nF
R28 4K7
AI12613
+325V
L2 80µH
TR1
1.5KE
R19 470K 1W
C10 3µF 400V
FST4 SCREW
C11 680n 800V
C12 680nF 800V
1
C13 33nF 800V
C14 33nF 800V
FST5 SCREW
40NC60V D
STGY
40NC60VD
STGY
1
R20 10K
R23 10K
The +325 V DC link voltage is applied through a filter to the upper-side IGBT only when the safety relay is closed and the system is on. Components inside the dotted rectangle are the core part of the power stage: the L-C resonant tank is obtained by the plate (represented in the schematic by a spiral) and the capacitors on the left side. The resonant capacitor has been divided in two identical capacitors, so that the amount of current flowing through each capacitor is reduced by half, while the voltage to the capacitors remains the same.
A current transformer has been placed in series with the plate in order to provide plate feedback information to the MCU.
The IGBTs are driven by high frequency complementary square waves with 50% duty cycle.
The PWM0 signal applied to the driver input pin is generated directly by the MCU. The frequency varies in a range between 19 kHz and 60 kHz.
For more information regarding the dead time, charging pump capacitor and driving topology, please refer to the L6384 datasheet.
10/39 Doc ID 12433 Rev 3
AN2383 Schematic

3.4 Feedbacks

Figure 5. Current peak, current phase and alarm

T2
03
K_
TD CT 4
1:200
41
32
TP19
TP18
C20 22nF
R44 1M
TH1 110
+15V
8
5
+
7
6
4
LM
U3B
Temperature control
for plate PT1000 sensors
+15V
C21 100nF
8
3
1
+
2
U3A
4
LM 258
Alarm management
258
R37 10K
R45 12K
TMP2
with
ALARM
AI12610
R18 100R
D4 STTH102
D6
D7
STTH102
D5 STTH102
NTC4 47K
R69 100K
STTH102
+5V
R68 1K
C44 10nF
R31 33R 1W
R32 2K7
TMP1
R33 n.c.
C18 22nF
I-CTRL
R34 1K8
R35 2K2
R36 4K7
R41 100K
NTC2 PT1000
TP20
+15V
C19 22nF
C31 100nF
PT1 50K
R40 62K
+15V
Feedback signals are output by the current transformer placed in series with the plate, and temperature sensors.
The most important feedback is the current signal (label I-CTRL), which sends the MCU an image of the current flowing through the plate. This signal is used to monitor the current and set it in accordance with the selected working level.
In addition, the signal coming from the current transformer is sent to an operational amplifier. If for any reason the current increases too much, exceeding the alarm threshold set by the potentiometer, the MCU immediately takes action to prevent damage to the power stage.
A NTC has been glued to the heatsink between the IGBTs. The signal is sent to the MCU to monitor the heatsink temperature and drive the fan accordingly. In the same way, a PT1000 is placed in the middle of the plate to monitor the plate temperature. The signal is amplified and sent to the MCU for processing.
Waveforms and a description of how these signals interact with the MCU are given in
Section 5: Measurements at 50 Hz.
Doc ID 12433 Rev 3 11/39
Schematic AN2383

3.5 MCU pin configuration

Figure 6. MCU pin configuration

+15V
J8
C30 100µF 35V
+
D3 1N4007
1 2
FAN
+5V
C35
220µF
16V
+
C8 100nF
I-CTRL
TP1
KEYS
TP2
TMP1
TP3
TMP2
TP4
VLINK
TP5
R51
1M
Reset Pin Hints: R51 is mandatory if re sidual voltage is still on Reset Pin. R52 is not mandatory, its functionality has to be checked dur ing tests .
U1 ST 7F LITE 09
1
V
S
S
2
V
DD
3
RESET
4
SS/ AIN0/PB0
5
SCK/AIN1/PB1
6
MISO/A IN 2/PB 2
7
MOSI/A IN3/ PB3
8
CLKI N/AI N4 /PB4
C9 10 nF
ExternalI nterrupt request:
PA0 - 16 - ei0 - AL ARM
PA7 - 9 - ei1 - 50Hz
PA7
TP11
16
15
14
13
12
11
10
9
ei1
PA0 (HS)/LTIC
PA1 (HS)
PA 2 (HS)/ATPWMO
PA 3 (HS)
PA 4 (HS)
PA 5 (HS)/ICCDATA
PA6/MCO/ICCCLK
ei0
50Hz
RELAY
ALARM
DATA
PWM0
SCLK
/LE
+5V
R52 10K
TP12
TP13
TP6
TP7
TP8
TP9
TP10
+5V
R50 10K
R49 100
J7 CON10A I CC Programmer
Q5 STS5NF60L
1
2 7
3
4
Fan control
+5V
12 34 56 78 910
8
6
5
AI12608
The ST7FLITE09Y0 microcontroller controls the whole induction cooking system. It can be in-circuit programmed (ICP) via a standard 10-pin connector.
Starting from the left, going clockwise, the first input is the VLINK. It comes from the power diode bridge and is an image of the DC link voltage applied to the upper side IGBT. Read as analog input, this signal is used by the MCU to detect when a pot is placed on the plate or when it has been removed.
TMP1 and TMP2 provide the MCU with the temperature information coming from the heatsink and plate, respectively.
KEYS is an analog input read by the internal A/D converter of the MCU, and is connected to the keyboard in the user interface. The keyboard features 3 buttons. In order to save MCU pins, a smart schematic has been adopted, so that just one input pin is needed to read all the keys.
The I-CTRL feedback is processed as analog input. It is an image of the current flowing through the plate.
12/39 Doc ID 12433 Rev 3
Loading...
+ 27 hidden pages