ST AN2359 Application note

AN2359
Application note
Double output Buck-Boost converter with VIPerX2A
Introduction
This paper introduces two off-line non-insulated SMPS double outputs in Buck–Boost configuration based on VIPerX2A family The power supplies are operated in wide input voltage range, i.e. 88 to 265VAC. They can supply small loads, such as a microcontroller, triacs, display and peripherals in the industrial segment and home appliance. In the applications where a double output is required, two different solutions can be used. The first one regards an insulated converter topology, with second output generated by means of one winding on the magnetic core of the inductor with a proper turns ratio. Nevertheless, this solution is expensive in terms of transformer and can be used for medium and high current or insulated applications. For low power and low cost applications, a non-insulated converter topology can be used. The proposed topology, based on Buck-Boost converter, is used to supply negative output voltage referred to neutral in all those applications where the galvanic insulation is not required. The principle schematic is shown in figure below.
Proposed double output Buck-Boost topology
V
is provided using the classic Buck-Boost configurations, while V
OUT1
thanks to an intermediate tap on the inductor.
Compared to other already proposed solutions, the second output is obtained thanks to an intermediate tap on a low cost inductor. This configuration limits the parasitic capacitive effect between the two winding and improves the regulation at open load.
Further advantage is related to the regulation feedback connected on V regulation, it is possible to cover those applications where a low tolerance and low voltage is required (i.e. a microcontroller) and a high tolerance and high voltage is required for the auxiliary circuit (drivers, relays…).
December 2006 Rev 1 1/18
is obtained
OUT2
. Thanks to this
OUT2
www.st.com
Contents AN2359
Contents
1 VIPerX2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Output voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Application example nº 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Thermal measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Application example nº 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2/18
AN2359 List of figures
List of figures
Figure 1. Converter schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Typical waveforms at 88V Figure 3. Typical waveforms at 88V Figure 4. Typical waveforms at 265V Figure 5. Typical waveforms at 265V Figure 6. Commutation at full load: 88V Figure 7. Commutation at full load: 265V Figure 8. Output ripple voltage at full load: 88V Figure 9. Output ripple voltage at full load: 265V Figure 10. Turn on losses measurement at full load: 88V Figure 11. Turn on losses measurement at full load: 265V Figure 12. VIPer22A Thermal profile: at V Figure 13. VIPer22A Thermal profile: at V
Figure 14. VIPer22A temperature at maximum load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 15. Converter schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 16. Typical waveforms at 300V Figure 17. Typical waveforms at 300V
Figure 18. PCB Layout (not in scale). Option nº 1: -12V output voltage . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 19. PCB Layout (not in scale). Option nº 2: -24V output voltage . . . . . . . . . . . . . . . . . . . . . . . 16
: open load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
AC
: full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
AC
: open load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC
: full load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC
= 88VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
IN
= 265VAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
IN
and full load: commutation . . . . . . . . . . . . . . . . . . . . . . . . . 15
DC
and full load: detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
AC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AC
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AC
3/18
List of tables AN2359
List of tables
Table 1. Proposed converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. SMPS specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Circuit characterization - V Table 5. Circuit characterization - V Table 6. Circuit characterization - V
Table 7. SMPS specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Component list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 9. Experimental results - V Table 10. Experimental results - V Table 11. Experimental results - V
Table 12. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
= 120VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IN
= 320VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IN
= 374VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
IN
=120VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
IN
=320VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
IN
=374VDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
IN
4/18
AN2359 VIPerX2 description

1 VIPerX2 description

The proposed converters are based on The VIPerX2A family, which is a range of smart power devices with current mode PWM controller, start-up circuit and protections integrated in a monolithic chip using VIPower M0 Technology.
The VIPerX2A family includes:
VIPer12, with a 0.4A peak drain current limitation and 730V breakdown voltage;
VIPer22, with a 0.7A peak drain current limitation and 730V breakdown voltage.
The switching frequency is internally fixed at 60kHz by the integrated oscillator of the VIPerX2.
The internal control circuit offers the following benefits:
Large input voltage range on the V DD pin accommodates changes in supply
voltage;
Automatic burst mode in low load condition;
Overload protection in hiccup mode.
The feedback pin FB is sensitive to current and controls the operation of the device.

2 Output voltage selection

Two converters with different output voltage are introduced in this paper. The main specifications are listed in Table 1.
Table 1. Proposed converters
Output 1 Output 2 P
-12V/150mA -5V/300mA 3.3W
-24V/100mA -5V/300mA 3.9W
As already discussed, V
This imposes, for the two solutions, a different design of the output inductor in terms of turns ratio, i.e. n=1.4 for the –12V solution, against n=3.8 for the –24V solution (even if it could be necessary to tune the turn ratio for proper output voltage).
Some disadvantage are related to the –12V solution:
The parasitic capacitance effect between the two windings is increased, compared
to the second one. This will bring about higher switching losses in turn-on (see
Figure 10. and Figure 11.) and, consequently, a worsening in terms of efficiency;
A higher voltage diode is needed to supply the VIPer;
The peak current is twice higher, giving less output power margin for a given I
Therefore, a –24V/-5V solution can be suitably used for all those applications where efficiency and cost are important and, in general, in all the designs where a –24V output voltage does not impact on the cost of the relays and drivers.
is obtained by means of an intermediate tap on the inductor.
OUT2
OUT(MAX)
DLIM
.
5/18
Application example nº 1 AN2359
Instead, the -12V/-5V solution can be used all those times where it is not possible to change the auxiliary supply voltage.

3 Application example nº 1

The first application example is a 3.3W double output Buck-Boost converter. The specifications are listed in Table 2.
The schematic of the circuit is shown in Figure 1. and the component list is shown in Table 3.
Table 2. SMPS specifications
Specification Value
Input voltage range, V
Output voltage V
Output voltage V
Maximum output current I
Maximum output current I
Maximum output power 3.3W
IN
OUT1
OUT2
OUT1
OUT2
The input voltage can range from 88V
to 265VAC. The input section consists in a resistor
AC
88 - 265V
-12V
-5V
150mA
300mA
AC
as a fuse, a single input rectifier diode and an input C-L-C filter. Such a filter provides both DC voltage stabilization and EMI filtering. The C
SN-RSN
leg across D1 helps the further
reducing of the conducted emissions.
The regulation feedback is connected to V zener diode D precision depends on D
, in order to provide an output voltage with tight regulation range (the output
Z2
tolerance). V
Z2
OUT1
by means of the PNP transistor Q1 and
OUT2
is obtained thanks to the turns ratio of the
transformer.
The output inductor is wound in a TDK drum ferrite core (SRW0913 type), with an intermediate tap for V
L
N
N
= 420µH;
1-3
= 70 turns;
1-2
= 62 turns.
2-3
Optional bleeder resistors, R
. The specifications are the following:
OUT2
and Rb2, can be connected to the outputs in order to improve
b1
the regulation.
In particular, R is full loaded and V
6/18
has to be chosen in order to avoid the overvoltage on V
b1
is in no load condition.
OUT1
OUT1
when V
OUT2
Loading...
+ 12 hidden pages