ST AN2316 Application note

AN2316
Application Note
Improved ST7LITE05 AC Chopper Driver Solution
Introduction
This application note presents an AC motor or load circuital solution improvement of efficiency over the one discussed in a previously published application note, AN1255.
Above all, this solution does not have limits on where it may be applied, embracing all types of AC asynchronous monophase motor applications (e.g. refrigerators, hydraulic pumps, fans, and lamps).
Due to the increasing electric pollution of the environment, European standards impose restrictions on Electromagnetic Compatibility (EMC). The proliferation of non-linear loads and the consequential increase in harmonics pollution in power distribution lines have induced various technical committees to establish maximum limits on the harmonic content produced by all industrial and domestic devices. Manufacturers of these devices are required to conform to this new standard and develop products which function with new operational characteristics.
The most common method used to vary the AC monophase motor voltage is a TRIAC­based phase angle partialization technique. Although this is a simple, low-cost solution that has been used for several years, it is problematic because of the excessive harmonic distortion which reduces the efficiency of the entire system. These systems typically include a complex inverter drive which is quite expensive, and, while they can solve the load’s harmonic content problems, they do not address those same problems in the electric lines.
March 2006 Rev 1 1/24
www.st.com
Contents AN2316 - Application Note
Contents
1 STEVAL-IHM006V1 Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 EMC Precompliance Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Electrical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 EM C D ouble-Filter Bill of Mater ials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Safety and Operating Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 STEVAL-IHM006V1 Board Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Mandatory Checks Before Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Start-up Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 ST7FLITE05 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Peripheral Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Firmware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Library Source Cod e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Software downloa ds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2/24
AN2316 - Application Note List of Figures
List of Figures
Figure 1. Two-Switch Drive Motor Schematic (ST patented). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Basic Working Principal Illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. System Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. EMC Measure ment Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 5. EM C Double -Filter Stage Schem atic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figu r e 6 . 20kH z Switc h in g F r e quen c y EMC An a lysi s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figu r e 7 . 35kH z Switc h in g F r e quen c y EMC An a lysi s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 8. STEVAL-IHM0 06V1 Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9. ST7FLITE05 Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 10. Softec STVD7 v3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. ST7 Visual Programm er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3/24
STEVAL-IHM006V1 Circuit Description AN2316 - Application Note

1 STEVAL-IHM006 V1 Circuit Description

This ST-patented solution uses a working switch mode to solve third harmonic problems. The base circuit can be viewed as a mains vol tage double-chopper without any preliminar y AC/DC conversion type (see
Note: The AC chopper STEVAL-IHM006V 1 provides customers with a demo that regulates the
voltage in AC motors or loads of up to 300W. This allows the user to demonstrate smooth, silent, and efficient regulation with respect to TRIAC solutions.
The double-chopper is a device which energizes the load beginning from any level of the sinusoidal voltage wave and demagne tizes the load with a freewheeling current system, thereby obtaining voltage and current regulation of the load.
Starting from a perfect sinusoidal-shaped mains curve, the regulated current is also sinusoidal for all the power levels that the user desires to transfer to the load. By neglecting the electronic device losses, the circuit incoming power S is equa l to the outgoing power:
Equation 1
SV
Figure 1 on page 6
AC RMS()IAC RMS()
=
V
).
=
LOAD RMS()
I
LOAD RMS()
where, V
AC(RMS)
I
AC(RMS)
V
LOAD(RMS)
I
LOAD(RMS)
The I
= Root Mean Squared (RMS) Mains Volt age,
= RMS Input Current,
= RMS Load Voltage, and
= RMS Output Current.
AC(RMS)
and I
LOAD(RMS)
currents are related as follows:
Equation 2
I
LOAD RMS()
------ ----------- ----------- ---------- -
I
AC RMS()
V
AC RMS()
=
------ ------------ ----------- ----------- --
V
LOAD RMS()
The circuit operates as a converter, particularly as an AC/AC converter or transformer. It has no limitation in terms of load impedance since it works with both, inductive and ohmic loads, with notable angles between the current and the vol tag e.
4/24
AN2316 - Application Note STEVAL-IHM006V1 Circuit Description
The circuit is based on the fo llowing parts (see
IGBT Z1
Figure 1
):
Together with diodes D1, D2, D5, and D6, it performs current freewheeling (only for inductive load).
IGBT Z2
Together with diodes D3, D4, D7, and D8, it is the main switch through which the load is energized.
Pulse Transformer T1
It allows the signal derived from the PWM generator to be transferred to the Z1 gate. This component electrically insulates the input from the output’s entry signal and phase inversion.
PWM generator
This is provided by the ST7Lite05 microcontroller.
5/24
STEVAL-IHM006V1 Circuit Description AN2316 - Application Note

Figure 1. Two-Switch Dri ve Mo t or S che m at i c (S T patented )

+15V
C15
0.1µF
D15
18V
R10
12K 1/4W
D11
STTH108
D13
15V
R7
NTC22
12
CONTROL
V
+
C10
10µF 25V
t°
D12
STTH108
U3
123
+15V
45
S
S
FB
VDD DDD
D
678
D4
D8
STTH306
R3
470-1/4W
STTH306
1
Z2
STGP7NB60HD
2
3
R2
C2
3.3nF
5.6-1/4W
D3
D2
250V10L
STTH306
RV3
D7
D6
STTH306
1
Z1
STGP7NB60HD
2
3
STTH306
STTH306
D9
1N4148
NOT ASSEMBLED
pulse transformer
C3
0.1µF-100V
D16 1N4148
R15
1.2k
C4
0.1µF-100V
T1
17
294
5
0
R4
D10
18V
R5
270K
PHASE
RS-196-375
L1 1mH
D14
STTH108
VIPer12A DIP
+
C12
0.1µF
Q1
BC547
R9
2.2K
R8
470K
+
C14
C13
1µF-450V
R11 15
Q2
10µF 25V
R13 0
BC547
Q3
BC557
S 1
1
Line filter
F1
1
J1
D1
R1
4
T2
3
5 A
STTH306
250V14L
220K 1/2W
C1
C17
1
2
C16
MAINS
320VAC
RV2
250V10L
RV1
1µF 250VAC
100nF x 2
phase
100nF x 2
1
J2
PHASE
D5
J3
PHASE
STTH306
1
M
AC
ASYNCHRONOUS
1
J4
MOTOR
+5V
1
OUT
IN
U1
L78L05A/TO92
3
+15V
NOT ASSEMBLED
C5
47µF-25V
+
C7
0.1µF
GND
2
C6
0.1µF
BC557
321
Q5
C18
100pF
R14 R
NOT ASSEMBLED
NOT ASSEMBLED
16151413121110
PA1
PA3
PA4
PA0/LTIC
PA2/ATPWM0
VSS
VDD
RESET
U4
SS/AIN0/PB0
1234567
AIN0
C25
100nF
+5V
RESET
+5V
R6
22K
9
PA7
PA5/ICCDATA
PA6/MCO/ICCCLK
MISO/AIN2/PB2
MOSI/AIN3/PB3
SCK/AIN1/PB1
8
1
C8
0.1µF
R12 10K
CLKIN/AIN4/PB4
ST7LITE09
65432
J10
CON6_0
246
13579
JP1
AI12268
RESET
8
10
+5V
CON10A
6/24
AN2316 - Application Note STEVAL-IHM006V1 Circuit Description
In order to avoid short-circuiting the mains through switches Z1 and Z2, they must work in a complementary manner. When Z1 is ON, Z2 must be OFF and vice-versa.
For example, if the line vol tage at J1 i s posi tiv e wi th respect to J2, and the PWM signal goes from high-to-low, Z2 switches ON with a delay inserted by its own gate capacitance and by resistor R3 so the load is energized. In the meantime, Z1 swit ches OFF instant aneously.
Note: In this condition, if the current is positive (i.e. it goes into J1 and comes out from J2), it will
flow through D4, Z2, D7, and the load. Conversely, if the current is negative, it will be going out from J1 and closing through the load, D3, Z2, and D8.
As is the case with the current, when the PWM goes from low-to-high, Z2 is turned OFF instantaneously , while Z1 is switched ON with a delay. This enables a freewheeling current to flow through Z1.
Given these relationships, if “δ” is the duty cycle (see is may be expressed as:
Equation 3
V
t() δ VACt()⋅δV
LOAD
where,
= Load voltage,
V
LOAD
= Mains voltage, and
V
AC
= Maximum sinusoida l vo l t age.
V
MAX
The load current may be expressed as:
Equation 4
I
LOAD
t()
1
-- -
δ
IAC⋅ t()
1
-- -
I
MAX
δ
where, I
= Load current,
LOAD
= Input current,
I
AC
= Maximum current value, and
I
MAX
ϕ = the angle between the current and voltage.
Figure 2 on page 8
MAX
ωt()sin⋅⋅==
ωt ϕ+()sin⋅⋅==
), the load voltage
7/24
STEVAL-IHM006V1 Circuit Description AN2316 - Application Note
The relationships expressed in
Equation 3
and
Equation 4
, and
Figure 2
show that it is
possible to control power fed to the load by changing the PWM signal duty cycle.
Note: The load is assumed to be inductive so the high frequency harmonics are filtered in the
current waveform (see Figure 3 on page 9 for system wavefor m deta ils).

Figure 2. Basic Working Principal Illustration

Bi-directional PWM Chopping
V
line
Load Current
t
duty cycle
Duty Cycle Increase
t
AI12267
8/24
Loading...
+ 16 hidden pages