AN2272
Application Note
VIPer12A-based Low Power AC/DC Adapter
Introduction
This application note describes a low power , (output power of 4.1W) general purpose
adapter which is able to handle a wide range input voltages (88V
(Order Code STEVAL-ISA011V1) is based on the Viper12A monolithic device that has the
power switch as well as the basic control function needed to implement a current mode
flyback converter.
to 265VAC). The adapter
AC
February 2006 Rev . 1 1/33
www.st.com
Table of Contents AN2272 - Application Note
Table of Contents
1 STEVAL-ISA011V1 Board Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Primary Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Step 1, Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Step 2, Transformer Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Secondary Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 D11 Current and Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Transformer Turns Ratio and D
1.2.3 C
Output Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
11
1.3 Completed Transformer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Feedback Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 STEVAL-ISA011V1 Board Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Peak Current . . . . . . . . . . . . . . . . . . . 10
11
2.1 Start-up Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Full Load Star t- up Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 No Load Start-up Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Temperature Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Dynamic Load Regulation Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Steady-State Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 Steady-State Full Load Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Steady-State No Load Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 EMI Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Appendix A STEVAL-ISA011V Demo Board Schematic . . . . . . . . . . . . . . . . . . . 30
Appendix B STEVAL-ISA011V1 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/33 Rev. 1
AN2272 - Application Note List of Figures
List of Figures
Figure 1. Full Load Start-up Waveforms at 88V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2. Full Load Start-up Waveforms at 265V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 3. Full Load Start-up Waveforms at 115V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 4. Full Load Start-up Waveforms at 230V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 5. No Load Start-up Waveforms at 88V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6. No Load Start-up Waveforms at 265V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7. No Load Start-up Waveforms at 115V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 8. No Load Start-up Waveforms at 230V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. Step Load Change Stability Tests at 88V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 10. Step Load Change Stability Tests at 265V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 11. Step Load Change Stability Tests at 115V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 12. Step Load Change Stability Tests at 230V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13. Steady-state Full Load 88V
Figure 14. Steady-state Full Load 265V
Figure 15. Steady-state Full Load 115V
Figure 16. Steady-state Full Load 230V
Figure 17. Steady-state No Load 88V
Figure 18. Steady-state No Load 265V
Figure 19. Steady-state No Load 115V
Figure 20. Steady-state No Load 230V
Figure 21. 115V
Figure 22. 115V
Figure 23. 230V
Figure 24. 230V
Line Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
AC
Line Neutral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
AC
Line Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AC
Line Neutral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
AC
Figure 25. STEVAL-ISA011V1 Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC
Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AC
Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AC
Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AC
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
AC
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
AC
Rev. 1 3/33
List of Tables AN2272 - Application Note
List of Tables
Table 1. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 2. Start up Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Component Critical Temperatu re Measurem ent s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 4. Steady-state Full Load Condition Measurem ent s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Steady-state Output Voltag e Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 6. Bill Of Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4/33 Rev. 1
AN2272 - Application Note STEVAL-ISA011V1 Board Design
1 STEVAL-ISA011V1 Board Design
In order to improve regulation, the feedback loop is designed to have enough bandwidth so
the converter can react on time to load changes. As is shown in the
Load Regulation Tests on page 20
, the board is able to handle high load step changes with
very low variations in the output voltage.
The flyback converter is designed to work in Discontinuous Conduction Mode (DCM) in all
operating conditions (i.e. Minimum Input Voltage, Maximum Load), because it provides
better dynamic performance.
1.1 Primary Side
1.1.1 Step 1, Input Capacitor Selection
Section 2.3: Dynamic
The first design step is to calculate the input capacitor value (C2a + C2b see
ISA011V Demo Board Schematic on page 30
).
Equation 1
is useful for this purpose:
Equation 1
C
IN
----------------------------------------------------------------- =
V
2PINΔT⋅⋅
2
AC min () pk
2
V
–
DC m in ()
Where,
C
= input capacitor value,
IN
= input power,
P
IN
Δ T = the time between the two conduction cycles of the input bridge diodes,
V
AC(min)pk
V
DC(min)
In this case, th e P
= sinusoidal input waveform peaks (when AC voltage is at its minimum), and
= selected minimum input voltage required for the flyback (converter) stage.
value used is calculated as PO/η , where PO is the maximum output
IN
power and η is the overall ex pect ed efficie ncy (70% in this example).
STEVAL-
Rev. 1 5/33
STEVAL-ISA011V1 Board Design AN227 2 - Application Note
An acceptable value for V
DC(min)
is 80% of V
Equation 2
V
DC min ()
==
ΔT is expressed as:
Equation 3
1
------------------------- -
Δ T
2 π f
⋅⋅
line
Where,
Δ T = the time between the two conduction cycles of the input bridge diodes, and
f
= line frequency.
line
using
The calculated value of C
and C2b, see
This means that C
STEVAL-ISA011V Demo Board Schematic on page 30
= 20µF. This value was selected because the tolerance for an
IN
IN
Equation 1
electrolytic capacitor is usually around 20%.
1.1.2 Step 2, Transformer Selection
The next step is selecting a transformer with a Primary Inductance (LP) that allows the
system to work at the boundary between Continuous Conduction Mode (CC M) and
Discontinuous Conduction Mode (DCM). The worst case is minimum input voltage and full
load. This value is expressed as:
0.8V
AC(min)pk
AC min () pk
π arc
:
2V
AC min ()
V
DC min ()
⎛⎞
-----------------------------
cos –⋅=
⎝⎠
V
AC m in () pk
is 16µF. For the board, two capacitors (C2a
) of 10µF were used.
Equation 4
SW
2
L
MAX
3.5mH=⇒=
L
MAX
V
DC min ()DMAX
----- ----------- ----------- ----------- ----------- ------------ -
⋅ ()
2PINf
⋅⋅
Where,
L
= maximum inductance for discontinuous mode operation,
MAX
V
D
P
f
V
SW
= selected minimum input voltage required for the flyback (converter) stage,
DC(min)
= maximum duty cycle,
MAX
= input power,
IN
= switching frequency (internally fixed in the VIper12A to 60kHz), and
= reflected voltage (fixed to 90V).
R
6/33 Rev. 1
AN2272 - Application Note STEVAL-ISA011V1 Board Design
The D
at the boundary between CCM and DCM is expressed as:
MAX
Equation 5
V
D
MAX
----- ----------- ----------- ----------- ------- -
V
The transformer selected for this application provides an L
than the maximum inductance (L
MAX
R
DC m in ()VR
+
D
⇒
MAX
0.47==
of 3mH, whic h is a little les s
P
) calculated in the first equation (3.5mH). This ensures
that the system is not working at boundary and will always func tion in DC M.
Using the transformer’s L
● Peak Primary Current, expressed as,
, the designer can calculate the:
P
Equation 6
2P
⋅
I
PEAK
IN
----- ----------- -------- -
fSWL
⋅
I
⇒
PEAK
P
258m A==
Where,
I
= peak primary current,
PEAK
= input power,
P
IN
= switching frequency, and
f
SW
= primary inductan ce.
L
P
● actual Maximum Duty Cycle (D
), expressed as,
MAX
Equation 7
D
MAX
⋅⋅⋅
------ ----------- ----------- ----------- ---------- -
f
SWLP
P
⋅
D
MAX
0.42=⇒=
2PINfSWL
and
● the primary side Root Mean Square (RMS) current value (I
PRMS(max)
), which is the
current that flows through the main switch and primary winding. It is expressed as:
Equation 8
D
I
PRMS max ()IPEAK
MAX
------ ----------- -- I
3
PRMS max ()
97m A=⇒⋅=
Where,
I
PRMS(max)
= Primary Current root mean square,
Rev. 1 7/33
STEVAL-ISA011V1 Board Design AN227 2 - Application Note
The conduction losses in the main switch depend on the VIPer12A I
resistance, and are expressed as:
Equation 9
Where,
P
VIPer12A
r
ds(on)
= VIPer12A conduction losses, and
= VIPer12A ON resistance.
1.2 Secondary Side
In order to select the output rectifier (secondary) diode D11, the designer needs to know the
maximum reverse voltage that the diode has to sustain, as well as the average and root
mean square of the current flowing through it (see
page 30
Equation 10
). V
is calculated as follows:
R(max)
P
VIPer12Ards on ()
V
Rmax ()VOUT
PRMS(max)
2
I
⋅=
PRMS max ()
STEVAL-ISA011V1 Schematic on
V
OUT
------- ---------- -
V
⋅+ =
R
DC m ax ()
V
and ON
Where,
V
V
V
V
= maximum reverse vo ltage,
R(max)
= output voltage,
OUT
= reflected voltage, and
R
DC(max)
= selected maximum input voltage.
A commonly used selection method is to choose a diode with a 40% to 50% safety margin
from the value given by the V
calculation when a Schottky diode is used, or a safety
R(max)
margin of 20% to 30% if a standard “fast” diode is used. The safety margin prevents diode
breakdown from oscillation caused by circuit parasitic elements (e.g. transformer secondary
inductance leakage or parasitic diode capacitance) when the MOSFET is turned ON.
If the calculated V
the D
value is about 34V. This makes the STPS340U (with 40V breakdown voltage) an
11
is 23V and a Schottky diode is used (adding a 50% safety margin),
R(max)
excellent choice for this application.
8/33 Rev. 1
AN2272 - Application Note STEVAL-ISA011V1 Board Design
1.2.1 D11 Current and Power Dissipation
● The average current flowing through D
is the output current while the I
11
expressed as:
Equation 11
I
DRMSIPKS
⋅=
Where,
I
= current root mean square,
DRMS
= peak current at secondary winding, and
I
PKS
D
For one output flyback, I
= conduction duty cycle of the secondary diode.
s_cond
(peak current at the secondary winding) can be calculated
PKS
as the primary peak current multiplied by the turns ratio.
Note: This formula applies only to DCM operation.
● D
power dissipation is calculated as follows:
11
Equation 12
P
lossDVdDIDavg ()rdD
Where,
P
= diode power dissipation,
lossD
= drop voltage (when the diode is forward-biased),
V
dD
= diode average current, and
I
D(avg)
= dynamic resistance.
r
dD
Note: The formula and the correct values for V
DRMS
D
s cond
–
-------------------- 3
2
I
⋅+ ⋅=
DRMS
and rdD are in the diode datasheets.
dD
value is
Rev. 1 9/33
STEVAL-ISA011V1 Board Design AN227 2 - Application Note
1.2.2 Transformer Turns Ratio and D11 Peak Current
● The turns ratio that is selected for the transformer depends on the output voltage, the
chosen reflected voltage, and the average voltage drop across the output diode.
Keeping in mind the voltage drop across its dynamic resistance, V
expressed as:
Equation 13
DROP(avg)
is
V
DROP avg ()VdDrdD
Where,
V
DROP(avg)
= drop voltage (when the diode is forward-biased),
V
dD
= dynamic resistance,
r
dD
= diode output current, and
I
O
● Using the calculated V
= average voltage drop (across the output diode)
DROP(avg)
Equation 14
N
P
------N
S
Where,
N
= Primary Turns,
P
= Secondary Turns,
N
S
= reflected voltage, and
V
R
= output voltage.
V
O
● Using the calculated turns ratio, I
Equation 15
+ I
⋅ =
O
value, the turns ratio is expressed as:
V
---------------------------------------------- =
VOV
is then expressed as:
PKS
I
PKS
R
+
DROP avg ()
N
P
-------
⋅=
I
PKP
N
S
Where,
I
= peak current at secondary winding, and
PKS
= peak power current
I
PKP
Note: The worst case (maximum power dissipation) will be in full load condition.
● The D
conduction duty cycle is expressed as:
11
Equation 16
D
scond
–
Where,
D
L
f
10/33 Rev. 1
= Secondary Diode conduction duty cycle,
s_cond
= primary inductan ce, and
P
= switching frequency.
SW
I
⋅⋅
PKPLPfSW
------ ----------- ----------- ----------- ----- - =
V
R