ST AN2228 APPLICATION NOTE

AN2228
APPLIC ATION NOT E
STD1LNK60Z-based Cell Phone Battery Charger Design
Introduction
This application note is a Ringing Choke Converter (RCC)-based, step-by-step cell phone battery charger design procedure.
The RCC is es sential to the self-oscillating fly -back converter, and operates within the Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM) boundaries without noticeable reverse recov ery of the output rectifying diodes. RCC control is achieved by using discrete components to control the peak c urrent mode, so the overall RCC cost is relatively low compare d to the conventional Pulse Width Modulation (PWM ) IC fly-back converter. As a result, RCC is widely used for low power applications in industry and home appliances as a simple and cost-effective solution.

Figure 1. STD1LNK60Z-based RCC Printed Circuit Board

Top View
September 2005 1/26
Bottom View
Rev 1.0
http:/www.st.com
26
AN2228 - APPLICATION NOTE
Table of Contents
1 Power Transformer Design Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 STD1LNK60Z MOSFET Turn Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Primary Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Primary Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Magnetic Core Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Primary Winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Secondary Winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Auxilia ry Winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Gap Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 STD1LNK60Z-based RCC Control Circuit Components . . . . . . . . . . . . . 12
2.1 MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 R3 Startup Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Optocoupler Power Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 R7 Sense Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Constant Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Zero Current Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Constant Voltage And Constant Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Appendix A: STD1LNK60Z-based RCC Circuit Schematics . . . . . . . . . . 22
Appendix B: STD1LNK60Z-based RCC Circuit Bill of Materials . . . . . . . 23
4 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/26
AN2228 - APPLICATION NOTE
Figures
Figure 1. STD1LNK60Z-based RCC Printed Circuit Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2. Optocoupler Fly-back Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. Optocoupler Forward Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 4. Current Sense Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. CV and CC Curve at 110V Figure 6. CV and CC Curve at 220V Figure 7. Drain To Source Voltage Operation Waveform, 85V Figure 8. Drain To Source Voltage Operation Waveform, 110V Figure 9. Drain To Source Voltage Operation Waveform, 220V Figure 10. Drain To Source Voltage Operation Waveform, 265V Figure 11. RCC Control Circuit Components Schematic (see
Figure 12. STD1LNK60Z-based RCC Schematic (full view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
AC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Section on page 1
). . . . . . . . . . . . . . . 22
3/26
AN2228 - APPLICATION NOTE
Tables
Table 1. Line and Load Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 2. Efficiency Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3. Standby Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 4. BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4/26

AN2228 - APPLICATION NOTE 1 Power Transformer Design Calculations

1 Power Tr ansformer Design C al culat i ons
The specifications:
–V
Line frequency: 50~65Hz
– V – I
Taking transient load into account, the maximum output current is set as

1.1 Switching Frequency

The system is a variable switching frequency system (the RCC switchi ng frequency v aries with the input voltage and output load), so there is some degree of freedom in switching frequency selection. However, the frequency must be at least 25kHz to minimize audible noise.
Higher switching frequencies will decrease the transformer noise, but will also increase the level of switching power dissipated by the power devices.
= 85~265V
AC
= 5V
O
= 0.4A
O
I
Omax()
1.2I
4.8A==
O
The minimum switching frequency and maximum duty cycle at full load is expressed as
f
Smin()
D
max
50kHz=
0.5=
where the minimum input voltage is 50kHz and 0.5, respectively.
5/26
1 Power Transformer Design Calculations AN2228 - APPLICATION NOTE

1.2 STD1LNK60Z MOSFET Turn Ratio

The maximum MOSFET drain voltage must be below its breakdown voltage. The maximum drain voltage is the sum of:
input bus voltag e,
secondary reflected voltage, and
voltage spike (caused by the primary parasitic inductance at maximum input voltage).
The maximum input bus voltage is 375V and the STD1LNK60Z MOSFET breakdown voltage is 600V. Assuming that the voltage drop of output diode is 0.7V, the voltage spike is 95V, and the margin is at least 50V, the reflected voltage is given as:
V
V
fl
BR()DSSVminarg
The Turn Ratio is given as
N
where,
= Secondary reflected voltage
V
fl
V
(BR)DSS
V
margin
V
DC(max)
V
spk
= Voltage drop
V
f
= MOSFET breakdown voltage
= Voltage margin
= Maximum input bus voltage
= Voltage spike
N = Turn Ratio
N
------ ­N
p s
V
---------------------------­V
DC max()Vspk
OUTVF
600 50 375 95 80 V===
V
fl
+
80
----------------- -14== = =
50.7+
= Primary Winding T urns
N
p
= Secondary Winding Turns
N
s
6/26
AN2228 - APPLICATION NOTE 1 Power Transformer Design Calculations

1.3 Primary Current

Primar y Peak Current is expressed as:
2VOI
I
Primar y Root Mean Square (RMS) Current is expressed as
ppk
------------------------------------------
ηD
Omax()
maxVDC min()
25× 0.48×
----------------------------------- 0.152A===
0.7 0.5× 90×
I
prmsIppk
where,
= Primary peak current
I
ppk
= Voltage output
V
O
= Maximum current output
I
O(max)
η = Efficiency, equal to 0.7
= Maximum duty cycle
D
max
V I
prms
= Minimum input bus voltage
DC(min)
= Primary RMS current

1.4 Primary Inductance

Primary Inductance is expressed as
V
L
where,
DC min()Dmax
-------------------------------------- -
p
f
D
max
------------- ­3
smin()Ippk
0.152
90 0.5×
--------------------------- - 5.92mH===
0.152 50×
0.5
------- ­3
0.062A=×==
V
DC (min)
f
s (min)
D
max
f
s(min)
I
ppk
= Minimum Input DC voltage
= Minimum switching frequency
= Maximum duty cycle
= Minimum switching frequency
= Primary peak current
For example, if Primary Inductance is set to 5.2mH, the minimum switching frequency is:
f
smin()
V
IN DC min()Dmax
-------------------------------------------­LpI
ppk
90 0.5×
---------------------------- - 57kH z===
0.152 5.2×
7/26
1 Power Transformer Design Calculations AN2228 - APPLICATION NOTE

1.5 Magnetic Core Size

One of the most common ways to choose a core size is based on Area Product (AP), which is the product of the effective core (magnetic) cross-section area times the window area available for the windings.
Using a EE16/8 core and standard horizontal bobbin for this particular application, the equation used to estimate the minimum AP (in cm
where,
= Primary Indu ctance
L
p
= Primary RMS current
I
prms
= Window utiliz ation factor, equal to:
k
u
0.4 for margin wound construction, and – 0 .7 for tri p le insulat e d wire cons tructi on
= Saturation magnetic flux density
B
max
ΔT = Temperature rise in the core

1.6 Primary Winding

1.6.1 Winding Turns
The effective area of an EE16 core is 20.1mm2 (in the core’s datasheet). The number of turns of primary winding is calculated as
V
N
DC min()Dmax
-------------------------------------- -
p
f
smin()
AP
ΔBA
4
) is shown as
ΔT
0.5
1.316
103×=
90 0.5×
6–
× 57× 10
L
pIprms
---------------------------------- ­kuB
max
---------------------------------------------------------------------------- 179== =
e
0.22 20. 1× 10
where,
= Primary Windi ng Turns
N
p
V
DC (min)
D
max
f
s(min)
= Minimum Input DC voltage
= Maximum duty cycle
= Minimum switching frequency
ΔB = Flux density swing
= Effective area of the c ore
A
e
8/26
Loading...
+ 18 hidden pages