ST AN2208 APPLICATION NOTE

AN2208

APPLICATION NOTE

Designing Industrial Applications with

VN808/VN340SP High-side Drivers

Introduction

This application note describes the functions of VN808/VN340SP high-side drivers in industrial applications. The VN340SP and VN808 are monolithic devices based on VIPower technology. With primary application requirements being safety and reliability, this application note covers the various tests used to ensure compliance with international electromagnetic compatibility (EMC) specifications as well as other requirements.

VN808/VN340SP high-side drivers are tested mounted on their respective reference design board (RDB).

Note:

Additional information concerning the L5970D DC/DC converter, based on BCD technology, is

 

included in Section Appendix C: L5970D DC/DC converter on page 46.

Figure 1.

VN808 and VN340SP reference design boards

 

 

 

 

 

Rev. 1

September 2005

1/51

 

 

http:/www.st.com

AN2208

Contents

1 High-side driver description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 VN808 reference design board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

 

2.1

Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 9

 

2.2

Surge suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

2.3

Isolation recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

 

2.4

Heatsink recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

 

2.5

Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

3

VN340SP reference design board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

3.1

Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

 

3.2

Schematic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16

4 Load switching tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Thermal stress tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Electromagnetic compatibility (EMC) tests . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.2 List of EMC test equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.3 Requested test levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3.1 IEC 61000-4-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.3.2 IEC 61000-4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.3.3 IEC 61000-4-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.4 IEC 61000-4-4 EFT test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24

6.4.1 Power supply tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.4.2 Input port tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.4.3 Output port tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.5

IEC 61000-4-5 surge test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

6.5.1

Power supply tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

 

6.5.2

Output port tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

6.6

IEC 61000-4-6 conducted immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

6.6.1 Power supply tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2/51

AN2208

6.6.2 Input port tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.6.3 Output port tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1

VN808 HSD test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

7.1.1 Load switching test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

7.1.2

Thermal stress test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

 

7.1.3

EMC test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

7.2 VN340SP HSD test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

7.2.1 Load switching test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

7.2.2

Thermal stress test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37

7.2.3

EMC test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

Appendix A VN808 reference design board (RDB) . . . . . . . . . . . . . . . . . . . . . . .

42

A.1

VN808 RDB bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

A.2

Recommended VN808 PCB Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Appendix B VN340SP reference design board (RDB) . . . . . . . . . . . . . . . . . . . . .

44

B.1

VN340SP RDB bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44

B.2

Recommended VN340SP RDB PCB layout . . . . . . . . . . . . . . . . . . . . . . . . .

45

Appendix C L5970D DC/DC converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

C.1

Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

C.2

L5970D layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

C.3

L5970D DC/DC converter load test results . . . . . . . . . . . . . . . . . . . . . . . . . .

48

8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3/51

 

 

AN2208

List of figures

 

Figure 1.

VN808 and VN340SP reference design boards . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 1

Figure 2.

VN808 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 8

Figure 3.

VN340SP block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 8

Figure 4.

VN808 reference design board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . 9

Figure 5.

Surge Suppression Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 10

Figure 6.

Typical input/status isolation by optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 11

Figure 7.

Burst pulse affecting one input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 11

Figure 8.

Recommended layout for High Power Dissipation capability . . . . . . . . . . . . . . . . . .

. . . . . 12

Figure 9.

DC/DC part of the application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 12

Figure 10.

Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 12

Figure 11.

Complete application circuit with VN808 and L5970D devices. . . . . . . . . . . . . . . . .

. . . . . 13

Figure 12.

Switching part of the application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 14

Figure 13.

VN340SP reference design board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 15

Figure 14.

Switching part of the application circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 16

Figure 15.

Complete application circuit with VN340SP and L5970D devices . . . . . . . . . . . . . .

. . . . . 17

Figure 16.

Description of the switching inductor loads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 18

Figure 17.

IPS simplified structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 19

Figure 18.

Simplified thermal models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 20

Figure 19.

Power supply tests (IEC 61000-4-4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 24

Figure 20.

Switch diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 25

Figure 21.

Test on input ports (IEC 61000-4-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 25

Figure 22.

Output port tests (IEC 61000-4-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 26

Figure 23.

Power supply tests (IEC 61000-4-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 27

Figure 24.

Test on Output Ports (IEC 61000-4-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 27

Figure 25.

Power supply tests (IEC 61000-4-6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 28

Figure 26.

Input port tests (IEC 61000-4-6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 28

Figure 27.

Output port tests (IEC 61000-4-6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 29

Figure 28.

VN808 Waveforms (Part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 30

Figure 29.

VN808 Waveforms (Part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 31

Figure 30.

GND_Power disconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 32

Figure 31.

Switching lamps: VCC = 24V, f = 0.5 Hz, Wave1 = VINOPT,

 

 

Wave2 = VOUT, Wave4 = ICH1OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 32

Figure 32.

Waveform tOFF inductor load: VCC = 24V, L = 130mH, RLOAD = 63W,

 

 

tOFF = 1.2101 ms, Wave2 = VOUT, Wave1 = VINOPT, Wave4 = ICH1OUT . . . . .

. . . . . 32

Figure 33.

Waveform switching inductive load: VCC = 24V, L = 130mH, RLOAD = 48W,

 

 

f = 0.5Hz, Wave2 = VOUT, Wave1 = VINOPT, Wave4 = ICH1OUT . . . . . . . . . . . .

. . . . . 33

Figure 34.

Switching with short circuit: VCC = 24V, f = 0.5Hz, Wave2 = VSTATUSOPT,

 

 

Wave1 = VINOPT, Wave4 = ICH1OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 33

Figure 35.

Time delay between VINOPT and VOUT: VCC = 24V, Load = Lamp,

 

 

Wave2 = VOUT, Wave3 = VINOPT, Dt = 58.462 µs . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 33

Figure 36.

GND_Power disconnection for VN808: VCC = 25V, Load = Lamp,

 

 

Wave1 = VCC, Wave2 = VOUT, Wave3 = GND of power supply . . . . . . . . . . . . . .

. . . . . 33

Figure 37.

Waveform ITOT and VINOPT during the test with short circuit VCC = 28V,

 

 

TA = 85°C, Wave4 = ITOT, Wave1 = VINOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 34

Figure 38.

Waveform on ITOT and VINOPT during the test with short circuit VCC = 28V,

 

 

TA = –25°C, Wave4 = ITOT, Wave1 = VINOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 34

Figure 39.

Case temperature dependency vs. current ITOT (TA = 25°C and VCC = 24 V) . . .

. . . . . 34

Figure 40.

Burst applied on the power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 35

4/51

 

 

 

 

 

AN2208

 

Figure 41. Burst applied on the output channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35

Figure 42. Positive surge applied on power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

Figure 43. Negative surge applied on power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36

Figure 44. Switching lamps: Vcc = 24V, f = 0.5Hz, Wave3 = VINOPT,

 

Wave2 = VOUT, Wave4 = ICH1OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

Figure 45. Waveform tOFF inductor load: Vcc = 24V, L = 130mH, RLOAD = 60W,

 

tOFF = 1.2276ms, Wave2 = VOUT, Wave3 = VINOPT, Wave4 = ICH1OUT. . . . . . . . . . .

38

Figure 46. Time delay between VINOPT and VOUT: Vcc = 24V, Load = Lamp,

 

Wave2 = VOUT, Wave3 = VINOPT, Dt = 139µs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

Figure 47. Switching with short circuit: Vcc = 24V, f = 0.5Hz, Wave2 = VSTATUSOPT,

 

Wave3 = VINOPT, Wave4 = ICH1OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38

Figure 48. Waveform switching inductive load: Vcc = 24V, L = 130mH, RLOAD = 48W,

 

f = 0.5Hz, Wave2 = VOUT, Wave3 = VINOPT, Wave4 = ICH1OUT . . . . . . . . . . . . . . . . .

39

Figure 49. Switching with short circuit: Vcc = 24V, f = 0.5Hz, Wave2 = VSTATUSOPT,

 

Wave3 = VINOPT, Wave4 = ICH1OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39

Figure 50. Waveform ITOT and VSTATUSOPT during the test with short circuit:

 

Vcc = 28V, TA = 85°C, Wave4 = ITOT, Wave1 = VSTATUSOPT . . . . . . . . . . . . . . . . . . .

39

Figure 51. Waveform on ITOT and VSTATUSOPT during the test with short circuit:

 

Vcc = 28V, TA = –25°C, Wave4 = ITOT, Wave1 = VSTATUSOPT . . . . . . . . . . . . . . . . . .

39

Figure 52. VN808 RDB PCB layout (top and bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Figure 53. VN808 RDB PCB layout (component side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

Figure 54. VN340SP RDB PCB layout (Top side) and (Bottom side) . . . . . . . . . . . . . . . . . . . . . . . . .

45

Figure 55. VN340SP RDB PCB layout (component side) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

Figure 56. L5970D block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

Figure 57. L5970 DC/DC converter layout example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

Figure 58. Efficiency vs. output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

Figure 59. Output voltage stability of L5970D, Vss = 24 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

Figure 60. Voltage ripple on capacitor C30, IOUTDC = 0.4A, Vss = 24V . . . . . . . . . . . . . . . . . . . . . .

49

Figure 61. Waveform on coil L1, IOUTDC = 0.4A, Vss = 24V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

Figure 62. Voltage ripple on capacitor C33, Vss = 24V, IOUTDC = 0.4 A . . . . . . . . . . . . . . . . . . . . . .

49

Figure 63. Waveform on coil L1, without load, Vss = 24V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

5/51

AN2208

List of tables

Table 1. VN808 and VN340SP main characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2. EMC industrial compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 3. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 4. Equipment list for EMC tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 5. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6. EMC test IEC 61000-4-4 EFT test results (VN808 RDB) . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 7. EMC test IEC61000-4-5 surge test results (VN808 RDB) . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 8. EMC test IEC 61000-4-6 conducted immunity test results (VN808 RDB) . . . . . . . . . . . . . 37 Table 9. EMC test IEC 61000-4-4 EFT test results (VN340SP RDB). . . . . . . . . . . . . . . . . . . . . . . . 40 Table 10. EMC test IEC61000-4-5 surge test results (VN340SP RDB) . . . . . . . . . . . . . . . . . . . . . . . 40 Table 11. EMC test IEC 61000-4-6 conducted immunity test results (VN340SP RDB) . . . . . . . . . . . 41 Table 12. VN808 RDB bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 13. VN340SP RDB bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6/51

AN2208

1 High-side driver description

1 High-side driver description

The VN808 (Figure 2) is a high-side driver (HSD) used to drive eight independent loads. Active current limitation combined with thermal shutdown and automatic restart functions protect the device against overload. A thermal case substrate protection is implemented to protect the FRx substrate under short circuit and worst case ambient conditions in terms of reliability. The device automatically turns off when the ground pin is disconnected. The VN340SP and VN808 are especially suitable for use with programmable logic controllers (PLC) in industrial applications.

The VN340SP (Figure 3) is used to drive four independent resistive, capacitive and inductive loads in high-side configurations. Active current limitation prevents the system power supply from dropping in the event of a short load. A built-in thermal shutdown circuit protects the chip from high temperatures and short circuits. Each I/O is pulled down when an over-temperature condition of the relative channel is detected and restarts after reaching the lower thermal threshold. The system oscillates depending on the thermal impedance of the application.

Table 1.

VN808 and VN340SP main characteristics

 

VN340SP HSD

VN808 HSD

 

 

 

 

Output current per

channel 0.5A at 24V

 

 

 

Built-in current limiter

 

 

Short-load and overtemperature (Junction)

Short-load and overtemperature (Junction and

protection

 

Case) protection

 

 

 

 

Under-voltage shutdown

 

 

Open-drain diagnostic output

Status output current 2 to 4 mA

 

 

DC supply voltage 36V

DC supply voltage 45V

 

 

 

 

Very low stand-by current

 

 

 

7/51

1 High-side driver description

AN2208

Figure 2. VN808 block diagram

INPUT 1 INPUT 2 INPUT 3 INPUT 4 INPUT 5 INPUT 6 INPUT 7 INPUT 8 STATUS

LOGIC CONTROL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNDERVOLTAGE DETECTION

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLAMP

 

 

 

 

GND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLAMP POWER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT 2

 

 

 

CURRENT LIMITER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JUNCTION TEMP. DETECTION

 

 

 

 

 

 

OUTPUT 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Same structure for all channels

 

 

 

 

 

 

 

 

OUTPUT 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CASE TEMP. DETECTION

 

 

 

 

 

 

 

OUTPUT 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OUTPUT 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ai11606

Figure 3. VN340SP block diagram

 

VCC

Undervoltage

Driver 1

I/O1

I Limit 1

 

I/O2

Driver 2

Control

Logic

 

I/O3

I Limit 2

 

I/O4

Driver 3

DIAG

I Limit 3

GROUND

Overtemp 1

Driver 4

Overtemp 2

I Limit 4

Overtemp 3

Overtemp 4

OUTPUT 1

OUTPUT 2

OUTPUT 3

OUTPUT 4

SC07950

8/51

AN2208

2 VN808 reference design board

2 VN808 reference design board

This is a practical example how the VN808 high-side driver (HSD) can be used in applications for an industrial environment.

Figure 4. VN808 reference design board

2.1Circuit description

In order to protect the high-side driver (HSD) from the harsh industrial conditions of power supply lines, usually optocouplers and Transil diodes are used to separate the application control circuits from the power supply. Figure 11 shows a complete schematic diagram of the VN808 reference design board.

The VN808 reference design board uses multi-channel TLP281-4 and TLP181 optocouplers. The TLP281-4 and TLP181 are small and thin couplers, suitable for surface-mounted assemblies that consist of a photo transistor optically coupled to a gallium-arsenide infrared emitting diode. The isolation voltage for this type of optocoupler is 2500 VRMS.

The clamping function of Transil diodes protect the HSD against transient overvoltages. The reference design board is assembled with uni-directional SM15TXXA Transil diodes because they protect the HSD against both positive and negative surge pulses. For more information about SM15TXXA Transil diodes from STMicroelectronics, please refer to the SM15T36A Datasheet available at www.st.com.

Refer to Section A.2: Recommended VN808 PCB Layout on page 43 for more information about designing boards to improve EMC immunity and performance in industrial environments.

2.2Surge suppression

When designing your application, VCC and ground lines should lay on top of each other, minimizing the closed loop area and increasing the ability of the application to reject

9/51

2 VN808 reference design board

AN2208

environmental noise. Figure 5 shows a surge suppression block using a uni-directional SM15T36A Transil diode.

The Transil diode provides overvoltage protection for the HSD. The SM15T36A has a peak pulse power dissipation of 1500 W, stand-off voltage of 36 V and breakdown voltage of 37.8 V. Depending on the application, a Transil diode with a different value (for example, between 28 V and 40 V) may be used.

An electrolytic capacitor (C1) must be placed immediately after the surge suppression block. The size of the electrolytic capacitor is selected based on the slope of the output current, the impedance of the complex power supply cables, as well as the maximum allowed voltage drop across the device. The C1 value is generally 25 µF per chip. For more information about the C1 value, please refer to Application Note AN1351: VIPower and BCDMultipower: Making life easier with ST's high-side drivers.

A low ESR SMD capacitor (C2) must be placed as close as possible to the HSD in order to filter the power supply line for electromagnetic compatibility concerns. The suggested C2 value is 100 nF.

Figure 5. Surge Suppression Block

24V DC Input

 

 

 

 

 

 

 

 

 

 

VCC 24V

 

 

 

 

 

 

C14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.7 nF

 

 

C13

C1

 

 

+

 

 

 

 

 

D1

 

 

 

 

 

 

 

 

 

4.7 nF

22 µF

 

 

 

 

 

 

 

 

SM15T36A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50V

 

 

C2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 nF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND_EARTH

 

GND_POWER

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GND_POWER

Ai11615

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3Isolation recommendations

Industrial environments require good isolation between digital and power supply parts. Optocouplers are widely used and multi-channel optocouplers represent a very attractive solution. Figure 6 shows a schematic diagram with optocouplers connected to ground.

Although optocouplers are good isolators, they may lower the category of the Electrical Fast Transients (EFT) immunity tests as the primary and secondary sides of the optocouplers may still have parasitic capacitance “bonding” to each other, even though they are isolated. This parasitic capacitance may inject a current through the base emitter junction of the phototransistor when one half of the optocoupler is “tight” due to fast voltage transients with respect to the other side as shown in Figure 7.

If an optocoupler is used in an emitter-follower configuration, as in most industrial applications, a high emitter voltage signal may be induced by applying EFTs even after opening the collector termination. An efficient way to prevent this high emitter voltage signal is to provide a conducting plane connected to ground on both the top and bottom layers of the PCB (under the optocouplers) as shown in Figure 52: VN808 RDB PCB layout (top and bottom).

10/51

AN2208

2 VN808 reference design board

Figure 6. Typical input/status isolation by optocouplers

Figure 7. Burst pulse affecting one input

2.4Heatsink recommendations

Depending on ambient thermal conditions, HSD’s with a PowerSO10/SO36 package require external cooling as the copper bottom plate of the PSO-Package, used to maintain the junction temperature during inductive switching, acts as a thermal capacitor.

11/51

2 VN808 reference design board

AN2208

The VN808 reference board is designed with an onboard heatsink capability (minimum heat sink area is 6 cm²). The recommended layout for Power SO packages is shown in Figure 8.

Figure 8. Recommended layout for High Power Dissipation capability

2.5Schematic diagrams

Figure 9. DC/DC part of the application circuit

Figure 10. Current and voltage conventions

12/51

ST AN2208 APPLICATION NOTE

AN2208

2 VN808 reference design board

Figure 11. Complete application circuit with VN808 and L5970D devices

13/51

2 VN808 reference design board

AN2208

Figure 12. Switching part of the application circuit

14/51

AN2208

3 VN340SP reference design board

3 VN340SP reference design board

This is a practical example how the VN340SP high-side driver (HSD) can be used in applications for an industrial environment.

Figure 13. VN340SP reference design board

3.1Circuit description

The application described below is very similar to that of the VN808 reference design board; only the type of HSD and the optocoupler inter-connection is different. Figure 15 shows a complete schematic diagram of the VN340SP reference design board. The optocouplers and Transil diodes are the same as those used in the VN808 reference design board.

15/51

3 VN340SP reference design board

AN2208

3.2Schematic diagrams

Figure 14. Switching part of the application circuit

16/51

Loading...
+ 35 hidden pages