Sony CXD2720Q Datasheet

CXD2720Q
Single-Chip Digital Signal Processor for Karaoke
Description
The CXD2720Q is a digital signal processor LSI for Karaoke, suitable for use in LD/CD/CD-G/video CD and the like.
100 pin QFP (Plastic)
Features
• 3-channel 1-bit AD converter and decimation filter
S/N ratio: 88 dB THD + N: 0.016% Filter pass band ripple: less than ±0.5dB Filter stop band attenuation: less than –41dB (all characteristics are typical values)
• 2-channel 1-bit DA converter and oversampling
filter
S/N ratio: 98dB THD + N: 0.006% Filter pass band ripple: less than ±0.2dB Filter stop band attenuation: less than –41dB (all characteristics are typical values)
• In addition to analog input/output, 2-channel input/
2-channel output of digital input/output are provided.
The interface also supports a variety of formats.
• 128K-bit DRAM for key control and microphone
echo processing
Functions
• Key controller pitch setting can be varied to a
maximum of ±1 octave with a precision of 14 bits
• Microphone echo delay time can be varied to a
maximum of 185ms (when Fs = 44.1kHz)
• Voice canceller supports settings other than center
by the panpot volume
• Voice parametric equalizer
• Voice pitch shifter
• Mixing function to support sound multiplexing
software
• Digital de-emphasis function
Structure
Silicon gate CMOS
Applications
Equipment having Karaoke function, such as
LD/CD, compact music center, video games, etc.
Absolute Maximum Ratings
(Ta = 25°C, VSS = 0V)
• Supply voltage VDD VSS – 0.5 to +7.0 V
• Input voltage VI VSS – 0.5 to VDD + 0.5 V
• Output voltage VO VSS – 0.5 to VDD + 0.5 V
• Operating temperature Topr –20 to +75 °C
• Storage temperature Tstg –55 to +150 °C
Recommended Operating Conditions
• Supply voltage VDD 4.5 to 5.5 (5.0 typ.) V
• Operating temperature Ta –20 to +75 °C
Input/Output Capacitance
• Input capacitance CIN 9 (max.) pF
• Output capacitance COUT 11 (max.) pF
• Input/output capacitance CI/O 11(max.) pF
Measurement conditions: VDD = VI = 0V, F = 1MHz
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
– 1 –
E96426-ST
Block Diagram
RVDT
SCK
XLAT REDY TRDT
LRCK
BCK
SO
XWO
CXD2720Q
128K bit DELAY RAM
3
AO1P
4
5 6 7
MICRO
COMPUTER
I/F
DAC1
DAC2
25 26
39 40
AO1N AO2N AO2P
DSP
88
87
86
SI
12
SERIAL
DATA
I/F
ADC1
ADC2
29
36
AIN1
AIN2
8
ADC3
22
AIN3
CLOCK GENERATOR
/TIMING CIRCUIT
Pin Configuration
6
SS
NC
V
80
78
79
81
X768
82
BFOT
83
INVI
84
NC
85
NC
86
SI
87
BCK
88
LRCK
89
XMST
90
SS7
V
91
NC
92
NC
93
NC
94
NC
95
NC
96
NC NC
97 98
NC
99
DD3
V
100
D0
AV
1
2
3
0
0
S
SS
V
AV
NC
77
4
RVDT
NC
76
SCK
NC
5
XLAT
75
6
NC
74
7
REDY
NC
73
8
TRDT
NC
72
9
XWO
33
XTLI XTLO BFOT
2
DD
V
NC
NC
69
71
70
12
10
11
0
1
SS
DD
V
V
XRST
5
SS
V
SO
68
13
32
NC
67
14
XS24
82
NC
66
15
TST0
NC
65
16
TST1
NC
64
17
TST2
NC
63
18
TST3
NC
62
19
TST4
NC
61
20
TST5
NC
2
SS
V
60
21
NC
3
S
AV
59
22
NC
58
23
AIN3
NC
3
D
AV
57
24
NC
4
D
AV
56
25
NC
55
26 27
AO1P
NC
54
AO1N
NC
4
S
AV
53
28
4
SS
V
1
S
AV
52
29
NC
51
30
AIN1
NC
1
D
AV
48 47
45 44
33
50 49
46
43 42 41 40 39 38 37 36 35 34
32 31
NC NC NC NC NC NC NC
DD1
V
SS3
V
S5
AV AO2P AO2N
D5
AV
D2
AV AIN2
S2
AV
SS
XV XTLI XTLO
DD
XV
– 2 –
Pin Description
CXD2720Q
Pin
No.
1 2 3 4 5
6 7
8
9 10 11 12 13 14
Symbol I/O Description
AVS0 VSS0 RVDT SCK XLAT
REDY TRDT
XWO XRST VSS1 VDD0 SO XS24 TST0
DRAM digital GND.
Digital GND.
I
Data input for microcomputer interface.
I
Shift clock input for microcomputer interface.
I
Latch input for microcomputer interface. Transmission enabling signal output for microcomputer interface. Transmission
O
prohibited when Low.
O
Serial data output for microcomputer interface.
I
Window open input for synchronization. Normally High.
I
System reset input. Resets when Low.
Digital GND.
Digital power supply.
O
1-sampling 2-channel serial data output.
I
Serial data 24-/32-bit slot selection. 24-bit slot when Low. (valid for slave mode)
I
Test pin. Normally set Low. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
TST1 TST2 TST3 TST4 TST5 VSS2 AVS3 AIN3 AVD3 AVD4 AO1P AO1N AVS4 AVS1 AIN1 AVD1 XVDD
I
Test pin. Normally set Low.
I
Test pin. Normally set Low.
I
Test pin. Normally set Low.
I
Test pin. Normally set Low.
I
Test pin. Normally set Low.
Digital GND.
CH3 AD converter GND.
I
CH3 AD converter analog input (for microphone input).
CH3 AD converter power supply.
CH1 DA converter power supply.
O
CH1 DA converter analog positive phase output.
O
CH1 DA converter analog reversed phase output.
CH1 DA converter GND.
CH1 AD converter GND.
I
CH1 AD converter analog input.
CH1 AD converter power supply.
Digital power supply for master clock. 32 33 34 35
XTLO XTLI XVSS AVS2
O
Crystal oscillator circuit output.
I
Crystal oscillator circuit input.
Digital GND for master clock.
CH2 AD converter GND.
– 3 –
CXD2720Q
Pin
No.
36 37 38 39 40 41 42 43
44 to 52
53
54 t o 68
69 70
71 t o 79
80
Symbol I/O Description
AIN2 AVD2 AVD5 AO2N AO2P AVS5 VSS3 VDD1 NC VSS4 NC VSS5 VDD2 NC VSS6
I
CH2 AD converter analog input.
CH2 AD converter power supply.
CH2 DA converter power supply.
O
CH2 DA converter analog reversed phase output.
O
CH2 DA converter analog positive phase output.
CH2 DA converter GND.
Digital GND.
Digital power supply. Normally open.
Digital GND. Normally open.
Digital GND.
Digital power supply. Normally open.
Digital GND. 81 82 83 84 85 86 87 88 89 90
91 t o 98
99
100
X768 BFOT INVI NC NC SI BCK LRCK XMST VSS7 NC VDD3 AVD0
I
Test input pin. Normally set Low.
O
Clock, frequency-divider output (384fs).
I
Test pin. Normally set Low.
Normally open.
Normally open.
I
1-sampling 2-channel serial data input.
I/O
Serial bit transmission clock for serial input/output data SI and SO.
I/O
Sampling frequency clock for serial input/output data SI and SO.
I
BCK, LRCK master/slave mode switching input. Master mode when Low.
Digital GND.
Normally open.
Digital power supply.
Digital power supply for DRAM.
– 4 –
DC Characteristics
(AVD0 to 5 = XVDD = VDD0 to 3 = 5V ± 10%, AVS0 to 5 = XVSS = VSS0 to 7 = 0V, Ta = –20 to +75°C)
Item Symbol Conditions Min. Typ. Max. Unit Applicable pins
High level
Input voltage (1)
Low level High level
Input voltage (2)
Low level
Input voltage (3) Output voltage
(1) Output voltage
(2) Output voltage
(3)
High level Low level High level Low level High level
Low level Input leak current (1) Input leak current (2) Output leak current
VIH VIL VIH VIL VIN VOH VOL VOH VOL VOH VOL II II IOZ
Analog input IOH = –2.0mA IOL = 4.0mA IOH = –6.0mA IOL = 4.0mA IOH = –12.0mA IOL = 12.0mA VIH = VDD, VSS VIH = VDD, VSS VIH = VDD, VSS
0.7VDD
0.8VDD
VSS
VDD – 0.8
VDD – 0.8
VDD/2
–10 –40 –40
0.3VDD
0.2VDD VDD
0.4
0.4
VDD/2
10 40 40
V V V V V V V V V V
V µA µA µA
CXD2720Q
1, 4, 51, 4, 53326, 7, 86, 7, 8, 9101011111, 3, 548, 9
Feedback resistance
Current consumption
1
RVDT, SCK, XLAT, XWO, XRST, XS24, TST0 to TST5, X768, SI, XMST
2
AIN1, AIN2, AIN3
3
INVI
4
During input to bidirectional pins BCK, LRCK
5
XTLI
6
During output from bidirectional pins BCK, LRCK
7
SO, BFOT
8
TRDT
9
REDY
10
AO1P, AO1N, AO2N, AO2P
11
XTLO
RFB
IDD
fs = 44.1kHz
250k
1M
79
2.5M
90
mA
Resistance between
5
and 11.
– 5 –
AC Characteristics
(AVD0 to 5 = XVDD = VDD0 to 3 = 5V±10%, AVS0 to 5 = XVSS = VSS0 to 7 = 0V, Ta = –20 to +75°C)
Serial Audio Interface Timing
[Slave mode]
CXD2720Q
BCK
SI
SO
LRCK
[Master mode]
BCK
LRCK
SO
Item
tDSSO
0.7VDD
0.3VDD
tHSItSSI
DD
0.7V
0.3VDD
tHLR
tDLR
tDMSO
tSLR
0.7VDD
0.3VDD
Symbol Conditions Min. Max. Unit SI setup time SI hold time SO delay time LRCK setup time LRCK hold time LRCK delay time SO delay time
tSSI tHSI tDSSO tSLR tHLR tDLR tDMSO
Slave mode Slave mode Slave mode, CL = 60pF Slave mode Slave mode Master mode, CL = 120pF Master mode, CL = 60pF
20 40
20 40
50
50
100
ns ns ns ns ns ns ns
– 6 –
Microcomputer Interface Timing
[Write]
• Transmission timing for address section, transmission mode section, data section LSB
CXD2720Q
RVDT
SCK
Address LSB Data LSB Data MSB
tSWL
tSWH tDS tDH
Mode MSB
0.7VDD
0.3VDD
0.7VDD
0.3VDD
tLSDtSLP
XLAT
tLWH
tLWL
0.7VDD
0.3VDD
REDY
• Transmission timing from data section MSB to address section and transmission mode section
RVDT
SCK
XLAT
REDY
Data MSB Address LSB Mode MSB
tSS
tSLD
tSBD tLDR
tBSP
0.7VDD
0.3VDD
0.7VDD
0.3VDD
tRLP
[Read]
0.7VDD
0.3VDD
• Transmission timing for address section and transmission mode section is the same as for write.
RVDT
SCK
XLAT
REDY
TRDT
Mode MSB
tSLP
tLWL tLBD
tRSDP
tLDN tSDD
Data MSBData LSB
Address LSB
tSS
0.7VDD
0.3VDD
0.7VDD
0.3VDD
0.7VDD
0.3VDD
– 7 –
CXD2720Q
Item RVDT setup time relative to SCK rise RVDT data hold time from SCK rise SCK Low level width SCK High level width XLAT Low level width XLAT High level width SCK rise preceding time relative to XLAT rise SCK rise wait time relative to XLAT rise Delay time to REDY fall relative to XLAT rise. Delay time to REDY fall relative to SCK rise REDY fall preceding time relative to SCK rise REDY rise preceding time relative to XLAT rise REDY rise preceding time relative to SCK fall XLAT fall wait time relative to SCK rise XLAT fall delay time relative to REDY fall Delay time from XLAT rise until TRDT data becomes active Delay time from SCK rise until TRDT data becomes high-impedance Delay time from SCK fall until TRDT data is verified CK rise wait time for next transmission
Symbol Min.
tDS tDH tSWL tSWH tLWL tLWH
1t + 20 1t + 20 1t + 20 1t + 20 1t + 20
tSLP tLSD
3t + 20
tLBD tSBD tBSP tRLP tRSDP tSLD
3t + 20
tLDR tLDN tSDF tSDD tSS
2t + 40
20
20
20 20 20
20
Max.
3t + 50 4t + 50
3t + 80 3t + 80 2t + 70
Unit
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Note 1) t is the cycle of 1/2 the clock frequency applied to the XTLI pin. (384fs) Note 2) REDY and TRDT pins are the values for CL = 60pF.
– 8 –
CXD2720Q
Analog Characteristics (AVD0 to 5 = VDD0 to 3 = XVDD = 5.0V, AVS0 to 5 = VSS0 to 7 = XVSS = 0.0V, Ta = 25°C,
DSP: each function = OFF, gain = 1)
[1] ADC + DAC connection total characteristics
The measurement circuit in Figure 1-1 is used. Unless otherwise indicated, the measurement conditions are as given below.
• Input signal ...1.0Vrms, 1kHz
• fs....................44.1kHz
• Rin.................0
S/N ratio
Item
1.0Vrms, EIAJ (with “A” weighting filter)
1.0Vrms, EIAJ
Measurement conditions Min. Typ. Max.
80 88
0.016
0.03
THD + N
Dynamic range Channel separation Level difference between
channels
0.5Vrms, EIAJ EIAJ Only ADC characteristics using DAC1,
EIAJ Only ADC characteristics using DAC1
Rin = 0
0.012 92
108
0.05
1.26
Analog full-scale input level
Rin = 22k
ADC input impedance Analog current consumption
1
Analog input level which outputs digital full scale.
2.06
34.6 21
An optional analog input signal level Vin (Vrms) of 1.26Vrms or more can be set in digital full scale by the measurement circuit external resistor Rin. The calculation formula for external resistor Rin is:
Unit
dB
%
dB dB
dB
Vrms
k
mA
Rin = 27.5 × Vin – 34.6 [k]......(1)
However, THD + N characteristics deteriorate for full-scale output as shown in Graph 1, so use of up to 80% (when Rin = 0, 0.8 × 1.26 (Vrms) = 1.0 (Vrms) “analog full scale”) of the analog signal level is recommended for digital full-scale output. In this case, the Rin calculation formula is the same as formula (1), except that Vin becomes 1.25 × Vin. Note that this change causes the output level after ADC + DAC to change. Most of the above specifications are measurement values for analog full scale.
– 9 –
CXD2720Q
[2] DAC unit characteristics
Use the measurement circuit in Figure 1-2. Unless otherwise specified, the measurement conditions are as follows.
Input signal....0dB, 1kHz, 16 bit
fs....................44.1kHz
Item
S/N ratio
THD + N
Dynamic range Channel separation Level difference between
channels Output level
Measurement conditions Min. Typ. Max. Unit EIAJ (with “A” weighting filter) EIAJ (0dB) EIAJ (–1dB) EIAJ (–60dB) EIAJ
EIAJ EIAJ (Measure at OUT in Figure 1-2.)
1.00
98
0.006
0.004 98
120
0.05
2.0
dB
%
dB dB
dB
Vrms
0.10
THD + N [%]
0.01
–60
(Rin = 0)
Digital full scale
Analog full scale
–50 –40 –30 –20 –10 0 10
(1Vrms)
Analog input level [dBV]
Graph 1.
– 10 –
CXD2720Q
(Master mode)
CXD2720Q
150p
Vin
10µ
Rin
1M
AINx AOxN
22k12k
330p
AOxP
22k12k
39k
39k
150p
Figure 1-1. ADC + DAC Measurement Circuit Diagram
CXD2720Q
(Slave mode)
8200p
2.2k2.2k
820p
OUT
768fs
48fs
fs
DATA
(fs = 44.1kHz)
XTLI
BCK
LRCK AOxN
AOxP
SI
22k12k
330p
22k12k
39k
150p
150p
39k
8200p
Figure 1-2. DAC Measurement Circuit Diagram
2.2k2.2k
820p
OUT
– 11 –
CXD2720Q
Description of Functions
1. Master/Slave Modes
[Relevant pins] XMST, LRCK, BCK
When connecting multiple CXD2720Qs, or when using as a pair with a D/A converter such as the CXD2558M, one of the CXD2720Q should be in master mode to supply LRCK and BCK. The clock applied to LRCK and BCK in slave mode must be synchronized to either the crystal oscillator clock of the XTLI and XTLO pins or the external clock input from the XTLI pin
XMST
H
L
Mode LRCK, BCK I/O
Slave mode
Master mode
Input
Output
Table 1-1. LRCK, BCK Mode Setting
2. Master Clock System
[Relevant pins] XTLI, XTLO, BFOT
768fs (fs = 44.1kHz) is assumed for the master clock system, and the connection is as shown below. (Please inquire with regard to use at other than fs = 44.1kHz.)
(1) Master
O
384fs
BFOT
Frequency divider
768fs
I
O
XTLI
768fs
XTLO
(2) Slave
768fs
– 12 –
I
O
768fs
XTLI
OPEN
XTLO
Loading...
+ 28 hidden pages