Sony CXD2443Q Datasheet

Timing Generator for LCD Panels
Description
The CXD2443Q is a timing generator for the LCD panel LCX011 and LCX019 driver. This chip has a built-in serial interface circuit which allows various settings to be performed through external control from a microcomputer, etc.
Features
Generates the LCD panel LCX011/LCX019 drive
Supports NTSC/PAL
(PAL supported by scanning line conversion of
video signal to 525H or pulse eliminate.)
Supports WIDE mode (when driving the LCX011)
Supports HD mode (when driving the LCX011)
Supports up/down and/or right/left inversion
Supports 3-panel projectors
Generates timing signal of external sample-and-
hold circuit
Generates line inversion and field inversion signals
AC drive of LCD panels during no signal
Line double-speed display realized with a built-in
double-speed controller (NTSC/PAL) (4:3 mode only)
(Line memory µPD485505: NEC)
CXD2443Q
100 pin QFP (Plastic)
Absolute Maximum Ratings (Ta = 25°C, VSS = 0V)
Supply voltage VDD VSS – 0.5 to +7.0 V
Input voltage VI VSS – 0.5 to VDD + 0.5 V
Output voltage VO VSS – 0.5 to VDD + 0.5 V
Operating temperature
Topr –20 to +75 °C
Storage temperature Tstg –55 to +150 °C
Recommended Operating Conditions
Supply voltage VDD 4.5 to 5.5 V
Operating temperature
Topr –20 to +75 °C
Applications
LCD projectors, etc.
Structure
Silicon CMOS IC
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
– 1 –
E96X31-PS
Block Diagram
CXD2443Q
RPD1 RPD2 RPD3
FPD1 FPD2 FPD3
HSYNC
VSYNC
VST
FLDO
VWA VWB
SCTR SCLK SDAT
PRE
RPD4
FPD4
TC4
87 93
84 96
13
14
30
16 17 18 19
76 77 82
34 21
TC1
TC3
TC2
83
5
97
9
6
2
PHASE COMPARATOR
H-SYNC DETECTOR
V-SYNC SEPARATOR
V-CONTROL COUNTER
V-POSITION COUNTER
PULSE ELIMINATOR
H-SYNC DETECTOR
PHASE COMPARATOR
PLL COUNTER2
DECODER
71
70
98
DECODER
&
V-TIMING PULSE
GENERATOR
SERIAL I/F
72
73
CKI3
CKI5
CKSL
99
92
MASTER CLOCK
75
CKI2
CKO3
89
91
16 : 9 4 : 3HD
DOUBLE SCAN CONVERTER
CLOCK2
74
CKI1
CKO2
88
11
PLL COUNTER
DECODER
FIELD & LINE CONTROLLER
H-POSITION COUNTER
DECODER
H-TIMING PULSE
GENERATOR
LOOP FILTER
81
80
44
10
&
CKO1
45
32
LOOP FILTER
DIRECT CLEAR
PWM1
8
86
PWM2
95
PWM3 PEO1
7
85
PEO2
94
PEO3
100
HDR
43
HSTA HCK1A
38 37
HCK2A ENB
36 35
VCK
49
FRP
50
XFRP PCG1
31
XCLP1
47 48
XCLP2
46
PCG2 SH1A
51
SH2A
52 55
SH3A
56
SH4A
57
SH5A
58
SH6A
59
SH7A HSTB
42
HCK1B
41
HCK2B
39
SH1B
61 62
SH2B
63
SH3B
64
SH4B
66
SH5B
67
SH6B
68
SH7B
1
RCK
WCK
RSTR
RSTW
TEST:12, 20, 22, 23, 24, 25, 26, 27, 33, 60, 69
DD: 3, 28, 53, 78
V VSS: 4, 15, 29, 40, 54, 65, 79, 90
CKI4
CKO4
– 2 –
PEO4
PWM4
RGT
DWN
XRGT
XCLR
Pin Description
CXD2443Q
Pin No.
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15
Symbol
XCLR VWB VDD VSS TC1 FPD1 PEO1 PWM1 RPD1 CKO1 CKI1 TEST2 HSYNC VSYNC VSS
I/O Description
I
System clear (Low: All clear)
O
V window pulse B output
Power supply
GND
I/O
FPD1 output pulse width adjustment (NTSC/PAL 4:3)
O
Phase comparator 1 output (NTSC/PAL 4:3)
I/O
Loop filter integrator 1 output (NTSC/PAL 4:3)
O
Loop filter integrator 1 input (NTSC/PAL 4:3)
O
Phase comparator 1 output (NTSC/PAL 4:3)
I/O
Oscillation cell 1 output (NTSC/PAL 4:3)
I
Oscillation cell 1 input (NTSC/PAL 4:3)
I
Test (Not connected.)
I
Horizontal sync signal input (Polarity set by serial data HPOL.)
I
Vertical sync signal input (Polarity set by serial data VPOL.)
GND
Input pin for open status
H — — — — — — — — — — — — — —
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
SCTR SCLK SDAT PRE TEST11 FLDO TEST1 TEST3 TEST4 TEST5 TEST6 TEST7 VDD VSS VWA PCG1 DWN
I
Chip select input (serial transfer block)
I
Serial clock input (serial transfer block)
I
Serial data input (serial transfer block)
I
Preset setting (Set to NTSC 4:3 mode when Low.)
Test (Not connected.)
O
Field discrimination signal output
Test (Not connected.)
Test (Not connected.)
Test (Not connected.)
Test (Not connected.)
Test (Not connected.)
Test (Connect to GND.)
Power supply
GND
O
V window pulse A output
O
PCG1 pulse output (positive polarity)
O
Up/down inversion identification signal output (High: Down, Low: Up)
— — —
H — — — — — — — — — — — — —
33 34 35
TEST8 VST VCK
Test (Not connected.)
O
V start pulse output (positive polarity)
O
V clock pulse output
— — —
– 3 –
CXD2443Q
Pin No.
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Symbol
ENB HCK2A HCK1A HCK2B VSS HCK1B HSTB HSTA RGT XRGT PCG2 XCLP1 XCLP2 FRP XFRP
I/O Description
O
ENB pulse output (negative polarity)
O
H clock 2A pulse output
O
H clock 1A pulse output
O
H clock 2B pulse output
GND
O
H clock 1B pulse output
O
H start B pulse output (positive polarity)
O
H start A pulse output (positive polarity)
O
Right/left inversion identification signal output (High: Right, Low: Left)
O
Right/left inversion identification signal output (Low: Left, High: Right)
O
PCG2 pulse output (positive polarity)
O
Pedestal clamp pulse 1 output (negative polarity)
O
Pedestal clamp pulse 2 output (negative polarity)
O
AC drive inversion timing output
O
AC drive inversion timing output (reverse polarity of FRP)
Input pin for open status
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
SH1A SH2A VDD VSS SH3A SH4A SH5A SH6A SH7A TEST9 SH1B SH2B SH3B SH4B VSS SH5B SH6B
O
Sample-and-hold pulse 1A output (positive polarity)
O
Sample-and-hold pulse 2A output (positive polarity)
Power supply
GND
O
Sample-and-hold pulse 3A output (positive polarity)
O
Sample-and-hold pulse 4A output (positive polarity)
O
Sample-and-hold pulse 5A output (positive polarity)
O
Sample-and-hold pulse 6A output (positive polarity)
O
Sample-and-hold pulse 7A output (positive polarity)
Test (Not connected.)
O
Sample-and-hold pulse 1B output (positive polarity)
O
Sample-and-hold pulse 2B output (positive polarity)
O
Sample-and-hold pulse 3B output (positive polarity)
O
Sample-and-hold pulse 4B output (positive polarity)
GND
O
Sample-and-hold pulse 5B output (positive polarity)
O
Sample-and-hold pulse 6B output (positive polarity)
68 69 70
SH7B TEST10 RCK
O
Sample-and-hold pulse 7B output (positive polarity)
Test (Not connected.)
O
Read clock output (for line buffer)
– 4 –
CXD2443Q
Pin No.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
Symbol
RSTR WCK RSTW CKO4 CKI4 RPD4 FPD4 VDD VSS PEO4 PWM4 TC4 TC2 FPD2 PEO2
I/O Description
O
Read reset output (for line buffer, negative polarity)
O
Write clock output (for line buffer)
O
Write reset output (for line buffer, negative polarity)
I/O
Oscillation cell 4 output (line double-speed controller)
I
Oscillation cell 4 input (line double-speed controller)
O
Phase comparator 4 output (line double-speed controller)
O
Phase comparator 4 output (line double-speed controller)
Power supply
GND
I/O
Loop filter integrator 4 output (line double-speed controller)
O
Loop filter integrator 4 input (line double-speed controller)
I/O
FPD4 output pulse width adjustment (line double-speed controller)
I/O
FPD2 output pulse width adjustment (NTSC/PAL 16:9)
O
Phase comparator 2 output (NTSC/PAL 16:9)
I/O
Loop filter integrator 2 output (NTSC/PAL 16:9)
Input pin for open status
— — — — — — — — — — — — — — —
86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
PWM2 RPD2 CKO2 CKI2 VSS CKO3 CKI3 RPD3 PEO3 PWM3 FPD3 TC3 CKSL CKI5 HDR
O
Loop filter integrator 2 input (NTSC/PAL 16:9)
O
Phase comparator 2 output (NTSC/PAL 16:9)
I/O
Oscillation cell 2 output (NTSC/PAL 16:9)
I
Oscillation cell 2 input (NTSC/PAL 16:9)
GND
I/O
Oscillation cell 3 output (HD)
I
Oscillation cell 3 input (HD)
O
Phase comparator 3 output (HD)
I/O
Loop filter integrator 3 output (HD)
O
Loop filter integrator 3 input (HD)
O
Phase comparator 3 output (HD)
I/O
FPD3 output pulse width adjustment (HD)
I
PLL system switching (High: Built-in PLL, Low: External PLL)
I
External clock input (for external phase comparison)
O
Phase comparator output (for external phase comparison)
— — — — — — — — — — — —
H — —
H: Pull up, L: Pull down
– 5 –
CXD2443Q
Electrical Characteristics
1. DC characteristics (VDD = 5.0 ± 0.5V, VSS = 0V, Topr = –20 to +75°C)
Item Supply voltage Input, output voltages
Input voltage 1
Input voltage 2
Input voltage 3
Output voltage 1
Output voltage 2
Output voltage 3
Output voltage 4
Output voltage 5
Input leak current
Output leak current Current consumption
1
XCLR, PRE, CKSL, CKI1, CKI2, CKI3, CKI4, CKI5, CKO1, CKO2, CKO3, CKO4, PWM1, PWM2, PWM3,
Symbol VDD VI, Vo VIH VIL Vt+ Vt Vt+ – Vt Vt+ Vt Vt+ – Vt VOH VOL VOH VOL VOH VOL VOH VOL VOH VOL II IIL II IOZ IDD
CMOS input
TTL Schmitt trigger input
CMOS Schmitt trigger input
IOH = –2mA IOL = 4mA IOH = –4mA IOL = 8mA IOH = –4mA IOL = 6mA IOH = –3mA IOL = 3mA IOH = –12mA IOL = 12mA
4681012
Min.
4.5
Vss
0.7VDD
2.2
0.8VDD
VDD – 0.8
VDD – 0.8
VDD – 0.8
VDD/2
VDD/2
–10 –40 –40 –40
Typ. Max. UnitConditions
5.0
0.4
0.6
–100
5.5
VDD
0.3VDD
0.8
0.2VDD
0.4
0.4
0.4
VDD/2
VDD/2
10
–240
40 40
110
V V
V
V
V
V
V
V
V
V
µA
µA
mA
Applicable pins
1
HSYNC, SCTR, VSYNC, SCLK, SDAT
TC1, TC2, TC3, TC4
2
3
RCK, WCK
PEO1, PEO2, PEO3, PEO4, CKO4
CKO1, CKO2, CKO3
57911
At a 30pF load
PWM4, PEO1, PEO2, PEO3, PEO4
2
HDR, ENB, PCG1, PCG2, XCLP1, XCLP2, VST, FRP, XFRP, VCK, DWN, FLDO, RGT, XRGT, VWA, VWB, RPD1, RPD2, RPD3, RPD4, FPD1, FPD2, FPD3, FPD4, TC1, TC2, TC3, TC4, RSTR, RSTW
3
HSTA, HCK1A, HCK2A, SH1A, SH2A, SH3A, SH4A, SH5A, SH6A, SH7A, HSTB, HCK1B, HCK2B, SH1B, SH2B, SH3B, SH4B, SH5B, SH6B, SH7B
4
Normal input pins (VIN = VSS or VDD)
5
HSYNC, VSYNC, SCLK, SDAT, SCTR, CKI5
6
Pins with pull-up resistors (VIN = VSS)
7
PRE, XCLR, CKSL
8
Bidirectional pins (input status, VIN = VSS or VDD)
9
CKO1, CKO2, CKO3, CKO4, PEO1, PEO2, PEO3, PEO4, TC1, TC2, TC3, TC4
10
At high impedance (VIN = VSS or VDD)
11
RPD1, RPD2, RPD3, RPD4, FPD1, FPD2, FPD3, FPD4
12
fclk = 67MHz, VDD = 5.5V
13
HSTA, HSTB, HCK1A, HCK2A, HCK1B, HCK2B, SH1A, SH2A, SH3A, SH4A, SH5A, SH6A, SH7A, SH1B, SH2B, SH3B, SH4B, SH5B, SH6B, SH7B, VCK, ENB, FRP, PCG1, PCG2, XCLP1, XCLP2, RGT, DWN
13
– 6 –
CXD2443Q
2. AC characteristics (VDD = 5.0 ± 0.5V, Vss = 0V, Topr = –20 to +75°C) Item
Clock input cycle
Output rise time Output fall time Cross-point time difference Output rise delay time Output fall delay time HCK1 Duty HCK2 Duty
1
HCK1A, 2A HCK1B, 2B
Symbol
tr tf
t
tpr tpf tH/(tH + tL) tL/(tH + tL)
Applicable pins
CKI1 CKI2 CKI3 CKI4 CKI5 All outputs All outputs
1
All outputs All outputs HCK1A, HCK1B HCK2A, HCK2B
Min. Typ.
21.3
16.0 15
28.2 15
–10
48 48
max. UnitConditions
20 20 10 15 15 52 52
CL = 30pF CL = 30pF CL = 30pF CL = 30pF CL = 30pF CL = 30pF CL = 30pF
ns
%
3. Serial transfer AC characteristics (VDD = 5.0 ± 0.5V, Vss = 0V, Topr = –20 to +75°C) Symbol
ts0 ts1 th0 th1
tw1L
tw1H
tw2 tw3
Item SCTR setup time, activated by rise of SCLK SDAT setup time, activated by rise of SCLK SCTR hold time, activated by rise of SCLK SDAT hold time, activated by rise of SCLK SCLK pulse width SCLK pulse width
Min.
4T 2T 4T 2T 2T 2T 5T 5T
Typ. Max.
T: Master clock cycle (ns)
Unit
ns
– 7 –
4. Timing definitions
AC characteristics
CXD2443Q
CKI1, CKI2 CKI3, CKI4
Output
Output
100%
HCK1A HCK1B
HCK2A HCK2B
tpr
10%
90%
tr tf
90%
10%
tpf
50%
50% 50%
t∆t
50%
V 0V
V 0V
DD
DD
V 0V
V 0V
DD
DD
V 0V
DD
HCK1A HCK1B
Note) HCK2 is the reverse phase of HCK1.
Serial transfer AC characteristics
ts0
SCTR 50%
tw1L tw1H
50%SCLK
ts1 th1 ts1 th1
SDAT
50%
D15 D8 D0
50%50% 50%
tw2
D14 D9 D7
tLtH
th0 tw3
50%
50%
D15
Note) See "Serial transfer timing" on P. 17 for the timing relationship between D15 to D0 and each pulse.
– 8 –
B2
B2
B2
R2
R2
G2
G2
G2
B2
B2
R2
R2
R2
G2
G2
B1
B1
DR2
GATE SW
ODD = 13 dots
EVEN = 13 dots
DR1
GATE SW
• • • •
267
GATE SW
• • • •
ODD = 200 dots
EVEN = 200 dots
• • • • GATE SW
234
GATE SW
• • • •
ODD = 1200 dots
EVEN = 1199 dots
ODD = 1626 dots
EVEN = 1626 dots
(effective 23.7501mm)
GATE SW
34
GATE SW
• • • •
2
GATE SW
ODD = 200 dots
EVEN = 200 dots
1
GATE SW
DL2
GATE SW
ODD = 13 dots
EVEN = 14 dots
DL1
GATE SW
LCX011 Dot Arrangement (1) (4:3 display)
The dot arrangement is a delta arrangement. Also, the shaded region in the diagram is not displayed.
R1 corresponds to SIG2, G1 to SIG1, B1 to SIG3, R2 to SIG5, G2 to SIG4 and B2 to SIG6.
G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1
R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1
2 dots
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
123
B1 G1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
B2 G2 R2 B1 G1
R1 G1 B1 R2 G2 B2
R1 B2
G2 R2 B1 G1 R1 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1
R1 G1 B1
G1 B1 R1
G1 B1 R1
G1 B1 R1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1
R1 G1 B1
R1 G1 B1
G1 B1 R1
G1 B1 R1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
4
(effective 31.6701mm)
480 dots
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1
R1 G1 B1
G1 B1 R1
G1 B1 R1
G1 B1 R1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
479
480
2 dots
SID
PC
VDD
PCX
CXD2443Q
WD
VSS
WDX
JTN
JTP
– 9 –
B2
B2
B2
R2
R2
G2
G2
G2
B2
B2
R2
R2
R2
G2
G2
B1
B1
DR2
GATE SW
ODD = 13 dots
EVEN = 13 dots
DR1
GATE SW
• • • •
267
GATE SW
• • • •
• • • • GATE SW
234
GATE SW
• • • •
ODD = 1600 dots
EVEN = 1599 dots
ODD = 1626 dots
EVEN = 1626 dots
(effective 31.6701mm)
GATE SW
34
GATE SW
• • • •
2
GATE SW
1
GATE SW
DL2
GATE SW
ODD = 13 dots
EVEN = 14 dots
DL1
GATE SW
LCX011 Dot Arrangement (2) (16:9 display)
The dot arrangement is a delta arrangement. Also, the shaded region in the diagram is not displayed.
R1 corresponds to SIG2, G1 to SIG1, B1 to SIG3, R2 to SIG5, G2 to SIG4 and B2 to SIG6.
G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1
R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1 R2 B2 G2 R1 B1 G1
2 dots
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
B2
R2
G2
B2
R2
G2
B1
R1
G1
B1
R1
G1
123
B1 G1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
B2 G2 R2 B1 G1
R1 G1 B1 R2 G2 B2
R1 B2
G2 R2 B1 G1 R1 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1 B2 G2 R2 B1 G1 R1
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1
R1 G1 B1
G1 B1 R1
G1 B1 R1
G1 B1 R1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1
R1 G1 B1
R1 G1 B1
G1 B1 R1
G1 B1 R1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
4
(effective 31.6701mm)
480 dots
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1
R1 G1 B1
G1 B1 R1
G1 B1 R1
G1 B1 R1
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
R1 G1 B1 R2 G2 B2
R1 G1 B1 R2 G2 B2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
G1 B1 R1 G2 B2 R2
479
480
2 dots
SID
PC
VDD
PCX
– 10 –
CXD2443Q
WD
VSS
WDX
JTN
JTP
DR1
GATE SW
CXD2443Q
ODD = 1200 dots
EVEN = 1199 dots
DL2
GATE SW
201
GATE SW
GATE SW
1
GATE SW
RGBRGBRGB
RGBRGBRGB
RGBRGBRGBRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
RGBRGBRGB
RGBRGBRGBRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
RGBRGBRGB
RGBRGBRGB
RGBRGBRGB
RGBRGBRGB
RGBRGBRGBRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
RGBRGBRGB
RGBRGBRGBRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
RGBRGBRGBRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
RGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
RGBRGBRGBRGB
RGB
RGBRGBRGBRGB
RGBRRGBRRGBRRGBRRGBRRGBRRGBRRGBRRGBRRGB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
GB R
RGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GB
GB R
RGBRGBRGBRGB
GB
RGBRGBRGB
GB R
RGBRGBRGBRGB
GB R
DR2
GATE SW
DR1
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
GATE SW
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
RGBRGBRGBRGB
479
RGBRGBRGBRGB
GB R
480
GB R
2 dots
GB
GB
GB
GB
GB
GB
GB
GB
R
R
R
R
R
R
R
R
1
2
3
4
2 dots
LCX019 Dot Arrangement
The dot arrangement is a delta arrangement. Also, the shaded region in the diagram is not displayed.
R1 corresponds to SIG2, G1 to SIG1, B1 to SIG3, R2 to SIG5, G2 to SIG4 and B2 to SIG6.
480 dots
– 11 –
PSIG
PC
PCX
CXD2443Q
Input Signal Protocol
1. Horizontal sync signal
A double-speed HSYNC or standard HSYNC (or CSYNC) should be input for NTSC and PAL display modes.
Double-speed HSYNC and standard HSYNC input switching is set by the serial data (SNSL).
Note) The double-speed HSYNC should have a cycle and width 1/2 that of the standard HSYNC.
The signal obtained by cutting off only the bottom of the ternary SYNC should be input for HD display mode.
The input sync signal polarity is not fixed, and is set by the serial data (HPOL).
When using the built-in line double-speed controller, set serial data SNSL to Low. The built-in line double-
speed controller supports only the standard HSYNC (or CSYNC).
2. Vertical sync signal
A normal-speed VSYNC (or CSYNC) should be input for NTSC and PAL display modes.
A VSYNC that has been sync separated by SYNC SEP. should be input for HD display mode.
The input sync signal polarity is not fixed, and is set by the serial data (VPOL).
The phase relationship between HSYNC and VSYNC is specified as follows for the CXD2443Q.
(1) Double-speed NTSC
Double-speed HSYNC
(2) Double-speed PAL
Double-speed HSYNC
(3) NTSC (CSYNC input)
ODD FIELD
CSYNC
EVEN FIELD
CSYNC
(4) PAL (CSYNC input)
ODD FIELD
CSYNC
EVEN FIELD
CSYNC
VSYNC
VSYNC
Sync signal phase reference
Sync signal phase reference
Sync signal phase reference
Sync signal phase reference
(5) HD
ODD FIELD
HSYNC
VSYNC
EVEN FIELD
HSYNC
VSYNC
Sync signal phase reference
Sync signal phase reference
– 12 –
Description of Operation
Clock input
The CXD2443Q supports two types of PLL circuits. PLL switching is performed by CKSL (Pin 98). (High: Built-in PLL, Low: External PLL) Note) The built-in line double-speed controller PLL is supported only by the built-in PLL.
(1) Built-in PLL (CKI1, CKI2, CKI3, CKI4)
A PLL circuit is comprised by the built-in phase comparator and an external VCO circuit. There are four clock inputs which support the following modes.
CKI1: NTSC/PAL 4:3 CKI2: NTSC/PAL 16:9
CKI3: HD CKI4: For built-in line double-speed controller The PLL lock for this system is adjusted by setting the RPD and FPD transition points so that they fall at the center of the windows as shown in the diagram below. (See the Application Circuit.)
aa
HSYNC
CXD2443Q
RPD
FPD
bb
Output waveform during PLL lock
800ns
(2) External PLL (CKI5)
The CKI5 pin is the clock input pin when using an external PLL IC. The 1/N frequency divider output is output from the HDR pin (frequency division ratio N/2) for the PLL IC. Set CKSL (Pin 98) to Low to switch to the external PLL.
H
N f
HSYNC
HDR
N/2 fH
AC driving of LCD panels for no signal
The following measures have been adopted to allow AC driving of LCD panels even when there is no signal.
• Horizontal direction pulse
The PLL is set to free running status. The frequency of the horizontal direction pulse at this time is dependent on the PLL free running frequency.
• Vertical direction pulse
The number of lines is counted by an internal counter and the vertical direction pulses (VST, FRP) are output at a specified cycle. For the CXD2443Q, no signal (free running) status is judged if there is no VSYNC input for longer than the following (free running detection) periods.
Mode NTSC PAL HD
V cycle for no signal
544H (272H) 640H (320H)
Free running detection
1024H (512H)
Note) Numbers in parentheses are for when using the built-in line double-speed controller.
– 13 –
CXD2443Q
Right/left and/or up/down inversion
In delta arrangement LCD panels, the same signal lines are separated by 1.5 dots for each horizontal line. Therefore, a 1.5 dot offset is added between lines to the LCD's horizontal direction start pulses HST and HCK and sample-and-hold pulse (SH). When driving an LCD panel with right and left inversed, the dot arrangement is asymmetrical so an offset is attached to HST, HCK and SH. When driving with up and down inversed, the relationship between the panel's odd and even line offsets is reversed.
Right scan Left scan
H SCANNER
Down scan
Effective display area
V SCANNER
MCK
HST
Up scan
1.5fH
1.5fH
Down scan, odd line Up scan, even line
Right and down scan, even line Right and up scan, odd line
Left and down scan, even line Left and up scan, odd line
– 14 –
CXD2443Q
When using three LCD panels
B outputs (HSTB, HCK1B, HCK2B, SH1B to 7B) are provided for driving three LCD panels with and without right/left inversion at the same time. These B outputs are the right/left inversed timings of the A outputs (HSTA, HCK1A, HCK2A, SH1A to 7A). XRGT (RGT inversed output) is also provided for right/left inversion scanning.
Application circuit (driving three LCD panels)
TG
Right scan (A outputs)
Left scan (B outputs)
SH1A SH2A SH3A SH4A SH5A SH6A SH7A
HSTA HCK1A HCK2A
RGT
SH1B
SH2B
SH3B
SH4B
SH5B
SH6B
SH7B
HSTB HCK1B HCK2B
XRGT
51
52 55 56
57 58 59
43
38
37 44
61 62
63 64
66
67
68
42
41
39 45
SIGNAL DRIVER
SIGNAL DRIVER
SIGNAL DRIVER
Panel 1 (right scan)
Panel 2 (right scan)
Panel 3 (left scan)
Common
DWN
PCG1
or
PCG2
ENB VCK
VST
32
36
35
31
46
34
Note) All three panels face the same direction.
– 15 –
CXD2443Q
Built-in line double-speed controller
This controller is designed to use the µPD485505 (NEC/high-speed line buffer) as the system line memory IC, and generates the double-speed processing pulses RSTW (reset write), WCK (write clock), RSTR (reset read) and RCK (read clock). Operation is as follows. Write operation is started at the RSTW timing, and this memory information is read twice at double speed at the RSTR timing which is delayed by 1/2H and 1H from the RSTW timing. The write and read clock frequencies at this time are generated by the built-in PLL (CKI4). See the specifications for a detailed description of µPD485505 operation.
R, G, B IN
HSYNC
RSTW
WCK
RSTR
RCK
ADC DAC
RSTW WCK
HSYNC VSYNC CSYNC
Double-speed display system block
LINE Mem.
µPD485505
RSTR RCK
CXD2443Q
MCK : f
f/2
f
HSYNC
RSTW
RSTR
Note) See the timing charts for details.
Double-speed display timing
– 16 –
CXD2443Q
XCLR pin
The CXD2443Q should be forcibly reset during power on in order to initialize the serial transfer block and other internal circuits.
Serial transfer operation
1. Control method
The CXD2443Q operation timing is controlled by serial data. The control data is comprised of an 8-bit address and 8-bit data, and the individual data is fetched at the rise of SCLK. This fetching operation starts from the fall of SCTR and is completed at the next rise of SCTR.
Serial transfer timing
SCTR
SCLK
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0SDAT
Address Data
2. Control data
When using the CXD2443Q, set the control data corresponding to each signal source according to the formats in the table below.
Address
Data
Function
D15
D14D13 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
D12
D11D10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0
0
0
HP8
HP7
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
VM7J
1
1
1
0
0
0
VM7K
VM6J
VM6K
— — — — —
HP6
— — — — —
VM5J
VM5K
HP5
— — — — —
VM4J
VM4K
HP4 VP4
SLSH4
— — —
VM3J
VM3K
HP3 VP3
SLSH3
— — —
VM2J
VM2K
HP2 VP2
SLSH2
CP2
PCGW2
VM9J
VM1J VM9K VM1K
HP1 VP1
SLSH1
CP1
PCGW1
VM8J
VM0J VM8K VM0K
(A) H-POSITION (B) V-POSITION (C) SH-POSITION (D) XCLP-POSITION (E) PCG-POSITION
(F) VWA-POSITION
(VWA pulse)
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
1
1
1
0
— —
— —
TEST4
— —
TEST3
— —
SL3B
SNSL
Note) 1. Set "High" as the TEST1, TEST2, TEST3 and TEST4 data.
2. "—" indicates not set. – 17 –
VPOL
XHD
TEST1
MA
DWN
HPOL
SLVWB
XWID
SLBA
TEST2
RGT
SLFR
SLEG
NT-PAL
(G) Double-speed
setting
(H) Double-speed
PAL pulse eliminate
(I) Right/left and/or
up/down inversion
(J) Various settings
(K) Mode settings
CXD2443Q
Serial settings during power on
The CXD2443Q should be forcibly reset during power on using the XCLR pin. After being forcibly reset, the master clock for the CXD2443Q is supplied from CKI3. The initial serial data after power on is loaded to the CXD2443Q using the clock from CKI3.
Serial settings during PLL free running
When the PLL is in free running status, the serial clock cycle (F ns) may be less than F 2T with respect to the master clock cycle (T ns). Take care that the serial clock cycle setting is such that F 2T during PLL free running.
Each control data is described in detail below.
(A) H-POSITION
(HP1, HP2, HP3, HP4, HP5, HP6, HP7, HP8)
These bits set the horizontal display start position. The minimum adjustment width is 1 dot, and adjustment of up to ±128 dots is possible with respect to the design center value. (data: 8 bits)
Design center value HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8
LLLLLLLH
MODE Variable time (±128fH) NTSC (4:3) NTSC (16:9) PAL (4:3) PAL (16:9) HD
±2.8µs ±2.1µs ±2.7µs ±2.0µs ±1.9µs
(B) V-POSITION
(VP1, VP2, VP3, VP4)
These bits set the vertical display start position. The minimum adjustment width is 1H, and adjustment of up to ±8H is possible with respect to the design center value. (data: 4 bits)
Design center value VP1 VP2 VP3 VP4
LLLH
– 18 –
Loading...
+ 39 hidden pages