Sony CXD1961AQ Datasheet

CXD1961AQ
For the availability of this product, please contact the sales office.
DVB-S Frontend IC (QPSK demodulation + FEC)
Description
The CXD1961AQ is a single chip DVB compliant Satellite Broadcasting Frontend IC, including dual A/D converter for analog baseband I/Q input, QPSK demodulator, Viterbi decoder Reed-Solomon decoder and Energy Dispersal descrambler. It is suitable for use in a DVB Integrated Receiver Decoder.
Dual 6 bit A/D converter
QPSK demodulator
Multi-symbol rate operation Nyquist Roll off filter (α = 0.35) Clock recovery circuit Carrier recovery circuit AGC control (PWM output)
Viterbi decoder
Constraint length 7 Truncation length 144 BER monitor of QPSK demodulator output
Frame synchronization circuit
Convolutional de-interleaver
Reed-Solomon decoder (204,188)
BER monitor of Viterbi decoder output
Energy dispersal descrambler
CPU interface circuit
I2C bus interface (5V input capability)
Package QFP 100pin
Operating frequency 20 to 30MSPS
Power consumption 750mW (@3.3V 30MSPS typical)
Process 0.4µm CMOS Technology
Absolute Maximum Rating (Ta = 25°C, GND = 0V)
Power Supply VDD –0.5 to +4.6 V
Input Voltage VIN –0.5 to VDD + 0.5 V
Output Voltage VOUT –0.5 to VDD + 0.5 V
I/O Voltage VI/O –0.5 to VDD + 0.5 V
CPU I/F pin Vcpuif –0.5 to +5.5 V
Storage Temperature Tstg –55 to +150 °C
Recommended Operating Condition
Power Supply VDD 3.15 to 3.45 V
Input High level VIH 0.7 × VDD to VDD + 0.5V
Input Low level VIL 0.3 to 0.2 × VDD V
100 pin QFP (Plastic)
Preliminary
(Ta = 0 to 75°C, GND = 0V)
Application
DVB-S Set Top Box (Satellite)
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
– 1 –
PE97854-PS
Block Diagram
AVS0
RB0
DD0
V
SS0
V TEST1 TEST2 TEST3 TEST4
NC
DD1
V
SS1
V
SDAT/SCL
SCLK
SEN/SDA
DD2
V
SS2
V
TCK
TMS TEST6 TEST7
CK8OUT
RESET
TE
DD3
V
SS3
V PKTCLK BYTCLK
PKTERR
DATA0 DATA1
1
2 3 4
5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22
23
24 25 26 27 28 29 30
AVD0
IIN
100
99
analog I/O
2ch ADC
decoded data & clock
RT0
RB1
98
97
Demodulator
RT1
AVD1
QIN
AVS1
93
95
94
96
Sampling Clock
QPSK
Viterbi Decoder
De-interleaver
Reed-Solomon
Decoder
Energy Dispersal
VCOEN
92
91
AVS2
90
OPXIN
OPOUT
89
VCO
VCOC
88
AVD2
87
CPU I/F
OPOUT
86
85
AVS4
84
AVD4
83
PLL
NCO
QSYNC
FSYNC
82
Oscillator
I2C bus
81
CXD1961AQ
9
SS
V
80
DD9
V CR7
79
CR6
78
CR5
77
CR4
76
SS8
V
75
DD8
V
74
CR3
73
CR2
72
CR1
71
CR0
70
CKV
69 68
AGCPWM
SS7
V
67 66
DD7
V
65
VCK VDT
64
XI
63
XO
62
AVS3
61 60
AVD3 SDA
59
SCL
58
TEST22
57
TEST21
56 55
TEST20
SS6
V
54
DD6
V
53
TEST19
52
TEST18
51
Typical Block Diagram
LNB
Reference OSC
31
DATA2
SAW
PLLVCO
32
DATA3
33
DATA4
34
35
37
36
4
4
SS
DD
V
V
DATA6
DATA5
Amp
38
DATA7
40
39
TEST8
I/Q
detector
41
TEST9
TEST10
43
42
TEST11
LPF
44
5
DD
V
TEST12
45
5
SS
V
46
47
TEST14
TEST13
QPSK + FEC
48
TEST15
49
TEST16
50
TEST17
Data
SONY
CXD1961AQ
LPF
Clock
479.5MHz 90°
LPF
Crystal
Micro Controller
– 2 –
CXD1961AQ
Functional Description
(1) A/D Converters
The CXD1961AQ has dual 6 bit A/D converters to quantize the analog baseband I/Q signal. The sampling rate is two times the symbol rate. The input range is determined by the external resisters. See reference circuit (1). The DC offset cancellation function is set by setting CPU I/F register 1E,1F(hex).
(2) Clock Recovery Circuit
The CXD1961AQ can operate at multiple symbol rates between 20 to 30MSPS. Initial sampling clock frequency is set by a 24 bit control word via CPU I/F register 18, 19, 1A (hex). This control word is written to the numerically controlled oscillator (NCO). The internal clock recovery loop feeds clock error data to the above NCO to provide sampling timing correction. The relation between the symbol rate and the control word is;
(symbol rate) = 4 × NCO [23:0] × Fcrystal ÷ 224(Hz)
where NCO [23:0] is the 24 bit control word and Fcrystal is crystal frequency (Hz). The clock recovery loop coefficient and the loop gain are set by setting CPU I/Fregister 0C (hex) accordingly. See reference circuit (2). The recovered symbol clock can be monitored at Pin 69.
There are three internal sub-registers to save the NCO control word. By setting the number of the preset sub­register, the control word corresponded to the certain symbol rate is set to the internal NCO. Contents of the sub-register are deleted by power off or reset by pin 22. Refer to the explanation of CPU I/F register 0D (hex).
(3) Carrier Recovery Circuit
Any carrier frequency offset which remains on the analog baseband I/Q input is compensated by the internal digital costas loop. The capture range is ±Rs/8 (Rs: symbol rate). When the carrier capture is performed, QPSK lock flag QSYNC goes high. QSYNC is output at Pin 82 and CPU I/F register 09 (hex). In QPSK synchronization, the carrier offset estimation value is output at CPU I/F register 02 (hex) as AFC [7:0]. The frequency offset is;
(carrier offset) = Rs × AFC [7:0] ÷ 512 (Hz)
where AFC7 is the sign bit that represents the direction of the offset.
(4) Nyquist Roll off Filter
The Nyquist roll off filter for each channel are embedded. The roll off factor is 0.35.
– 3 –
CXD1961AQ
(5) Auto Gain Control
By comparing the demodulated I/Q amplitude (I2+ Q2) and the reference level which is set via CPU I/F register 21 (hex), the AGC control signal is generated as PWM output at Pin 68. The polarity of the AGC can be reversed by setting CPU I/F register 10 (hex). For the Tuner interface, see the reference circuit (4).
(6) Viterbi Decoder
The punctured decoding and Viterbi decoding are performed on the demodulated I and Q data. The punctured rate is programmable from 1/2 to 7/8. When punctured mapping is performed, Viterbi lock flag at CPU I/F register 09 (hex) goes one. Bit error count at QPSK demodulator output is estimated and output to CPU I/F register 03, 04 (hex) as 16 bit data.
(7) Frame synchronization and Deinterleaver
By detecting the MPEG2 sync word 47 (hex), the synchronization of the data packet is achieved, and the convolutional deinterleaver then recovers the original data order.
(8) Reed-Solomon Decoder
In DVB systems, 16 parity bytes are added to the 188 data bytes, so that up to 8 error bytes are correctable by the Reed-Solomon decoder. If there are more than 8 error bytes in a packet, error correction is not performed and the packet error flag PKTERR (Pin 28) goes high during the packet to indicate that the packet is not correctable. The MSB of the second byte of the uncorrectable packet also becomes one. Bit error count at Viterbi decoder output is estimated and output every 1280 packet (=204 × 8 × 1280 bit) to CPU I/F register 06, 07 (hex) at a resolution of 16 bits.
(9) Energy Dispersal Descrambler
Energy dispersal descrambling is represented by the polynomial X15+ X14+ 1. The initial sequence is loaded when an inverted MPEG sync word B8 (hex) is detected. When MPEG sync word including inverted one is detected every 204 bytes, the lock flag of the whole IC "FSYNC" goes high. FSYNC is output at Pin 83 and CPU I/F register 09 (hex).
– 4 –
CXD1961AQ
(10) CPU Interface
The CXD1961AQ has an I2C bus interface. Serial clock SCL is Pin 58 and serial data in out SDA is Pin 59. Slave address is "1101 111" (DChex).
<Write data>
During the write operation, the second byte is input as the sub-address of the start position. The third byte then forms the data to be written to the start register. Successive data bytes are written to the successive sub­address registers up to 21 (hex). Note that registers of sub-addresses 00 (hex) to 0B (hex) are read only.
Slave address
STA
1101 111
0
Sub address
N (hex)
ACK
Input data for sub-address
ACK
N (hex)
Input data for sub-address
ACK
N + 1 (hex)
ACK
· · · STP
STA: start condition ACK: acknowledge STP: stop condition XACK: no acknowledge
<Read operation>
Before the read operation, the sub-address of the start register to be read is input by using write operation, and terminated with a stop condition. Read operation then begins with the second byte which is the data of the start register. Data of the successive sub-address registers are read successively following the second byte. All registers can be read.
Slave address
STA
Slave address
STA
1101 111
1101 111
0
1
Sub address
N (hex)
ACK
Output data for sub-address
ACK
N (hex)
ACK
STP
Output data for sub-address
ACK
N + 1 (hex)
ACK
· · · STP
XACK
Both SCL and SDA have 5V input capability.
– 5 –
Pin Configuration
AVS0
RB0
DD0
V
SS0
V TEST1 TEST2 TEST3 TEST4
NC
DD1
V
SS1
V
SDAT/SCL
SCLK
SEN/SDA
DD2
V
SS2
V
TCK
TMS TEST6 TEST7
CK8OUT
RESET
TE
DD3
V
SS3
V PKTCLK BYTCLK
PKTERR
DATA0 DATA1
10 11 12 13 14 15 16 17
18
19
21 22
25 26 27 28
30
20
23 24
29
CXD1961AQ
9
QSYNC
FSYNC
82
81
SS
V
80
79 78 77 76 75 74 73 72
71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
DD9
V CR7 CR6 CR5 CR4 V
SS8 DD8
V CR3 CR2 CR1 CR0 CKV AGCPWM
SS7
V
DD7
V VCK VDT XI XO AVS3 AVD3 SDA SCL TEST22 TEST21 TEST20
SS6
V
DD6
V TEST19 TEST18
100
IIN
99
AVD0
98
RT0
97
RB1
96
AVS1
95
QIN
AVD1
94
93
RT1
92
AVS2
VCOEN
90
91
OPXIN
OPOUT
89
VCOC
88
87
AVD2
86
AVS4
OPOUT
84
85
AVD4
83
1 2 3 4 5 6 7 8 9
31
DATA2
32
DATA3
33
DATA4
34
4
DD
V
35
4
SS
V
36
DATA5
37
DATA6
38
DATA7
39
TEST8
– 6 –
40
TEST9
41
TEST10
43
42
TEST11
45
44
5
DD
V
TEST12
5
SS
V
46
48
47
TEST14
TEST13
49
50
TEST16
TEST15
TEST17
Pin List
CXD1961AQ
No.
1 2 3 4
5 to 8
9 10 11 12 13 14 15 16 17 18 19
Symbol I/O type AVS0 RB0 VDD0 VSS0 TEST1 to 4 NC VDD1 VSS1 SDAT/SCL SCLK SEN/SDA VDD2 VSS2 TCK TMS TEST6
Analog VSS Ref. voltage input Digital VDD Digital VSS CMOS input No Connection Digital VDD Digital VSS 3-state CMOS output 3-state CMOS output In out with Pull up Digital VDD Digital VSS Input with pull up Input with pull up
CMOS input 20 21 22 23 24 25 26 27 28
29 to 33
34 35
36 to 38 39 to 43
44 45
46 to 48
TEST7 CK8OUT RESET TE VDD3 VSS3 PKTCLK BYTCLK PKTERR DATA0 to 4 VDD4 VSS4 DATA5 to 7 TEST8 to 12 VDD5 VSS5 TEST13 to 15
Input with pull up
CMOS output
Input with pull up
Input with pull down
Digital VDD
Digital VSS
3-state CMOS output
3-state CMOS output
3-state CMOS output
3-state CMOS output
Digital VDD
Digital VSS
3-state CMOS output
CMOS in out
Digital VDD
Digital VSS
CMOS in out
49 to 52
TEST16 to 19
CMOS input
– 7 –
CXD1961AQ
No.
53 54
55 to 57
58 59 60 61 62 63 64 65 66 67 68 69
70 to 73
Symbol I/O type VDD6 VSS6 TEST20 to 22 SCL SDA AVD3 AVS3 XO XI VDT VCK VDD7 VSS7 AGCPWM CKV CR0 to 3
Digital VDD Digital VSS CMOS input 5V input 5V open drain in out Crystal VDD Crystal VSS Oscillator output Oscillator input CMOS in out CMOS in out Digital VDD Digital VSS CMOS output CMOS in out
CMOS output 74 75
76 to 79
80 81 82 83 84 85 86 87 88 89 90 91 92 93
VDD8 VSS8 CR4 to 7 VDD9 VSS9 QSYNC FSYNC AVD4 AVS4 CPOUT AVD2 VCOC OPXIN OPOUT AVS2 VCOEN RT1
Digital VDD
Digital VSS
CMOS output
Digital VDD
Digital VSS
CMOS output
CMOS output
Analog VDD
Analog VSS
3-state CMOS output
Analog VDD
Analog input
Analog input
Analog output
Analog VSS
CMOS input
Ref. voltage input 94
AVD1
Analog VDD
– 8 –
CXD1961AQ
No.
95 96 97 98 99
100
Symbol I/O type QIN AVS1 RB1 RT0 AVD0 IIN
Analog input Analog VSS Ref. voltage input Ref. voltage input Analog VDD Analog input
Note) Apply 0.1µF capacitor to every power supply terminal and reference voltage input (RB0, RB1, RT0, RT1).
– 9 –
Pin Explanation
1. A/D Converter
CXD1961AQ
Analog signal input Top reference level input Bottom reference level input Analog power supply (+3.3V) Analog ground
See reference circuit (1)
2. Clock Recovery
2-1. Crystal
Crystal oscillator (output) Crystal oscillator (input)
Function
ADC for I input
ADC for Q input
Pin No. Pin name Pin No. Pin name
100
98
2
99
1
IIN RT0 RB0
AVD0 AVS0
95 93 97 94 96
QIN RT1
RB1 AVD1 AVS1
Pin No.Function Pin name
62 63
XO
XI Crystal oscillator power supply (+3.3V) Crystal oscillator ground
See reference circuit (3)
2-2. VCO · OP-Amp
Charge Pump output Charge pump power supply (+3.3V) Charge pump ground VCO control voltage input VCO enable (H: enable) OP-Amp negative input OP-Amp output VCO · OP-Amp power supply (+3.3V) VCO · OP-Amp ground
See reference circuit (2)
60 61
AVD3 AVS3
Pin No.Function Pin name
86 84 85 88 92 89 90 87 91
CPOUT
AVD4 AVS4
VCOC
VCOEN
OPXIN
OPOUT
AVD2 AVS2
– 10 –
Loading...
+ 23 hidden pages