Sony CXA1166K Datasheet

8-bit 250 MSPS Flash A/D Converter
Description
The CXA1166K is an 8-bit ultrahigh-speed flash A/D converter IC capable of digitizing analog signals at a maximum rate of 250 MSPS. The digital I/O level of this A/D converter is compatible with the ECL 100K/10KH/10K.
This IC is pin-compatible with the conventional CXA1076AK/CXA1176K/CXA1176AK, and can replace the conventional models easily. Compared with the conventional models, the CXA1166K has a greatly improved performance because of the new circuit design and carefully considered layout.
CXA1166K
68 pin LCC (Ceramic)
Structure
Bipolar silicon monolithic IC
Features
Differential linearity error: ±0.5 LSB or less
Integral linearity error: ±0.5 LSB or less
Built-in integral linearity compensation circuit
Ultrahigh-speed operation with maximum conver-
sion rate of 250 MSPS
Low input capacitance: 18pF
input, standard)
Single power supply: –5.2V
Low power consumption: 1.4W (Typ.)
Low error rate
Good temperature characteristics
Capable of driving 50loads
Pin Configuration (Top View)
Pins without name are NC pins (not connected internally).
EE
IN1
IN1
AGND
V
V
AGND
AV
VRT
VRTS AVEE AVEE
LINV
OR OR
D0 D0 D1 D1
DV
AV
60
59
58
61 62
EE
63 64 65 66 67 68 1 2 3 4 5 6 7
EE
8 9
57
10
11
12
13
D2
D2
56
14 D3
55
15 D3
AGND
54
53
16
17
DGND2
DGND2
Applications
Digital oscilloscopes
Other apparatus requiring ultrahigh-speed A/D
conversion
RM
IN2
IN2
V 52
18
DGND1
AGND
V
51
50
19
20
D4
D4
V 49
21 D5
AGND 48
47
22
23
D5
45
44
46
24
AGND
43
EE
AV
42 41
VRB
40
VRBS
39
AVEE
38
AVEE
37 36
CLK
35
CLK
34
MINV
33
D7
32
D7
31
D6
30
D6
29
EE
DV
28 27
25
26
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
– 1 –
E90406-ST
Absolute Maximum Ratings (Ta = 25°C)
Supply voltage AVEE, DVEE –7 to +0.5 V
Analog input voltage VIN –2.7 to +0.5 V
Reference input voltage VRT, VRB, VRM –2.7 to +0.5 V
| VRT – VRB | 2.5 V
Digital input voltage MINV, LINV, CLK, CLK –4 to +0.5 V | CLK – CLK | 2.7 V
VRM pin input current IVRM –3 to +3 mA
Digital output current ID0 to ID7, IOR, ID0 to ID7, IOR –30 to 0 mA
Storage temperature Tstg –65 to +150 °C
Operating Conditions Min. Typ. Max. Unit
Supply voltage AVEE, DVEE –5.5 –5.2 –4.95 V
AVEE – DVEE –0.05 0 0.05 V AGND – DGND –0.05 0 0.05 V
Reference input voltage VRT –0.1 0 0.1 V VRB –2.2 –2.0 –1.8 V
Analog input voltage VIN VRB VRT
Operating temperature Tc –20 100 °C
CXA1166K
– 2 –
Block Diagram
VRTS
CXA1166K
MINV
33
r1
RT
V
64
r2
65
r/2
r
Comparator
0
VIN1
VRM
VIN2
VRBS
VRB
55
52
50
54
49
39
40
2
3
31 32
29 30
21 22
19
20 14 15 12 13
6 7 4 5
OR OR
D7 (MSB) D7
D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 (LSB) D0
63
1
2
r
r
r
64
r
65
126
127
128
OUTPUT
ENCODE LOGIC
r
r
r3
r
r
129
191
r
r
192
r
193
254
255
r
r
4
5
r
r
r/2
CLK CLK
35
34
CLOCK
DRIVER
1
LINV
– 3 –
Pin Description
CXA1166K
Pin No.
Symbol I/O
Standard
voltage level
1 LINV I ECL
33 MINV I ECL
64 VRT I0V
65 VRTS O0V
52 VRM IVRB/2
VRT
VRTS
VRM
Equivalent circuit Description
DGND1
18
LINV
1
or
33
MINV
r r r
–1.3V
Polarity selection other than MSB and overrange. (Refer to the table of input voltage vs. Digital output) Low level is maintained with left open.
Polarity selection for MSB (Refer to the table of input
DV
64
28
65
25
EE
8
r
r
r⁄2 r
r
1
To Comparator
r2
r3
voltage vs. Digital output) Low level is maintained with left open.
Reference voltage (Top) (0V typ.)
Reference voltage sense (Top)
Reference voltage mid-point. Can be used for linearity compensation.
39 VRBS O –2V
VRBS
39
40 VRB I –2V Reference voltage (Bottom)
54
VIN1
55
VRTS
I
to
VRBS
49
VIN2
50
35
34
CLK
CLK
I
I
ECL
ECL
VRB
VIN1
54 55
49 50
VIN2
DGND1
18
CLK
35
CLK
34
40
r
r
4
r ⁄2 r5
43, 48, 51, 53, 56, 61
AGND
To Comp
0 to 127
128 to 255
r
r r r
Reference voltage sense (Bottom)
Analog input. Pins 49, 50 and Pins 54, 55 should be connected externally.
CLK input
Complementary CLK input. ECL threshold potential (–1.3V) is maintained with left open. The complementary input is recommended for stable operation at high speed
DV
28
EE
8
r r
though the operation only with the CLK input is possible when the CLK input is left open.
– 4 –
CXA1166K
Pin
No.
31 32
29 30
21 22
19 20
14 15
12 13
6 7
4 5
2 3
Symbol I/O
D7 D7
D6 D6
D5 D5
D4 D4
D3 D3
D2 D2
D1 D1
D0 D0
OR OR
O
O
O
O
O
O
O
O
O
Standard
voltage level
ECL
Equivalent circuit Description
MSB and complementary MSB output
DGND2
16
17
D1 to D6: Output D1 to D6: Complementary
output
LSB and complementary
DV
EE
Di
Di
8
28
LSB output Overrange output;
Low level for overrange. Overrange complementary output; High level for overrange.
37, 38, 42, 58,
62,66,
AVEE
67
43, 48, 51,53,
AGND
56,61
8
DVEE
28
18 DGND1 16
DGND2
17
41, 44, 45, 46, 47, 57,
NC
59, 60,
63
9, 10,
11, 23, 24, 25,
NC
26, 27,
36, 68
–5.2V
0V
–5.2V
0V
0V
AGND 61 43
Internal
Analog
Circuit
42 62
AVEE
48 51
37 38
53
56
58
66
67
DGND1
4 to 6Ω
DGND2
18
Internal
Digital
Circuit
8
DV
16
EE
28
17
Analog supply. Internally connected with DVEE (resistance: 4 to 6).
Analog ground. Separated from DGND.
Digital supply.
Di Di
Internally connected with AVEE (resistance: 4 to 6).
Digital ground Digital ground for output
drive
No connected. It is recommended to connect these pins to AGND.
No connected. It is recommended to connect these pins to DGND.
For stable operation, all of these pins must be connected on the corresponding PCB pattern.
– 5 –
CXA1166K
Electrical Characteristics (AVEE = DVEE = –5.2V, VRT, VRTS = 0V, VRB, VRBS = –2V, Ta = 25°C)
Item
Resolution DC characteristics
Integral linearity error Differential linearity error
Analog input
Analog input capacitance Analog input resistance Input bias current
Reference inputs
Reference resistance Residual resistance1r1
Digital inputs
Logic High level Logic Low level Logic High current Logic Low current Input capacitance
Symbol Condition Min. Typ. Max.
8
EIL EDL
CIN RIN IIN
RREF
r1 r2 r3 r4 r5
r2
r3
r4
r5
VIH
VIL
IIH
IIL
VIN = –1V + 0.07Vrms VIN = –1V VIN = –1V
VIH = –0.8V VIL = –1.6V
50 20
83
0.1
300
0.5
300
0.1
–1.13
0
–50
18
120
125
0.6
500
2.0
500
0.6
4
±0.5 ±0.5
450
182
2.0
700
5.0
700
2.0
–1.50
70 50
Unit
bits
LSB LSB
pF k µA
Ω Ω Ω Ω Ω Ω
V
V µA µA pF
Switching characteristics
Maximum conversion rate Aperture jitter Sampling delay Output delay Clock High pulse width Clock Low pulse width
Digital output
Logic High level Logic Low level Output rise time Output fall time
Dynamic characteristics
Input bandwidth SNR
Error rate
Differential gain error Differential phase error
Fc Taj Tds Tdo TPW1 TPW0
VOH VOL Tr Tf
SNR
DG DP
RL = 50to –2V
TPW1 + TPW0 = 4.0ns
}
RL = 50to –2V RL = 50to –2V RL = 50to –2V RL = 50to –2V
VIN=2Vp-p
Input = 1kHz, FS
{
Clock = 250MHz Input = 62.499MHz, FS
{
Clock = 250MHz Input = 49.999MHz, FS Error > 16LSB
{
Clock = 200MHz Input = 62.499MHz, FS Error > 16LSB
{
Clock = 250MHz NTSC 40IRE mod.
}
ramp, Fc = 250MSPS
250
0.4
1.8
1.8
1.8
–1.00
200
44 30
1.4
2.5
0.6
0.6
10
1.0
0.5
9
46 35
MSPS
ps
2.4
3.2
–1.60
1.5
1.5
10
–8
10
ns ns ns ns
V
V ns ns
MHz
dB dB
TPS
TPS
%
deg
2
2
–9
–6
Power supply
Supply current Power consumption
1 See Block Diagram.2 TPS: Times Per Sample
3 Pd = IEE • VEE +
3
(VRT – VRB)
RREF
IEE Pd
2
– 6 –
–360
–270
1.4
1.9
mA
W
Input Voltage vs. Digital Output
CXA1166K
VIN
0V
Step
0 1
MINV 1 LINV 1
D7 D0 D7 D0 D7 D0 D7 D0
OR
0 0 0 …… 0 0
0
0 0 0 …… 0 0
1
0 0 0 …… 0 1
1
OR
0 1
1
0 1
1 0 0 …… 0 0 1 0 0 …… 0 0
1 0 0 …… 0 1 : :
–1V
–2V
127 128
254 255
0 1 1 …… 1 1
1
1 0 0 …… 0 0
1
: :
1 1 1 …… 1 0
1
1 1 1 …… 1 1
1
1 1 1 …… 1 1
1
1 1 1 …… 1 1
1
0 0 0 …… 0 0
1 : :
: :
0 1 1 …… 1 0
1
0 1 1 …… 1 1
1
0 1 1 …… 1 1
1
VRT = VRTS =0V, VRM = –1V or Open, VRB = VRBS = –2V
Timing Diagram
1 0
OR
0 1 1 …… 1 1
0
0 1 1 …… 1 1
1
0 1 1 …… 1 0
1 : :
1
1 : :
:
: 1 1
1
:
: 0 0 0 …… 0 0 1 1 1 …… 1 1
:
: 1 0 0 …… 0 1 1 0 0 …… 0 0
1 0 0 …… 0 0
OR
0 1
1
1 1
:
: 1 1
1
0 0
1 1 1 …… 1 1 1 1 1 …… 1 1
1 1 1 …… 1 0
:
: 1 0 0 …… 0 0 0 1 1 …… 1 1
:
: 0 0 0 …… 0 1 0 0 0 …… 0 0
0 0 0 …… 0 0
Analog input
CLK
CLK
Digital output
Tds
Td
N
Tpw0Tpw1
20%
N + 1
80%
Tr Tf
NN – 1
80%
N + 2
N + 1
20%
– 7 –
Electrical Characteristics Measurement Circuit
Integral Linearity Error Measurement Circuit Differential Linearity Error Measurement Circuit
+ V
S2
S1:ON when A<B S2: ON when A>B
S1
– V
A<B A>B
Comparator
DVM
V
IN
DUT
CXA1166K
8 8
A8
to
A1 A0
Controller
B8
to
B1 B0
“1 ”“0 ”
CXA1166K
Buffer
000•••0 0
to
111•••1 0
Sampling Delay Measurement circuit Aperture Jitter Measurement circuit
60MHz
Amp
OSC1
φ:Variable
V
OSC2
60MHz
IN
fr
CLK
ECL Buffer
CXA1166K
8
Logic
Analizer
1024
samples
Aperture Jitter Measurement Method
0V
VIN
CLK
υ
t
IN
V
CLK
When the distribution of the output codes is σ (unit: LSB) If the maximum slew rate point is sampled with the clock signal having the same frequency as that of the analog input signal, Aperture jitter (Taj) is defined as follows:
Taj = σ/ = σ/ ( )
∆υ
t
129 128
t
127 126
125
Sampling timing fluctuation ( = aperture jitter)
256
× 2πf
2
–1V –2V
σ (LSB)
– 8 –
Error Rate Measurement Circuit
CXA1166K
Signal
Source
fCLK
– 1kHz
4
2Vp – p Sine Wave
Signal
Source
fCLK
Vin
CXA1166K
CLK CLK
8
1⁄16
ECL
Latch
Differential Gain Error Measurement Circuit Differential Phase Error Measurement Circuit
NTSC Signal
Source
SG (CW)
Amp
50
DUT
CXA1166K
CLK CLK
VBB
+
DAT A 16
8 8
Decimator
ECL
Latch
ECL
Latch
A B
Comparator
A<B
(CX20202A – 1)
10bit
D⁄A
Pulse
Counter
Vector Scope
Power Supply Current Measurement Circuit Analog Input Bias Current Measurement Circuit
60
61
1
CXA1166K
9
10
A
EE
I
44
26
43
27
IIN
A
– 1V
– 2V
– 5.2V
– 9 –
Loading...
+ 19 hidden pages