SIMRAD GO7 XSR with TotalScan Transducer and 3G Radar Antenna, HDS-9 Live with 3G Radar Antenna, GO9 XSE with TotalScan Transducer, HDS-7 Live with 3G Radar Antenna Manual

Page 1
Broadband 3G™ Radar Broadband 4G™ Radar
Installation Guide
ENGLISH
www.bandg.com
www.simrad-yachting.com
www.lowrance.com
Page 2
Page 3
Contents
4 Welcome
4 What is Broadband radar? 4 FMCW radar is di erent: 4 How does FMCW radar work? 5 Additional bene ts of FMCW radar are:
6 Radar system overview
7 Installation
8 Considerations for direct roof mounting 11 Connect interconnection cable to the scanner 12 Connect the interconnection cable to radar interface box
14 Connect the Broadband radar to your display
14 Lowrance: HDS USA (no MARPA) 15 Lowrance: HDS outside USA or with MARPA / chart overlay 15 Simrad: NSS 16 B &G: Zeus 16 Simrad: NSO, NSE and NSS
17 RI10 Connections
17 Adding MARPA and / or Chart Overlay
18 Connect power
19 Setup and Con guration
19 Entering radar setup on your display 20 Adjust bearing alignment... 20 Adjust local interference reject... 20 Adjust antenna height... 20 Sidelobe suppression... 21 To start the radar: 21 RI10 heading source selection: 21 Dual Radar setup:
TM
22 Dual Range setup (Broadband 4G
Radar only):
23 Maintenance
24 Dimension Drawings
24 Scanner 25 Radar interface box
26 Speci cations
26 Broadband 3G™ Radar 27 Broadband 4G™ Radar 28 Navico Broadband radar part numbers
29 RF exposure compliance certi cate
Contents | Broadband 3G/4G™ Radar Installation Guide
1
Page 4
Compliance
The Broadband 3G™ and 4G™ Radars comply with the following regulations:
FCC Part 15.
Industry Canada RSS-Gen.
CE compliant with R&TTE directive.
For further compliance information please refer to our websites:
http://www.simrad-yachting.com/Products/Marine-Radars
http://www.lowrance.com/Products/Marine
http://www.bandg.com/Products
Industry Canada
IC: 4697A-3G4G
Operation is subject to the following two conditions:
(1) this device may not cause interference, and
(2) this device must accept any interference, including interference that may cause undesired
operation of the device.
FCC Statement
FCC IDENTIFIER: RAY3G4G
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
 Note: This equipment has been tested and complies with the limits for a Class B digital
device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a normal installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not o ccur in a par ticular installation. This device mus t accept any interference received, including interference that may cause undesired operation.
If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment o and on, the user is encouraged to try to correct the interference by one or more of the following measures:
Reorient or relocate the receiving antenna.
Increase the separation between the equipment and receiver.
Connect the equipment into an output on a circuit di erent from that to which the receiver is connected.
Consult the dealer or an experienced technician for help.
 Note: A shielded cable must be used when connecting a peripheral to the serial ports.
Changes or modi cations not expressly approved by the manufacturer could void the user’s authority to operate the equipment.
Radar Transmit Emissions
 Note: Broadband 3G™ and 4G™ Radar are the second generation marine recreational radar
from Navico that has Human Exposure Level RF Radiation of the Radar Transmitter outside the Radome well below the general public safety emission level of 1 mW/cm2 . This means the radar can be mounted safely in locations impossible with other pulse radars.
2 |
 Note: If a pulse radar and Broadband Radar are mounted on the same vessel, do not transmit
simultaneously as excessive interference is possible.
The Broadband Radar will not trigger X Band radar transponders, beacons, and
!
Contents | Broadband 3G/4G™ Radar Installation Guide
SARTs due to the low output power and signal properties.
Page 5
Disclaimer
As Navico is continuously improving this product, we retain the right to make changes to the product at any time which may not be re ected in this version of the manual. Please contact your nearest distributor if you require any further assistance.
It is the owner’s sole responsibility to install and use the instrument and transducers in a manner that will not cause accidents, personal injury or property damage. The user of this product is solely responsible for observing safe boating practices.
NAVICO HOLDING AS. AND ITS SUBSIDIARIES, BRANCHES AND AFFILIATES DISCLAIM ALL LIABILITY FOR ANY USE OF THIS PRODUCT IN A WAY THAT MAY CAUSE ACCIDENTS, DAMAGE OR THAT MAY VIOLATE THE LAW.
Governing Language: This statement, any instruction manuals, user guides and other information relating to the product (Documentation) may be translated to, or has been translated from, another language (Translation). In the event of any con ict between any Translation of the Documentation, the English language version of the Documentation will be the o cial version of the Documentation.
This manual represents the product as at the time of printing. Navico Holding AS. and its subsidiaries, branches and a liates reserve the right to make changes to speci cations without notice.
Copyright © 2011 Navico Holding AS.
W arranty
The warranty card is supplied as a separate document.
In case of any queries, refer to the brand web site of your display or system.
www.lowrance.com
www.simrad-yachting.com
www.BandG.com
Welcome | Broadband 3G/4G™ Radar Installation Guide
3
Page 6
1
Welcome
Congratulations on your purchase of the latest technology available in recreational marine radar. The special features designed into this radar are:
“Revolutionary improvement in situational awareness” - provides unprecedented ability to distinguish hazards and other objects
Radar is  nally easy enough for casual users – identi es targets clearly with out complicated tuning adjustments
Navigation with unparalleled resolution and clarity at close ranges, where traditional radar completely obscures targets
“Start faster, go longer” - 100% solid state design – no powerful microwave transmitter required! – provides InstantOn™ power up capability and low power consumption
Eliminate the 2-3 minute warm-up time typical of traditional radars
Conserve power with a standby drain less than one tenth of the best existing radars – especially great for sailboats and smaller power boats
No expensive magnetron replacement is ever required
“Incredibly approachable” - practically imperceptible transmit emissions are extremely safe, allowing you to mount it anywhere
th
Less than 1/5 proximity to passengers
Compatible with a wide range of Navico multi-function displays and heading sensors
the transmitted emissions of a mobile phone, can be safely mounted in
What is Broadband radar?
The Navico Broadband Radar uses FMCW (Frequency Modulated Continuous Wave) radar technology.
FMCW radar is di erent:
Firstly it is solid state – i.e. the transmitter is a semiconductor device, not based on magnetron technology. Secondly, it transmits a 1ms long signal of increasing frequency, rather than a short duration pulse. Thirdly, it measures the distance to a target not by timing the returned echoes, but by measuring the di erence between the current transmitted frequency and echoed frequency. Hence FMCW – Frequency Modulated Continuous Wave.
The building up of the image over 360 degrees and the processing of the radar data is the same as for a magnetron radar.
How does FMCW radar work?
Frequency
9.41 GHz
9.4 GHz
1ms 5ms
Time
4 |
Welcome | Broadband 3G/4G™ Radar Installation Guide
Page 7
FMCW = Frequency Modulated Continuous Wave
The scanner transmits a ‘rising tone’ (Tx wave) with linearly increasing frequency. The wave propagates out from the transmitter retaining the frequency it had when it was transmitted. If it re ects o an object, it will return to the receiver, still at the frequency it had when originally transmitted.
Meanwhile, the transmitter continues to output an increasing frequency.
The di erence between both the currently transmitted and received frequencies, coupled with the known rate of frequency increase, allows a time of  ight to be calculated, from which dis­tance is calculated.
Additional bene ts of FMCW radar are:
Safety
low energy emissions. 1/5th of a mobile phone
safe operation in anchorages and marinas
instant power up. No warm up required
Short range performance
broadband radar can see within a few meters of the boat, compared to pulse radars, which can not see closer than 30 meters
higher resolution clearly separates individual vessels and objects
Up to  ve times better sea and rain clutter performance
Low power
suitable for small boats and yachts
easier installation with lighter cabling and smaller connectors
great for yachts on ocean passage
Instant power-up
conventional radars take 2-3 minutes to warm up the magnetron: Safety – 2 minutes is a long time if you are concerned about collision.
convenience – switch it on and use it.
Easy to use
no constant adjusting required to obtain optimum performance
no re-tuning between ranges. Means fast range change at all ranges
Welcome | Broadband 3G/4G™ Radar Installation Guide
5
Page 8
2
Radar system overview
The Broadband Radar is a state of the art navigation aid. It provides outstanding radar performance without the limitations of conventional pulse radars such as: dangerous high power microwaves, standby warm up time, 30 m blind spot (mainbang), high power consumption and large open arrays (which is what would be required to obtain the same image quality at shorter ranges).
The Broadband 3G™ radar has an e ective range from 200 ft to 24 nm, whereas the Broadband 4G™ radar has an e ective range from 200 ft to 36 nm (target dependent).
The operating power consumption for the 3G is 18 W, with a stand-by power consumption of 2 W. The 4G operates on 20W, and has a standby consumption of 2.9W.
The system consists of: radar scanner, an interface box (not included with Lowrance 3G USA model) and an interconnection cable. The scanner is housed in a dome of similar size to most 2 kW radars on the market.
The RI10 interface box is used to connect displays, power and heading information if MARPA or chart overlay are required (Heading sensor not included). The RI10 has a SimNet (Simrad NMEA
2000) connector for heading input. The RI10 is included in all 4G kits.
The RI11 interface box is used to connect to earlier NX series displays using a serial connection. A Y-cable may be used to add heading input for MARPA via NMEA0183.
The 3G kit may be ordered with either interface box, however the Lowrance USA model (000­10418-001) is not shipped with an RI10 or RI11 interface.
1
3
4
2
5
7
1. Broadband Radar
2. Radar interconnection cable
3. Option heading sensor required for MARPA and chart overlay (not included)
4. RI10 or RI11 Radar interface box (not included in the Lowrance 3G USA model)
5. Ethernet cable: shipped with 1.8 m (6 ft)
6. Display: Simrad NSO, NSE or NSS / B&G Zeus / Lowrance HDS
7. SimNet or NMEA2000 data network (not included)
6
6 |
Radar system overview | Broadband 3G/4G™ Radar Installation Guide
Page 9
3
Installation
 Note: Follow these instructions carefully. Don’t take any shortcuts!
The Broadband Radar is factory sealed. It is not necessary to remove the cover.
Removing the cover will void the factory warranty.
Tools Required
1. Drill
2. Torque wrench
3. Drill bit 9.5 mm (3/8”)
4. Screw driver
!
1
2
3
4
Choose the scanner location
The radar’s ability to detect targets greatly depends on the position of its scanner. The ideal location for the scanner is high above the vessel’s keel line where there are no obstacles.
A higher installation position increases the radar ranging distance, but it also increases the minimum range around the vessel where targets cannot be detected.
When you’re deciding on the location, consider the following:
The length of the interconnection cable supplied w your radar is usually su cient. If you think you’ll need a longer cable, consult your dealer before installation. Optional cable lengths are 10 m (33 ft), 20 m (65.5 ft) and 30 m (98 ft).
If you mount the scanner on a pedestal or base, ensure that rain and sea spray can drain away rapidly, and the breather hole in the base can operate .
The scanner is usually installed parallel to the line of the keel.
DON’T DO THIS!
DON’T install the scanner too high up (eg at the top of a mast), which may cause degradation of the radar picture over short ranges
DON’T install the scanner close to lamps or exhaust outlets. The heat emissions may damage the dome. Soot and smoke will degrade the performance of the radar
DON’T install the scanner close to the antennas of other equipment such as direction  nders, VHF antennas, GPS equipment, as it may cause or be subject to interference
DON’T install the scanner where a large obstruction (such as an exhaust stack) is at the same level as the beam, because the obstruction is likely to generate false echoes and/or shadow zones
DON’T install the scanner where it will be subjected to strong vibrations because these vibrations could degrade the performance of the radar
DON’T install the scanner such that boat electronics with switch mode power supplies (such as  sh- nders and chart plotters) are in the beam of the antenna
DON’T install the scanner directly on to a large  at roof area. Use a pedestal to elevate the scanner for radar beams to clear roof line (see “Considerations for direct roof mounting” on page 8)
Dual Radar installation - Broadband Radar and Pulse Radar installation:
For dual radar installations, ensure Broadband Radar is not installed in the beam of the pulse radar at any time.
Installation | Broadband 3G/4G™ Radar Installation Guide
7
Page 10
Compass
Broadband Radar
TX
12.5
12.5
0.7 m (2.3 ft) Min
Pulse Radar
STBY
Minimum distance to install near the ships compass is 0.7 m (3.3 ft).
If possible ensure that the location site provides the scanner with a clear view all round the vessel.
Do not install the Broadband Radar on the same beam plane as a conventional pulse radar. A pulse radar must be set to STBY or OFF any time the Broadband Radar is being operated.
Installations on power boats that have a steep planing angle, it is recommended to tilt the scan­ner angle down at the front. (Beam angle is 12.5° either side of center).
Considerations for direct roof mounting
When deciding a suitable mounting location for the Broadband Radar, be aware that the verti­cal radar beam extends to 25° either side of horizontal. With 50% of the power projecting in a beam 12.5° o horizontal. If the radar beams cannot clear the roof line, this will decrease per­formance of the radar. Depending on the size of the hard top of the vessel, it is recommended not to mount directly on to the surface, instead elevate the scanner to allow the radar beams to clear the roof line. Below are guide lines on heights above the hard top.
8 |
50% of beam power
25°
12.5°
50% of beam power
12.5°
25°
The above illustrates an installation with the Broadband Radar mounted directly on to a large hard top. This installation could su er decreased performance as the radar energy is either re ected or absorbed by the hard top.
Note: Where the mounting surface is constructed of any form of metal you must elevate
the dome so that the beam has complete clearance, else performance will be severely impaired.
Installation | Broadband 3G/4G™ Radar Installation Guide
Possible performance loss
Broadband Radar
X
Page 11
Better performance
Broadband Radar
Above illustrates that raising the Broadband scanner o the hard top allowing most of the radar energy to clear the hard top.
Best performance
Broadband Radar
850 mm
Hard Top Width
For best performance, the radar should be positioned to allow the beams to clear the superstructure of the boat.
Below is a guide to determine scanner height in relation to a vessels hard top overall width.
Optimum Performance
Elevation of scanner
3.0 m
2.8 m
2.6 m
25°
2.4 m
2.2 m
2.0 m
1.8 m
1.6 m
1.4 m
1.2 m
0.85 m
1.0 m
Hard top total width
Direct
Mount 70 mm 115 mm
163 mm 210 mm 255 mm 303 mm 350 mm 395 mm 443 mm 490 mm 535 mm
Every Increase of 400 mm of hard top width over 1.0 m wide: Increase height by 140 mm.
Elevation of scanner
Better Performance
1.4 m
3.2 m
2.8 m
12.5°
2.4 m
2.0 m
Hard top total width
Every increase of 400 mm of hard top width over 2.0 m wide: Increase height by 45 mm.
Installation | Broadband 3G/4G™ Radar Installation Guide
Direct Mount
67 mm 112 mm 157 mm 202 mm
9
Page 12
Mounting the scanner
Use the supplied mounting template and tape it securely to the chosen location.
Before drilling, check that:
• you have oriented the mounting template correctly so that the front of the scanner unit will face the front of the vessel
• the thickness of chosen location is not more than 18 mm (0.7”) thick. If the location is thicker, longer bolts than those supplied will be required
• the four bolts supplied are M8 x 30 mm. If you need to use longer bolts make sure they are marine grade stainless steel and allow for minimum of 8 mm (0.3”) and maximum of 18 mm (0.7”) of thread contact
1. Use a 9.5 mm (3/8”) drill bit to drill the four holes where shown on the mounting template
2. Remove the mounting template
3. Connect the scanner interconnection cable (see “Connect interconnection cable to the scanner” on page 11 )
4. Route the connection cable through the cable retention channel
6. Position the scanner carefully over the bolt holes so that they are aligned
7. Place a lock washer and a plain washer onto each bolt, as shown
8. Insert bolt into drill hole and locate into scanners threaded mounting holes and tighten securely
 Note: The torque settings for the mounting bolts are 12 Nm – 18 Nm (8.9 lb ft – 13.3 lb ft)
10 |
Installation | Broadband 3G/4G™ Radar Installation Guide
Page 13
Connect interconnection cable to the scanner
The scanner interconnection cable connects the scanner to the RI10 interface box (or Lowrance HDS via and ethernet adapter cable - 3G U.S only). The cable connects to the scanner using a 14 pin connector.
Protect the connectors when pulling cable through the boat and avoid putting strain on to the connectors
The interconnection cable is 9 mm in diameter. A 14 mm hole will be required in order for the RJ45 connector to pass through (Interface box end) or 24 mm for the scanner end connector
Run the interconnection cable between the scanner and the location of the radar inter­face box
Insert cable connector on to the male 14 pin plug on the scanner
Take care to align the connector correctly to avoid bending the pins. Secure the locking collar by rotating clockwise until it clicks
Feed and secure the cable into the cable retention channel
Scanner Interconnection cable pin out
Cable connector
Scanner connector
Diameter = 23 mm
Pin-out Wire color RJ45
1 Black Tinned wire 2 Red Tinned wire 3 Yellow Tinned wire 4 Drain Tinned wire 5 N/A N/A 6 Blue RJ45 Pin 4 7 White / Blue RJ45 Pin 5 8 White / Brown RJ45 Pin 7 9 Brown RJ45 Pin 8 10 White / Green RJ45 Pin 3 11 N/A N/A 12 White / Orange RJ45 Pin 1 13 Green RJ45 Pin 6 14 Orange RJ45 Pin 2
Installation | Broadband 3G/4G™ Radar Installation Guide
11
Page 14
Connect the interconnection cable to radar interface box
To connect interconnection cable to Lowrance HDS (USA only) (see “Lowrance: HDS USA (no MARPA)” on page 14)
A
D
E
F
G
1. Slide (F), (E) and (D) past the RJ45 connector and power wires of the scanner interconnection cable (G)
B
C
A
Data
Shield
Black
Yellow
Red
2. Connect data wires to the green terminal block (phoenix connector)
3. Connect RJ45 and phoenix connector to the radar interface box
H
D
4. Secure (D) to the radar interface box using the four supplied M3x12 black s/s screws (H)
5. Slide (E) along the cable (G) and press into the cable gland housing (D)
A
F
6. Rotate (F) clockwise to secure. Firmly tighten by hand only
To remove the scanner interconnection cable, follow the above procedure in reverse order
To avoid damaging the connectors when removing the scanner interconnection cable, it is important to remove the cable gland washer before trying to remove the cable gland housing
E
A Radar interface box
B Radar data connector RJ45
C Power wires (see “Connect power”
on page 18)
D Cable gland housing
E Gland washer
F Lock nut
G scanner interconnection cable
H Screws x 4 M3x12 mm Phillips pan
head
D
12 |
Installation | Broadband 3G/4G™ Radar Installation Guide
Page 15
Shortening the cable
It is not recommended to shorten the cable, but if it is unavoidable, use the pin-out below to re-terminate the cable with a new RJ45 plug.
RJ45 Connector pinout
Pin Color
P1P8
1 White/Orange 2 Orange 3 White/Green
4 Blue
5 White/Blue 6 Green
7 White/Brown
8Brown
Required to complete
RJ45 Connector RJ45 Crimping tool
Mounting the radar interface box
Install the radar interface box (where applicable) in a dry location away from spray, rain, drips and condensation
The radar interface box must be located where it can be easily connected to the ship’s power source, the scanner interconnection cable, SimNet/NMEA2000 and the display or display network
Allow enough room for cables to form a drip loop
Preferably mount the radar interface box on a vertical surface with cables exiting downwards
Insert connectors . See “Connect the interconnection cable to radar interface box” on page 12
Secure to the surface using the four mounting points and supplied 8G x 5/8 pozi s/s fasters
Installation | Broadband 3G/4G™ Radar Installation Guide
13
Page 16
4
Connect the Broadband radar to your display
Lowrance HDS USA (no MARPA)
3
1
NEP-2 (Optional)
2
2
4
FUSE
FUSE
_
+
1. Lowrance HDS
2. Ethernet adapter cable. 5 pin yellow male to RJ45 female 1.8 ft (6ft). Included in 3G™ kit 000-
10418-001 (Lowrance USA only). Can connect directly to the HDS, or via a NEP-2 Ethernet switch, or using a free Ethernet port on a LSS-1 Structure Scan module (if applicable)
14 |
 Note: Make sure this connection is made in a dry environment and is secured properly
3. Broadband 3G™ Radar
4. Interconnection cable - ships with a 10 m (33 ft): Optional 20 m (65 ft) and 30 m (98 ft)
available
 Note: To add MARPA and / or chart overlay, you need to add an RI10 Interface Box and Heading
Sensor (see next page)
 Note: Broadband 4G™ radar may also be connected in this manner, but o ers no advantage as
they are all shipped with an RI10 interface box, which allows connection of a heading source to the radar
Connect the Broadband radar to your display | Broadband 3G/4G™ Radar Installation Guide
Page 17
HDS
Lowrance HDS outside USA or with MARPA / chart overlay Simrad NSS
(NMEA2000 network)
The 3G and 4G radar connects to the Lowrance HDS and Simrad NSS in the same manner
2
1
NSS
Ethernet
NMEA2000
Lowrance HDS
or
Simrad NSS
3
4
Power
Ethernet
NMEA2000
5
FUSE
6
FUSE
FUSE
8
9
_
+
7
9
10
NMEA2000 Network
Parts required for chart overlay / MARPA
1. Lowrance HDS or Simrad NSS
2. Broadband 3G™ or 4G™ Radar
3. Interconnection cable (Lowrance 10 m (33 ft) Simrad 20 m (65.5 ft))
4. RI10 Radar interface box
5. Ethernet cable (1.8 m (6 ft)). The RI10 can connect either directly to a Multifunction display
or via an Ethernet switch (NEP-2), or a free port on an LSS-1 Structure scan module. For cable options see “Ethernet cables” on page 28
6. NEP-2 Network Expansion Port. 5 Port Ethernet switch
The following Parts required for MARPA and / or chart overlay:
7. RC42 Heading Sensor
8. SimNet cable. For cable options see “SimNet cables” on
page 28
9. SimNet - NMEA2000 adapter kit: a) SimNet -Micro-C cable
0.5 m (1.6 ft), b) SimNet joiner. c) NMEA2000 T-Connector
Connect the Broadband radar to your display | Broadband 3G/4G™ Radar Installation Guide
a b c
15
Page 18
B&G Zeus Simrad NSO, NSE and NSS
(SimNet network)
Zeus
SimNet
NSO
Ethernet
1
2
B&G Zeus
SIMRAD NSO, NSE
or NSS MFD
3
4
SimNet
Ethernet
5
6
FUSE
FUSE
FUSE
8
7
7
9
Chart overlay / MARPA
10
Parts required for
12
_
+
SimNet Network
NSE
SimNet
NSS
Ethernet
NMEA2000
Alternative: NMEA0183 heading
White RX+ Brown RX-
AT10HD
Cut off 12 Pin
plug to expose bare wires
TX+ TX-
NMEA0183 10 Hz Heading
(e.g Gyro, Sat Compass)
SimNet
Ethernet
NMEA2000 cables SimNet cables Ethernet cable Ethernet cables if using NEP-2
11
NMEA083 to SimNet
Converter Heading Only
1. B&G Zeus or Simrad NSO / NSE / NSS
2. Broadband 3G™ or 4G™ Radar
3. Interconnection cable: Ships with a 20 m (65 ft). Optional 10 m (33 ft) and 30 m (98 ft)
4. RI10 Radar interface box
5. Ethernet cable (1.8 m (6 ft)). The RI10 can be connected directly to the NETWORK port of the
display/processor box, or via a Network Expansion Port (7). For cable options see “Ethernet cables” on page 28
6. Ethernet cables required to connect 3G™ / 4G™ via a NEP-2 (6)
7. NEP-2 Ethernet switch
The following Parts required for MARPA and / or chart overlay:
8. For B&G Zeus, Simrad NSE, NSO: SimNet cable. (Not supplied)
For SimRad NSS: SimNet to Micro-C cable (Not supplied) see “SimNet - NMEA2000 adapter cables” on page 28
9. SimNet drop cable. Allows display to receive heading information for chart overlay
10. RC42 Heading Sensor (22090195)
Ethernet
11. AT10HD. For installations with a NMEA0183 heading sensor
12. SimNet Network
16 |
Connect the Broadband radar to your display | Broadband 3G/4G™ Radar Installation Guide
Page 19
5
RI10 Connections
1
5
2
3
4
1. Connects the RI10 to a SimNet or NMEA2000 network to allow heading and position infor-
mation to be sent to the scanner for MARPA calculations
2. Main data network interface between the radar and the display (ethernet)
3. Provides data and power connection between the Broadband radar dome and the RI10.
4. Power cable (see “Connect power” on page 18)
5. Green LED indicates power is supplied to the RI10 and indicates SimNet state. A sequence
of three rapid  ashes indicates no SimNet connection was made at time of power up and a solid light means SimNet connection was lost after power up
 Note: Lowrance HDS units sold in the USA do not require an interface box and the scanner
connects directly to the display or Ethernet switch. If chart overlay or MARPA are required for Lowrance HDS USA then an RI10 Interface box and heading sensor are required
Adding MARPA and / or Chart Overlay
To add MARPA and/or Chart overlay, it is essential to use a heading sensor with an output speed of 10 Hz. The Heading sensor needs to be a rate gyro stabilized compass or better
You can use a Heading Sensor with an NMEA 0183 or NMEA2000 output source
You must use a Radar Interface box to connect the heading data to the radar system - this is because MARPA calculations are done by the radar:
If your heading source is NMEA0183, use an RI11 Interface box for Simrad NX installations, or an RI10 Interface box with an AT10HD converter for all other installations. The AT10HD converts NMEA0183 to SimNet / NMEA2000 (only heading information is converted)
If your heading source is NMEA2000 or SIMNET use an RI10 Interface box.
RI10 Connections | Broadband 3G/4G™ Radar Installation Guide
17
Page 20
6
Connect power
The Broadband Radar can operate on 12 or 24 V DC systems. The Broadband Radar requires +V DC to be applied on the yellow power on wire in order to operate. This can be achieved in one of three ways:
1. Common the red and yellow wire together, and connect to a fused switch. Radar will power on in standby when power is applied. When switch is o , radar will draw no power
2. Use ignition or install a switch that will provide power to the yellow wire. (It is recommended to use a 5 amp fuse or breaker). The radar will turn on when switch is activated. When the switch is o , the radar will draw minimal power (~1mA)
3. Connect the yellow wire to external wake up of suitable display such as NSE, NSO, or NSS. The radar will turn on when the display is turned on. The display must be set to ‘Master’ under Power Control. When the display is o , the radar will draw minimal power (~1mA)
Before connecting power to the system:
! ! !
make sure the scanner has been installed and is secured.
make sure the radar interconnection cable is connected to the radar.
if using the Radar Interface Box make sure all connections have been made to the display.
For systems using an RI10 radar interface box:
Connect the red wire to power positive 12 or 24 V DC. Use a 5 amp fuse or breaker
Connect the yellow wire to power source that will turn on the system (see above)
Connect the black wire to power negative
Red
Yellow
Black
For systems not using radar interface box (Lowrance 3G USA only):
Connect the red wire to power positive 12 or 24 V DC. Use a 5 Amp fuse
Connect the yellow wire to power source that will turn on the system (see above)
Connect the black wire to power negative
Data
5A
12 -24 V DC (+)
BATT (-)
Network to display
18 |
Connect power | Broadband 3G/4G™ Radar Installation Guide
Red
Yellow
Black
Shield
5A
12-24 V DC +
Battery (-)
No connect
Page 21
7
Setup and Con guration
Setup and con guration of the Broadband radar has been simpli ed compared to traditional pulse radars. There is no zero range adjustment (time delay), no warm up time, and no burn in required.
The following sections cover the available adjustments. Note that the menu examples used are from the Simrad NSE. While these di er aesthetically from the Lowrance interface, the content is essentially the same.
Entering radar setup on your display
Enter radar installation by pressing MENU > SETTINGS > RADAR > INSTALLATION.
Radar Status
Software Version
Check to make sure you have the latest software. Check website for the latest version.
Serial Number
Take a minute to write down the serial number of the radar.
MARPA Status
The MARPA status can identify if a heading sensor is on the network and that the radar is receiving heading information essential for MARPA calculations.
Reset Device ID
NSS and HDS displays only support one radar on the network. Should a radar be connected, that has been previously connected to a dual radar network in the past, it may not be detected by the display because it has an incorrect Device ID. To resolve this problem use the following procedure, which must be performed with only one radar on the network.
From the Radar Status page. Select “Reset device ID....” then follow the on screen prompts;
Setup and Con guration | Broadband 3G/4G™ Radar Installation Guide
19
Page 22
Adjust bearing alignment...
Adjust the heading marker. This is to align with the heading marker on the screen with the center line of the vessel, this will compensate for any slight misalignment of the scanner during installation. Any inaccuracy will be evident when using MARPA or chart overlay.
Point the boat to the end of a head land or peninsula. Adjust the bearing alignment so the heading line touches the end of the same head land or peninsula.
Adjust local interference reject...
Interference from some onboard sources can interfere with the Broadband radar. One symptom of this could be a large target on the screen that remains in the same relative bearing even if the vessel changes direction. Choose from Local interference rejection LOW, MED or HIGH. Default is LOW.
Adjust antenna height...
Set the radar scanner height. The Radar uses this value to optimize sea clutter performance.
 Note: It is very important to get the antenna height con gured correctly as this will a ect the
sea clutter function. Do not set the height to 0.
Sidelobe suppression...
 Note: This control should only be adjusted by experienced radar users. Target loss in harbour
environments may occur if this control is not adjusted correctly.
Occasionally false target returns can occur adjacent to strong target returns such as large ships or container ports.
This occurs because not all of the transmitted radar energy can be focused into a single beam by the radar antenna, a small amount energy is transmitted in other directions.
This energy is referred to as sidelobe energy and occurs in all radar systems.
The returns caused by sidelobes tend to appear as arcs:
When the radar is mounted where there are metallic objects near the radar, sidelobe energy increases because the beam focus is degraded. The increased sidelobe returns can be eliminated using the Sidelobe Suppression control in the Radar installation menu.
By default this control is set to Auto, and normally should not need to be adjusted. However if there is signi cant metallic clutter around the radar, sidelobe suppression may need to be increased. The control should be adjusted as follows:
1. Set Radar range to between 1/2nm to 1nm and Sidelobe Suppression to Auto
2. Take the vessel to a location where sidelobe returns are likely to be seen. Typically this would be near a large ship, container port, or metal bridge
3. Traverse the area until the strongest sidelobe returns are seen
4. Change Auto sidelobe suppression to OFF then select and adjust the sidelobe suppression control until the sidelobe returns are just eliminated. You may need to monitor 5-10 radar sweeps to be sure they have been eliminated
5. Traverse the area again and readjust if sidelobes returns still occur
6. Exit the installation menu
20 |
Setup and Con guration | Broadband 3G/4G™ Radar Installation Guide
Page 23
To start the radar:
From the radar screen select the Transmit button.
RI10 heading source selection:
The RI10 receives heading via SimNet or NMEA2000 network and transmits this data to the radar, where MARPA processing is performed.
For Simrad installations with more than one SimNet heading source the RI10 will use the Simrad group source. The source used by the Simrad group can be viewed or changed via an NSE / NSO / NSS display in the Settings>Network>Sources… menu.
Dual Radar setup:
For B&G Zeus and Simrad NSO and NSE displays it is possible for two radars to be connected to the network and viewed simultaneously on one display. At time of installation radar source selection needs to be performed as described below.
1. Power up the system including both radars
2. On any display, the  rst radar ever detected by the display will be used as the source for all chart and radar panels. This source will be used by default for every system power-up thereafter, until changed
The radar source is identi ed by radar type with a four digit number and is displayed in the top left corner of chart and radar panels:
 Note: The four digit number is the last four digits of the radars serial number.
3. For a radar panel, the radar source can be changed in the Radar>Radar Options>Sources menu:
4. For a chart panel (with radar overlay on), the radar source can be changed in the Chart>Radar Options>Sources menu:
5. For pages with more than one radar or chart panel, it is possible to set up di erent radar sources for each panel
Setup and Con guration | Broadband 3G/4G™ Radar Installation Guide
21
Page 24
6. The radar source selection is not global, so will only apply to the display on which the source was selected. The radar source will need to be setup for each display on the network.
Once the radar sources have been set up they will be retained for every system power-up until changed by the user
Dual Range setup (Broadband 4GTM Radar only):
With a Simrad NSE display connected to a Broadband 4G™ radar, it’s possible to run the radar in dual range mode. This allows two radar panels to be veiwed simultaneously, operating at di erent ranges but with all image data supplied by one 4G scanner. Each displayed radar panel can track up to 10 MARPA targets - ability to acquire targets is range dependant.
Setup of Dual Range is identical to that used for Dual Radar setup, except that a 4G radar will show two instances in the sources list; an A channel and a B channel.
22 |
 Note: two 4G radars on the same system will show four radar sources (two A and B channels).
Setup and Con guration | Broadband 3G/4G™ Radar Installation Guide
Page 25
8
Maintenance
Clean the radome using soapy water and a soft cloth.
Avoid using abrasive cleaning products.
Do not use solvents such as gasoline, acetone, M.E.K etc. as this will damage the dome surface.
After years of use the drive belt may have to be replaced.
The transmitter in the Broadband Radar is solid state and will not require regular replacement, unlike the magnetron found in conventional pulse radar.
Maintenance | Broadband 3G/4G™ Radar Installation Guide
23
Page 26
9
Dimension Drawings
Scanner
280 mm (11.02”)
489.6 mm (19.28”) 488.6 mm (19.24”)
FRONT
232.5 mm (9.15”)
D
B
A
233.0 mm (9.17”)
Key Description
A Cable entry area B Cable retention channel C Bolt holes x 4 M8 x 30 mm D Breather
C
141.5 mm (5.57”)
114.6 mm (4.51”)
128.3 mm (5.05”)128.3 mm (5.05”)
24 |
Dimension Drawings | Broadband 3G/4G™ Radar Installation Guide
Page 27
Radar interface box
25 MM (1")
171 mm (6.76")
154 mm (6.06")
92 mm (3.63")
Dimension Drawings | Broadband 3G/4G™ Radar Installation Guide
25
Page 28
10
Speci cations
Broadband 3G™ Radar
Characteristic Technical Data
Compliance CE, FCC (ID: RAY3G4G), IC: 4697A-3G4G
Environmental IEC60945 : 2002
Operating Temperature: -25° to +55°C
(-13° to +130°F)
Relative humidity: +35° C (95° F), 95% RH
Waterproof: IPX6
Relative wind velocity 51 m/sec (Max:100 Knots)
Power consumption (with 10m cable) Operating: 18W (Typ.) @ 13.8Vdc
Standby: 2W (Typ.) @ 13.8Vdc ~ 150mA
DC input (at end of radar cable) 9V to 31.2Vdc (12/24 Volt systems).
Reverse polarity protection
Transmitter source (pre-heating time ) No magnetron – Instant On™
Outside dimensions Height 280 mm x Diameter 489 mm
(Height 11” x Diameter 19.3” )
Scanner weight (no cable) 7.4 kg (16.31 lbs)
Radar and Antenna Parameters
Radar ranges 50 m (200 ft) to 24 nm with 17 range settings
(nm/sm/km)
Rotation (mode dependent) 24/36 rpm +/-10%
Transmitter frequency X-band - 9.3 to 9.4 Ghz
Transmitter source (warm-up time) No Magnetron – all solid state. Instant On™
Plane of polarization Horizontal Polarization
Transmitter peak power output 165 mW (nominal at source)
Main bang dead zone & tuning None – not a pulse radar
Sea and rain clutter 5 x less than a pulse radar
Sweep repetition frequency 200 Hz
Sweep time 1.3 ms+/- 10%
Sweep bandwidth 75 MHz max
Horizontal beam width (Tx and Rx antenna) 5.2°+/-10% (-3 dB width)
Vertical beam width (Tx and Rx antenna) 25°+/-20% (-3 dB width)
Side lobe level (Tx and Rx antenna) Below -18 dB (within ±10°);Below -24 dB (outside ±10°)
Noise  gure Less than 6 dB
Coms/Cabling/Mounting
Com protocol High Speed Ethernet and Serial
Heading NMEA0183 with RI11 interface box
NMEA2000 / SimNet with RI10 interface box
Inter connecting cable length Lowrance 10 m (33 ft)
Simrad, B&G 20 m (65.6 ft)
Maximum inter connecting cable length 30 m (98.5 ft) – available as option
Bolts (4) M8x30 - 304 stainless steel
Footprint W233 mm (9.17”) (port / starboard) x L141.5 mm (5.55”)
(matches Garmin GMR18HD / Raymarine RD218 footprint)
Compatible Displays
Simrad: Lowrance: B&G:
NSO, NSE, NSS (all models) HDS (all models) Zeus (all models)
26 |
Speci cations | Broadband 3G/4G™ Radar Installation Guide
Page 29
Broadband 4G™ Radar
Characteristic Technical Data
Compliance CE, FCC (ID: RAY3G4G), IC: 4697A-3G4G
Environmental IEC60945 : 2002
Operating Temperature: -25° to +55°C
(-13° to +130°F)
Relative humidity: +35° C (95° F), 95% RH
Waterproof: IPX6
Relative wind velocity 51 m/sec (Max:100 Knots)
Power consumption (with 10m cable) Operating: 20W (Typ.) @ 13.8Vdc (21W in dual range mode)
Standby: 2.9W (Typ.) @ 13.8Vdc ~ 170mA
DC input (at end of radar cable) 9V to 31.2Vdc (12/24 Volt systems).
Reverse polarity protection
Minimum startup voltage 10.75Vdc
Transmitter source (pre-heating time ) No magnetron – Instant On™
Outside dimensions Height 280 mm x Diameter 489 mm
(Height 11” x Diameter 19.3” )
Scanner weight (no cable) 7.4 kg (16.31 lbs)
Radar and Antenna Parameters
Radar ranges 50 m (200 ft) to 66 km (36 nm) with 18 range settings (nm/sm/km)
Rotation (mode dependent) 24/36/48 rpm +/-10% (mode and MFD dependant)
Transmitter frequency X-band - 9.3 to 9.4 Ghz
Transmitter source (warm-up time) No Magnetron – all solid state. Instant On™
Plane of polarization Horizontal Polarization
Transmitter peak power output 165 mW (nominal - at antenna port)
Main bang dead zone & tuning None – not a pulse radar
Sea and rain clutter 3-5 x less than a pulse radar
Sweep repetition frequency 200 - 540 Hz (mode dependant)
Sweep time 1.3 ms+/- 10%
Sweep bandwidth 75 MHz max
Horizontal beam width (Tx and Rx antenna) 5.2°+/-10% (-3 dB width)
Target Seperation Control OFF: 5.2°+/-10% (-3 dB width)
LOW: ~4.4°+/-10% (-3 dB width)
MED: ~3.2°+/-10% (-3 dB width)
HIGH: ~2.6°+/-10% (-3 dB width)
Vertical beam width (Tx and Rx antenna) 25°+/-20% (-3 dB width)
Side lobe level (Tx and Rx antenna) Below -18 dB (within ±10°);Below -24 dB (outside ±10°)
Noise  gure Less than 6 dB
Coms/Cabling/Mounting
Com protocol High Speed Ethernet
Heading NMEA2000 / SimNet with RI10 interface box
Inter connecting cable length Lowrance 10 m (33 ft)
Simrad, B&G 20 m (65.6 ft)
Maximum inter connecting cable length 30 m (98.5 ft) – available as option
Bolts (4) M8x30 - 304 stainless steel
Footprint W233 mm (9.17”) (port / starboard) x L141.5 mm (5.55”)
(matches Garmin GMR18HD / Raymarine RD218 footprint)
Compatible Displays
Simrad: Lowrance: B&G:
NSO, NSE, NSS* (all models) HDS* (all models) Zeus (all models)
 Note: *NSS and HDS do not support full range of 4G features.
Speci cations | Broadband 3G/4G™ Radar Installation Guide
27
Page 30
Navico Broadband radar part numbers
Broadband radar scanner part numbers
Model Part Number Description Length
Scanner
3G™ 000-10416-001 Broadband 3G™ Radar 4G™ 000-10417-001 Broadband 4G™ Radar
Interface boxes
RI10 AA010189 Broadband radar SimNet interface box RI11 AA010204 Broadband radar serial interface box
Scanner cables
AA010211 Broadband scanner interconnection cable 10 m (33 ft)
AA010212 Broadband scanner interconnection cable 20 m (65.6 ft) AA010213 Broadband scanner interconnection cable 30 m (98.5 ft)
Ethernet cables
000-00127-56 Adapter cable: yellow Ethernet male to RJ45
female (Supplied with Lowrance USA SKU)
000-00127-28 Ethernet cable 0.6 m (2 ft)
000-0127-51 Ethernet cable 1.8 m (6 ft)
000-0127-29 Ethernet cable 4.5 m (15 ft)
000-0127-30 Ethernet cable 7.7 m (25 ft) 000-0127-37 Ethernet cable 15.2 m (50 ft)
SimNet cables
24005829 SimNet cable 0.3 m (1 ft) 24005837 SimNet cable 2 m (6.6 ft) 24005845 SimNet cable 5 m (16 ft) 24005852 SimNet cable
note: For simNet backbone only
SimNet - NMEA2000 adapter cables
24006413 Micro-C female to SimNet 4 m (13 ft) 24006199 SimNet to Micro-C (female) cable that connects
a NMEA 2000® product to SimNet
24005729 SimNet to Micro-C (male) cable that connects a
SimNet product to a NMEA 2000® network
NMEA - SimNet Converters
AT10 24005936 AT10 NMEA0183 / SimNet converter AT10HD 24006694 AT10HD NMEA0183 / SimNet converter. 10 Hz
heading data only
2 m (6.5 ft)
10 m (33 ft)
0.5 m (1.6 ft)
0.5 m (1.6 ft)
28 |
Speci cations | Broadband 3G/4G™ Radar Installation Guide
Page 31
11
RF exposure compliance certi cate
RF exposure compliance certi cate | Broadband 3G/4G™ Radar Installation Guide
29
Page 32
30 |
RF exposure compliance certi cate | Broadband 3G/4G™ Radar Installation Guide
Page 33
RF exposure compliance certi cate | Broadband 3G/4G™ Radar Installation Guide
31
Page 34
Page 35
Page 36
*988-10113-003*
www.bandg.com
www.simrad-yachting.com
www.lowrance.com
Loading...