1. Any-Frequency Precision Clock Product Family Overview
Silicon Laboratories Any-Frequency Precision Clock products provide jitter attenuation and clock multiplication/
clock division for applications requiring sub 1 ps rms jitter performance. The device product family is based on
Silicon Laboratories' 3rd generation DSPLL technology, which provides any-frequency synthesis and jitter
attenuation in a highly integr ated PLL solution that eliminates the need for discrete VCXO/VCSOs and loop filter
components. These devices are ideally suited for applications which require low jitter reference clocks, including
OTN (OTU-1, OTU-2, OTU-3, OTU-4), OC-48/STM-16, OC-192/STM-64, OC-768/STM-256, GbE, 10GbE, Fibre
Channel, 10GFC, synchronous Ethernet, wireless backhaul, wireless point-point infrastructure, broadcast video/
HDTV (HD SDI, 3G SDI), test and measurement, data acquisition systems, and FPGA/ASIC reference clocking.
Table 1 provides a product selector guide for the Silicon Laboratories Any-Frequency Precision Clocks. Three
product families are available. The Si5316, Si5319, Si5323, Si5324, Si5326, Si5366, and Si5368 are jitterattenuating clock multipliers that provide ultra-low jitter generation as low as 0.30 ps RMS. The devices vary
according to the number of clock inputs, number of clock outputs, and control method. The Si5316 is a fixedfrequency, pin controlled jitter attenuator that can be used in clock smoothing applications. The Si5323 and Si5366
are pin-controlled jitter-attenuating clock multipliers. The frequency plan for these pin-controlled devices is
selectable from frequency lookup tables and includes common frequency translations for SONET/SDH, ITU G.709
Forward Error Correction (FEC) applications (255/238, 255/237, 255/236, 238/255, 237/255, 236/255), Gigabit
Ethernet, 10G Ethernet, 1G/2G/4G/8G/10G Fibre Channel, ATM and broadcast video (Genlock). The Si5319,
Si5324, Si5326, Si5327, Si5368, and Si5369 are microprocessor-controlled devices that can be controlled via an
2
C or SPI interface. These microprocessor-controlled devices accept clock inputs ranging from 2 kHz to 710 MHz
I
and generate multiple independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select
frequencies to 1.4 GHz. Virtually any frequency translation combination across this operating range is supported.
Independent dividers are available for every input clock and output clock, so the Si5324, Si5326, Si5327, and
Si5368 can accept input clocks at different frequencies and generate output clocks at different frequencies. The
Si5316, Si5319, Si5323, Si5326, Si5327, Si5366, Si5368, and Si5369 support a digitally programmable loop
bandwidth that can range from 60 Hz to 8.4 kHz. An exter nal (37–41 MHz, 55–61 MHz, 109–125.5 MHz, or 163–
180 MHz) reference clock or a low-cost 114.285 MHz 3rd overtone crystal is required for these devices to enable
ultra-low jitter generation and jitter attenuation. (See "Appendix A—Narrowband References" on page 119.) The
Si5324 and Si5369 are much lower bandwidth devices, providing a user-programmable loop bandwidth from 4 to
525 Hz.
The Si5323, Si5324, Si5326, Si5327, Si5366, Si5368, and Si5369 support hitless switching between input clocks in
compliance with GR-253-CORE and GR-1244-CORE that greatly minimizes the prop ag ation of phase transie nt s to
the clock outputs during an input clock transition (<200 ps typ). Manual, automatic revertive and automatic nonrevertive input clock switching options are available. The devices monitor the input clocks for loss-of-signal and
provide a LOS alarm when missing pulses on any of the input clocks are detected. The devices monitor the lock
status of the PLL and provide a LOL alarm when the PLL is unlocked. The lock detect algorithm works by
continuously monitoring the phase of the selected input clock in relation to the phase of the feedback clock. The
Si5326, Si5366, Si5368, and Si5369 monitor the frequency of the input clocks with respect to a reference
frequency applied to an input clock or the XA/XB input, and generates a frequency offset alarm (FOS) if the
threshold is exceeded. This FOS feature is available for SONET/SDH applications. Both Stratum 3/3E and SONET
Minimum Clock (SMC) FOS thresholds are supported.
The Si5319, Si5323, Si5324, Si5326, Si5366, Si5368, and Si5369 provide a digital hold capability that allows the
device to continue generation of a stable output clock when the selected input reference is lost. During digita l hold,
the DSPLL generates an output frequency based on a historical average that existed a fixed amount of time before
the error event occurred, eliminating the effects of phase and frequency transients that may occur immediately
preceding entry into digital hold.
The Si5322, Si5325, Si5365, and Si5367 are frequency flexible, low jitter clock multipliers that provide jitter
generation of 0.6 ps RMS without jitter attenuation. These devices provide low jitter integer clock multiplication or
fractional clock synthesis, but they are not as frequency-flexible as the Si5319/23/24/26/66/68/69. The devices
vary according to the number of clock inputs, number of clock ou tput s, and co ntrol method . The Si5322 and Si5365
are pin-controlled clock multipliers. The frequency plan for these devices is selectable from frequency lookup
tables.
12Rev. 0.5
Si53xx-RM
A wide range of settings are available, but they are a subset of the frequency plans supported by the Si5323 and
Si5366 jitter-attenuating clock multipliers. The Si5325 and Si5367 are microprocessor-controlled clock multipliers
that can be controlled via an I
These devices accept clock inputs ranging from 10 MHz to 710 MHz and generate multiple independent,
synchronous clock outputs ranging from 10 MHz to 945 MHz and select frequencies to 1.4 GHz. The Si5325 and
Si5367 support a subset of the frequen cy translations available in the Si5319, Si5 324, Si5326, Si5327, Si5 368, and
Si5369 jitter-attenuating clock multipliers. The Si5325 and Si5367 can accept input clocks at different frequencies
and generate output clocks at different frequencies. The Si5322, Si5325, Si5365, and Si5367 support a digitally
programmable loop bandwidth that ranges from 150 kHz to 1.3 MHz. No external components are required for
these devices. LOS and FOS monitoring is available for these devices, as described above.
The Si5374 and Si5375 are quad DSPLL versions of the Si5324 and Si5319, respectively. Each of the four
DSPLLs can operate at completely independent frequencies. The only resources that they share are a common
2
C bus and a common XA/XB jitter reference oscillator. The Si5375 consists of four one-input and one-output
I
DSPLLs. The Si5374 consists of four two-input and two-output DSPLLs with very low loop bandwidth.
The Any-Frequency Precision Clocks have dif fere ntial clock ou tp ut(s) with pr ogr ammab le sign al for mats to support
LVPECL, LVDS, CML, and CMOS loads. If the CMOS signal format is selected, each differential output buffer
generates two in-phase CMOS clocks at the same frequency. For system-level debugging, a PLL bypass mode
drives the clock output directly from the selected input clock, bypassing the internal PLL.
Silicon Laboratories offers a PC-based software utility, DSPLLsim, tha t can be used to determine valid fre quency
plans and loop bandwidth settings for the Any-Frequency Precision Clock product family. For the microprocessorcontrolled devices, DSPLLsim provides the optimum PLL divider settings for a given input frequency/clock
multiplication ratio combination that minimizes phase noise and power consumption. Two DSPLLsim configuration
software applications are available for the 1-PLL and 4-PLL devices, respectively. DSPLLsim can also be used to
simplify device selection and configuration. This utility can be downloaded from http://www.silabs.com/timing.
Other useful documentation, including device data sheets and programming files for the microprocessor-controlled
devices are available from this website.
Si53222270710500.6 ps rms typ
Si532522
Si53654570710500.6 ps rms typ
Si536745
Notes:
1. Maximum input and output rates may be limited by speed rating of device. See each device’s data sheet for ordering
information.
2. Requires external low-cost, fixed frequency 3rd overtone 114.285 MHz crystal or reference clock. See "T able 60.X A/XB
Reference Sources and Frequencies" on page 119.
Clock Inputs
Clock Outputs
P Control
Max Input Freq (MHz)
Max Output Frequency (MHz)
Jitter Generation
(12 kHz – 20 MHz)
LOS
Hitless Switching
FOS Alarm
LOL Alarm
FSYNC Realignment
36 Lead 6 mm x 6 mm QFN
100 Lead 14 x 14 mm TQFP
71014000.6 ps rms typ
71014000.6 ps rms typ
1.8, 2.5, 3.3 V Operation
1.8, 2.5 V Operation
Rev. 0.515
Si53xx-RM
2. Narrowband vs. Wideband Overview
The narrowband (NB) devices offer a number of features and capabilities that are not available with the wideband
(WB) devices, as outlined in the below list:
Broader set of frequency plans due to more divisor options
Hitless switching between input clocks
Lower minimum input clock frequency
Lower loop bandwidth
Digital Hold (reference-based holdover instead of VCO freeze)
FRAMESYNC realignment
CLAT and FLAT (input to output skew adjust)
INC and DEC pins
PLL Loss of Lock status indicator
FOS is not supported.
16Rev. 0.5
Si53xx-RM
2
DSPLL
®
C1B
CS
LOL
BWSEL[1:0]
DBL_BY
Xtal or Refclock
SFOUT[1:0]
CKOUT+
CKOUT–
CKIN_1+
CKIN_1–
CKIN_2+
CKIN_2–
Control
Signal
Detect
VDD
GND
Frequency
Control
Bandwidth
Control
C2B
2
FRQSEL[1:0]
RST
0
1
RATE[1:0]
XA
XB
f
OSC
2
0
1
÷ N31
÷ N32
f
3_1
f
3_2
CK1DIV
CK2DIV
f
3
3. Any-Frequency Clock Family Members
3.1. Si5316
The Si5316 is a low jitter, precision jitter attenuator for high-speed communication systems, including OC -48, OC192, 10G Ethernet, and 10G Fibre Channel. The Si5316 accepts dual clock inputs in the 19, 38, 77, 155, 311, or
622 MHz frequency range and generates a jitter-attenuated clock output at the same frequency. Within each of
these clock ranges, the device can be tuned approximately 14% higher tha n nomin al SONET/SDH fre quencies, up
to a maximum of 710 MHz in the 622 MHz range. Th e DSPL L lo op b an dw idth is digitally selec table, providing jitter
performance optimization at the application level. Operating fr om a single 1.8, 2.5, or 3.3 V supp ly, the Si5316 is
ideal for providing jitter attenuation in high performance timing applications. See "6. Pin Control Parts (Si5316,
Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete description.
The Si5319 is a jitter-attenuating precision M/N clock multiplier for applications requiring sub 1 ps jitter
performance. The Si5319 accepts one clock input ranging from 2 kHz to 710 MHz and generates one clock output
ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The Si5319 can also use its crystal oscillator as
a clock source for frequency synthesis. The device provides virtua lly any frequency translation combination across
this operating range. The Si5319 input clock frequency and clock multiplication r atio are programmable through an
I2C or SPI interface. The Si5319 is based on Silicon Laboratories' 3rd-generation DSPLL
provides any-frequency synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need
for external VCXO and loop filter components. The DSPLL loop bandwidth is digitally programmable, providing
jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5319
is ideal for providing clock multiplication and jitter attenuation in high performance timing applications. See "7.
Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374,
Si5375)" on page 76 for a complete description.
The Si5322 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter
attenuation. The Si5322 acce pts dual clock inputs ranging from 19.44 to 707 MHz and generates two frequencymultiplied clock outputs ranging from 19.44 to 1050 MHz. The input clock frequency and clock multiplication ratio
are selectable from a table of popular SONET, Ethernet, Fibre Channel, and broadcast video (HD SDI, 3G SDI)
rates. The DSPLL loop bandwidth is digitally selectable from 150 kHz to 1.3 MHz. Operating from a single 1.8, 2.5,
or 3.3 V supply, the Si5322 is ideal for providing low jitter clock multiplication in high performance timing
applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete
description.
The Si5323 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including
SONET OC-48/OC-192, Ethernet, Fibre Channel, and broadcast video (HD SDI, 3G SDI). The Si5323 accepts
dual clock inputs ranging from 8 kHz to 707 MHz and generates two frequency-multiplied clock outputs ranging
from 8 kHz to 1050 MHz. The input clock frequency and clock multiplication ratio are selectable from a table of
popular SONET, Ethernet, Fibre Channel, and broadcast video rates. The DSPLL loop bandwidth is digitally
selectable, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or
3.3 V supply, the Si5323 is ideal for providing clock multiplication and jitter attenuation in high-performance timing
applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete
description.
The Si5324 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance.
The Si5324 accepts dual clock inputs ranging from 2 kHz to 710 MHz and generates two independent,
synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides
virtually any frequency translation combination across this operating range. The Si5324 input clock frequency and
clock multiplication ratios are programmable th rough an I
programmable, providing jitter performance optimization at the application level. The Si5324 features loop
bandwidth values as low as 4 Hz. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5324 is ideal for providing
clock multiplication and jitter attenuation in high-performance timing applications. See "7. Microprocessor
Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76
for a complete description.
2
C or SPI interface. The DSPLL loop bandwid th is digit ally
Figure 5. Si5324 Clock Multiplier and Jitter Attenuator Block Diagram
Rev. 0.521
Si53xx-RM
÷ N31
INT_C1B
÷ NC1
÷ NC2
Signal
Detect
C2B
0
1
CKOUT_2 +
CKOUT_2 –
CKOUT_1 +
CKOUT_1 –
/
/
2
2
1
0
1
0
SDA_SDO
RST
SCL
Control
SDI
A[2]/SS
A[1:0]
CMODE
CKIN_1 +
CKIN_1 –
2
2
CKIN_2 +
CKIN_2 –
÷ N32
0
1
BYPASS
÷ N2
f
3
DSPLL
®
VDD
GND
÷ N1_HS
f
OSC
3.6. Si5325
The Si5325 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter
attenuation. The Si5325 accepts dual clock inputs ranging from 10 to 710 MHz and generates two independent,
synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The Si5325 input
clock frequency and clock multiplication ratios are programmable through an I
bandwidth is digitally program mable from 150 kHz to 1.3 MHz. Operating from a single 1.8, 2.5, or 3.3 V supply, the
Si5325 is ideal for providing clock multiplication in high performance timing applications. See "7. Microprocessor
Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76
for a complete description.
The Si5326 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance.
The Si5326 accepts dual clock inputs ranging from 2 kHz to 710 MHz and generates two independent,
synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides
virtually any frequency translation combination across this operating range. The Si5326 input clock frequency and
clock multiplication ratios are programmable th rough an I
programmable from 60 Hz to 8 kHz, providing jitter performance optimization at the application level. Operating
from a single 1.8, 2.5, or 3.3 V suppl y, the Si5326 is ideal for providing clock multiplication and jitter atte nuation in
high-performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326,
Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.
2
C or SPI interface. The DSPLL loop bandwid th is digit ally
Figure 7. Si5326 Clock Multiplier and Jitter Attenuator Block Diagram
Rev. 0.523
Si53xx-RM
÷ N31
INT_C1B
Xtal or Re fc lo c k
÷ NC1
÷ NC2
Signal
Detect
VDD
GND
C2B
0
1
f
3
CKOUT_2 +
CKOUT_2 –
CKOUT_1 +
CKOUT_1 –
/
/
2
2
1
0
1
0
f
OSC
RATE[1:0 ]
LOL
CS_CA
SDA_SDO
INC
DEC
RST
SCL
Control
SDI
A[2]/SS
A[1:0]
XAXB
CMODE
CKIN_ 1 +
CKIN_ 1 –
2
2
CKIN_ 2 +
CKIN_ 2 –
÷ N32
0
1
3
BYPASS
÷ N2
DSPLL
÷ N1_HS
DSPLL
®
3.8. Si5327
The Si5327 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps jitter performance.
The Si5327 accepts dual clock inputs ranging from 2 kHz to 710 MHz and generates two independent,
synchronous clock outputs ranging from 2 kHz to 808 MHz. The device provides virtually any frequency translation
combination across this operating range. The Si5327 input clock frequency and clock multiplication ratios are
programmable through an I
jitter performance optimization at the application level. The Si5327 features loop bandwidth values as low as 4 Hz.
Operating from a single 1.8, 2. 5, or 3.3 V supply, the Si5327 is ideal for providing clock multiplication and jitter
attenuation in high-performance timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324,
Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.
2
C or SPI interface. The DSPLL loop bandwidth is digitally programmable, providing
Figure 8. Si5327 Clock Multiplier and Jitter Attenuator Block Diagram
24Rev. 0.5
Si53xx-RM
C2A
CS0_C3A
C2B
CS1_C4A
ALRMOUT
C1A
CKIN_1+
CKIN_1–
CKIN_2+
CKIN_2–
C3B
CKIN_3+
CKIN_3–
CKIN_4+
CKIN_4–
C1B
VDD
GND
CKOUT_1+
CKOUT_1–
÷ NC1
1
0
CKOUT_2+
CKOUT_2–
÷ NC2
1
0
CKOUT_3+
CKOUT_3–
÷ NC3
1
0
CKOUT_4+
CKOUT_4–
÷ NC4
1
0
2
2
2
2
2
2
2
2
f
OSC
f
3
DBL2_BY
DBL34
DBL5
BWSEL[1:0]
FRQSEL[3:0]
DIV34[1:0]
FOS_CTL
SFOUT[1:0]
RST
CMODE
AUTOSEL
BYPASS/
DSBL2
Control
÷ N3_2
÷ N3_1
÷ N3_3
÷ N3_4
CKOUT_5+
CKOUT_5–
÷ NC5
1
0
2
FRQTBL
DIV34[1:0]
÷ N1_HS
DSPLL
®
÷ N2
3.9. Si5365
The Si5365 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter
attenuation. The Si5365 accepts four clock inputs ranging from 19.44 MHz to 707 MHz and generates five
frequency-multiplied clock outputs ranging from 19.44 MHz to 1050 MHz. The input clock frequency and clock
multiplication ratio are selectable from a table of popular SONET, Ethernet, Fibre Channel, and broadcast video
rates. The DSPLL loop bandwidth is digitally selectable. Operating from a single 1.8, 2.5 V, or 3.3 V supply, the
Si5365 is ideal for providing clock multiplication in high performance timing applications. See "6. Pin Control Parts
(Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete descr iption.
The Si5366 is a jitter-attenuating precision clock multiplier for high-speed communication systems, including
SONET OC-48/OC-192, Etherne t, and Fibr e Chan nel. T he S i53 66 acce pts four clo ck inp uts ranging fr om 8 kHz to
707 MHz and generates five frequency-multiplied clock outputs ranging from 8 kHz to 1050 MHz. The input clock
frequency and clock multiplication ratio are selectable from a table of popular SONET, Ethernet, Fibre Channel,
and broadcast video (HD SDI, 3G SDI) rates. The DSPLL loop bandwidth is digitally selectable from 60 Hz to
8 kHz, providing jitter performance optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V
supply, the Si5366 is ideal for providing clock multiplication and jitter attenuation in high performance timing
applications. See "6. Pin Control Parts (Si5316, Si5322, Si5323, Si5365, Si5366)" on page 50 for a complete
description.
The Si5367 is a low jitter, precision clock multiplier for applications requiring clock multiplication without jitter
attenuation. The Si5367 accepts four clock inputs ranging from 10 to 707 MHz and generates five frequencymultiplied clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The Si5367 input clock
frequency and clock multiplication ratio are programmable through an I
bandwidth is digitally program mable from 150 kHz to 1.3 MHz. Operating from a single 1.8, 2.5, or 3.3 V supply, the
Si5367 is ideal for providing clock multiplication in high performance timing applications. See "7. Microprocessor
Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76
for a complete description.
2
C or SPI interface. The DSPLL loop
Figure 11. Si5367 Clock Multiplier Block Diagram
Rev. 0.527
Si53xx-RM
C2A
CS0_C3A
C2B
CS1_C4A
INT_ALM
C1A
CKIN_1+
CKIN_1–
CKIN_2+
CKIN_2–
C3B
CKIN_3+
CKIN_3–
CKIN_4+
CKIN_4–
C1B
CKIN_3
CKIN_4
CKOUT_2
VDD
GND
CKOUT_1+
CKOUT_1–
÷ NC1
1
0
CKOUT_2+
CKOUT_2–
÷ NC2
1
0
CKOUT_3+
CKOUT_3–
÷ NC3
1
0
CKOUT_4+
CKOUT_4–
÷ NC4
1
0
2
2
2
2
2
2
2
2
f
OSC
Xtal or Refc lock
RATE[1:0]
XA
XB
f
x
DSBL2/BYPASS
DSBL34
DSBL5
FSYNC
LOGIC/
ALIGN
SDA_SDO
SCL
SDI
A[1:0]
INC
DEC
FS_ALIGN
RST
CMODE
BYPASS/DSBL2
LOL
Control
÷ N3_2
÷ N3_1
FSYNC
÷ N2
÷ N3_3
÷ N3_4
CKOUT_5+
CKOUT_5–
÷ NC5
1
0
2
1
0
A[2]/SS
÷ N1_HS
DSPLL
®
f
3
3
3.12. Si5368
The Si5368 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter
performance. The Si5368 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five
independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The
device provides virtually any frequency translation combination across this operating range. The Si5368 input clock
frequency and clock multiplication ratio are programmable through an I
bandwidth is digitally programmable from 60 Hz to 8 kHz, providing jitter performance optimization at the
application level. Operating from a single 1.8, 2.5, or 3.3 V supply, the Si5368 is ideal for providing clock
multiplication and jitter attenuation in high performance timing applications. See "7. Microprocessor Controlled
Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367, Si5368, Si5369, Si5374, Si5375)" on page 76 for a
complete description.
2
C or SPI interface. The DSPLL loop
Figure 12. Si5368 Clock Multiplier and Jitter Attenuator Block Diagram
28Rev. 0.5
Si53xx-RM
C2A
CS0_C3A
C2B
CS1_C4A
INT_ALM
C1A
CKIN_1+
CKIN_1–
CKIN_2+
CKIN_2–
C3B
CKIN_3+
CKIN_3–
CKIN_4+
CKIN_4–
C1B
CKIN_3
CKIN_4
CKOUT_2
VDD
GND
CKOUT_1+
CKOUT_1–
÷ NC1
1
0
CKOUT_2+
CKOUT_2–
÷ NC2
1
0
CKOUT_3+
CKOUT_3–
÷ NC3
1
0
CKOUT_4+
CKOUT_4–
÷ NC4
1
0
2
2
2
2
2
2
2
2
f
OSC
Xtal or Refclock
RATE[1:0]
XA
XB
f
x
DSBL2/BYPASS
DSBL34
DSBL5
FSYNC
LOGIC/
ALIGN
SDA_SDO
SCL
SDI
A[1:0]
INC
DEC
FS_ALIGN
RST
CMODE
BYPASS/DSBL2
LOL
Control
÷ N3_2
÷ N3_1
FSYNC
÷ N2
÷ N3_3
÷ N3_4
CKOUT_5+
CKOUT_5–
÷ NC5
1
0
2
1
0
A[2]/SS
÷ N1_HS
DSPLL
®
f
3
3
3.13. Si5369
The Si5369 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter
performance. The Si5369 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five
independent, synchronous clock outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The
device provides virtually any frequency translation combination across this operating range. The Si5369 input clock
frequency and clock multiplication ratio are programmable through an I
bandwidth is digitally programmable, providing loop bandwidth values as low as 4 Hz. Operating from a single 1.8,
2.5, or 3.3 V supply, the Si5369 is ideal for providing clock multiplication and jitter attenuation in high performance
timing applications. See "7. Microprocessor Controlled Parts (Si5319, Si5324, Si5325, Si5326, Si5327, Si5367,
Si5368, Si5369, Si5374, Si5375)" on page 76 for a complete description.
2
C or SPI interface. The DSPLL loop
3.14. Si5374/75 Compared to Si5324/19
In general, the Si5374 can be viewed as a quad version of the Si5324 and the Si5375 can be viewed as a quad
version of the Si5319. However, there are not exactly the same. This is an overview of the difference s:
1. The Si5374/75 cannot use a crystal as its OSC reference. It requires the use of a single external single-ended
or differential crystal oscillator.
Figure 13. Si5369 Clock Multiplier and Jitter Attenuator Block Diagram
2. The Si5374/75 only supports I
available on the Si5374/75.
3. The Si5374/75 does not provide separate INT_CK1B and CK2B pins to indicate wh en CKIN1 and CKIN2 do not
have valid clock inputs. Instead, the IRQ pin can be programme d to function as one pin, the other pin or both.
4. Selection of the OSC frequency is done by a register (RATE_REG), not by using the RATE pins.
5. The Si5374/75 uses a different version of DSPLLsim: Si537xDSPLLsim.
6. The Si5374/75 does not support 3.3 V operation.
2
C as its serial port protocol and does not have SPI. No I2C address pins are
Rev. 0.529
Si53xx-RM
CKIN3P_B
CKOUT3N_B
÷ N31
DSPLL
®
B
÷ NC1
÷ NC2
CKIN3N_B
CKIN4P_B
÷ N32
CKIN4N_B
Internal
Osc
PLL Bypass
CKOUT3P_B
CKOUT4N_B
CKOUT4P_B
f
OSC
÷ NC1_HS
Input
Monitor
Hitless
Switch
PLL Bypass
f
3
÷ N2
Status / Control
PLL Bypass
High PSRR
Voltage Regulator
VDD_q
GND
Synthesis Stage
CKIN1P_A
CKOUT1N_A
÷ N31
DSPLL
®
A
÷ NC1
÷ NC2
CKIN1N_A
CKIN2P_A
÷ N32
CKIN2N_A
Internal
Osc
PLL Bypass
CKOUT1P_A
CKOUT2N_A
CKOUT2P_A
Output Stage
f
OSC
÷ NC1_HS
Input
Monitor
Hitless
Switch
PLL Bypass
f
3
÷ N2
PLL Bypass
Input Stage
CKIN7P_D
CKOUT7N_D
÷ N31
DSPLL
®
D
÷ NC1
÷ NC2
CKIN7N_D
CKIN8P_D
÷ N32
CKIN8N_D
Internal
Osc
PLL Bypass
CKOUT7P_D
CKOUT8N_D
CKOUT8P_D
f
OSC
÷ NC1_HS
Input
Monitor
Hitless
Switch
PLL Bypass
f
3
÷ N2
PLL Bypass
CKIN5P_C
CKOUT5N_C
÷ N31
DSPLL
®
C
÷ NC1
÷ NC2
CKIN5N_C
CKIN6P_C
÷ N32
CKIN6N_C
Internal
Osc
PLL Bypass
CKOUT5P_C
CKOUT6N_C
CKOUT6P_C
f
OSC
÷ NC1_HS
Input
Monitor
Hitless
Switch
PLL Bypass
f
3
÷ N2
PLL Bypass
RSTL_q
CS_q
SCL SDA
LOL_q
IRQ_q
Low Jitter
XO or Clock
OSC_P/N
3.15. Si5374
The Si5374 is a highly integrated , 4- PLL jit ter- atten uat ing precision clock multiplier for applications requiring sub 1
ps jitter performance. Each of the DSPLL® clock multiplier engines accepts two input clocks ranging from 2 kHz to
710 MHz and generates two independent, synchronous output clocks ranging from 2 kHz to 808 MHz. Each
DSPLL provides virtually any frequency translation across this operating range. For asynchronous, free-running
clock generation applications, the Si5374’s reference oscillator can be used as a clock source for the four DSPLLs.
The Si5374 input clock frequency and clock multiplication ratio are programmable through an I2C interface. The
Si5374 is based on Silicon Laboratories' 3rd-generation DSPLL® technology, which provides any-frequency
synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and
loop filter components. Each DSPLL loop bandwidth is digitally programmable from 4 to 525 Hz, providing jitter
performance optimization at the application level. The device operates from a single 1.8 or 2.5 V supply with onchip voltage regulators with excellent PSRR. The Si5374 is ideal for providing clock multiplication and jitter
attenuation in high port count optical line cards requiring independent timing domains.
Figure 14. Si5374 Functional Block Diagram
30Rev. 0.5
Loading...
+ 150 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.