Silicon Laboratories C8051F310, C8051F311, C8051F312, C8051F313, C8051F314 Technical data

...
C8051F310/1/2/3/4/5
8/16 kB ISP FLASH MCU Family
Analog Peripherals
- 10-Bit ADC (C8051F310/1/2/3 only)
Up to 200 ksps
Up to 21 or 17 external single-ended or differential
VREF from external pin or V
DD
Built-in temperature sensor
External conversion start input
- Comparators
Programmable hysteresis and response time
Configurable as interrupt or reset source
(Comparator0)
Low current (< 0.5 µA)
On-Chip Debug
- On-chip debug circuitry facilitates full speed,
non-intrusive in-system debug (no emulator required)
- Provides breakpoints, single stepping,
inspect/modify memory and registers
- Superior performance to emulation systems using
ICE-Chips, target pods, and sockets
- Complete development kit
Supply Voltage 2.7 to 3.6 V
- Typical operating current: 5 mA at 25 MHz;
11 µA at 32 kHz
- Typical stop mode current: 0.1 µA
- Temperature range: –40 to +85 °C
High Speed 8051 µC Core
- Pipelined instruction architecture; executes 70% of
instructions in 1 or 2
system clocks
- Up to 25 MIPS throughput with 25 MHz clock
- Expanded interrupt handler
Memory
- 1280 bytes internal data RAM (1024 + 256)
- 16 kB (C8051F310/1) or 8 kB (C8051F312/3/4/5)
Flash; In-system programmable in 512-byte sectors
Digital Peripherals
- 29/25 Port I/O; All 5 V tolerant with high sink current
- Hardware enhanced UART, SMBus™, and SPI™
serial ports
- Four general purpose 16-bit counter/timers
- 16-bit programmable counter array (PCA) with five
capture/compare modules
- Real time clock capability using PCA or timer and
external clock source
Clock Sources
- Internal oscillator: 24.5 MHz with ±2% accuracy
supports crystal-less UART operation
- External oscillator: Crystal, RC, C, or clock (1 or 2
pin modes)
- Can switch between clock sources on-the-fly; useful
in power saving modes
Packages
- 32-pin LQFP (C8051F310/2/4)
- 28-pin MLP (C8051F311/3/5)
ANALOG
PERIPHERALS
A M U X
TEMP
SENSOR
C8051F310/1/2/3 only
10-bit
200ksps
ADC
+
­+
-
VOLTAGE
COMPARATORS
DIGITAL I/O
UART
SMBus
SPI
PCA Timer 0 Timer 1 Timer 2 Timer 3
CROSSBAR
Port 0
Port 1
Port 2
Port 3
PROGRAMMABLE PRECISION INTERNAL
OSCILLATOR
HIGH-SPEED CONTROLLER CORE
16 kB/8 kB
ISP FLASH
14
INTERRUPTS
Rev. 1.5 10/04 Copyright © 2004 by Silicon Laboratories C8051F310/1/2/3/4/5
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
8051 CPU
(25MIPS)
DEBUG
CIRCUITRY
1280 B
SRAM
POR
WDT
C8051F310/1/2/3/4/5
Notes
2 Rev. 1.5
C8051F310/1/2/3/4/5

Table Of Contents

1. System Overview.................................................................................................... 17
1.1. CIP-51™ Microcontroller Core.......................................................................... 25
1.1.1. Fully 8051 Compatible.............................................................................. 25
1.1.2. Improved Throughput............................................................................... 25
1.1.3. Additional Features .................................................................................. 26
1.2. On-Chip Memory............................................................................................... 27
1.3. On-Chip Debug Circuitry................................................................................... 28
1.4. Programmable Digital I/O and Crossbar ........................................................... 29
1.5. Serial Ports ....................................................................................................... 30
1.6. Programmable Counter Array ........................................................................... 30
1.7. 10-Bit Analog to Digital Converter..................................................................... 31
1.8. Comparators ..................................................................................................... 32
2. Absolute Maximum Ratings .................................................................................. 33
3. Global DC Electrical Characteristics .................................................................... 34
4. Pinout and Package Definitions............................................................................ 35
5. 10-Bit ADC (ADC0, C8051F310/1/2/3 only) ........................................................... 43
5.1. Analog Multiplexer ............................................................................................ 44
5.2. Temperature Sensor ......................................................................................... 45
5.3. Modes of Operation .......................................................................................... 47
5.3.1. Starting a Conversion............................................................................... 47
5.3.2. Tracking Modes........................................................................................ 48
5.3.3. Settling Time Requirements..................................................................... 49
5.4. Programmable Window Detector ...................................................................... 54
5.4.1. Window Detector In Single-Ended Mode ................................................. 56
5.4.2. Window Detector In Differential Mode...................................................... 57
6. Voltage Reference (C8051F310/1/2/3 only)........................................................... 59
7. Comparators ........................................................................................................... 61
8. CIP-51 Microcontroller .......................................................................................... 71
8.1. Instruction Set ................................................................................................... 73
8.1.1. Instruction and CPU Timing ..................................................................... 73
8.1.2. MOVX Instruction and Program Memory ................................................. 73
8.2. Memory Organization........................................................................................ 77
8.2.1. Program Memory...................................................................................... 77
8.2.2. Data Memory............................................................................................ 78
8.2.3. General Purpose Registers ...................................................................... 78
8.2.4. Bit Addressable Locations........................................................................ 78
8.2.5. Stack ....................................................................................................... 78
8.2.6. Special Function Registers....................................................................... 79
8.2.7. Register Descriptions ............................................................................... 82
8.3. Interrupt Handler ............................................................................................... 86
8.3.1. MCU Interrupt Sources and Vectors ........................................................ 86
8.3.2. External Interrupts.................................................................................... 87
8.3.3. Interrupt Priorities ..................................................................................... 87
Rev. 1.5 3
C8051F310/1/2/3/4/5
8.3.4. Interrupt Latency ...................................................................................... 87
8.3.5. Interrupt Register Descriptions................................................................. 89
8.4. Power Management Modes .............................................................................. 94
8.4.1. Idle Mode.................................................................................................. 94
8.4.2. Stop Mode................................................................................................ 95
9. Reset Sources......................................................................................................... 97
9.1. Power-On Reset ............................................................................................... 98
9.2. Power-Fail Reset / VDD Monitor....................................................................... 99
9.3. External Reset ................................................................................................ 100
9.4. Missing Clock Detector Reset......................................................................... 100
9.5. Comparator0 Reset......................................................................................... 100
9.6. PCA Watchdog Timer Reset........................................................................... 100
9.7. Flash Error Reset............................................................................................ 100
9.8. Software Reset ............................................................................................... 101
10.Flash Memory ..................................................................................................... 103
10.1.Programming The Flash Memory ................................................................... 103
10.1.1.Flash Lock and Key Functions ............................................................... 103
10.1.2.Flash Erase Procedure .......................................................................... 103
10.1.3.Flash Write Procedure ........................................................................... 104
10.2.Non-volatile Data Storage .............................................................................. 105
10.3.Security Options ............................................................................................. 105
11.External RAM ........................................................................................................ 109
12.Oscillators ............................................................................................................. 111
12.1.Programmable Internal Oscillator ................................................................... 111
12.2.External Oscillator Drive Circuit...................................................................... 114
12.3.System Clock Selection.................................................................................. 114
12.4.External Crystal Example ............................................................................... 116
12.5.External RC Example ..................................................................................... 117
12.6.External Capacitor Example ........................................................................... 117
13.Port Input/Output ................................................................................................ 119
13.1.Priority Crossbar Decoder .............................................................................. 121
13.2.Port I/O Initialization ....................................................................................... 123
13.3.General Purpose Port I/O ............................................................................... 126
14.SMBus ................................................................................................................... 135
14.1.Supporting Documents................................................................................... 136
14.2.SMBus Configuration...................................................................................... 136
14.3.SMBus Operation ........................................................................................... 137
14.3.1.Arbitration............................................................................................... 137
14.3.2.Clock Low Extension.............................................................................. 138
14.3.3.SCL Low Timeout................................................................................... 138
14.3.4.SCL High (SMBus Free) Timeout .......................................................... 138
14.4.Using the SMBus............................................................................................ 139
14.4.1.SMBus Configuration Register............................................................... 140
14.4.2.SMB0CN Control Register ..................................................................... 143
14.4.3.Data Register ......................................................................................... 146
4 Rev. 1.5
C8051F310/1/2/3/4/5
14.5.SMBus Transfer Modes.................................................................................. 147
14.5.1.Master Transmitter Mode ....................................................................... 147
14.5.2.Master Receiver Mode........................................................................... 148
14.5.3.Slave Receiver Mode............................................................................. 149
14.5.4.Slave Transmitter Mode ......................................................................... 150
14.6.SMBus Status Decoding................................................................................. 151
15.UART0.................................................................................................................... 153
15.1.Enhanced Baud Rate Generation................................................................... 154
15.2.Operational Modes ......................................................................................... 155
15.2.1.8-Bit UART............................................................................................. 155
15.2.2.9-Bit UART............................................................................................. 156
15.3.Multiprocessor Communications .................................................................... 157
16.Enhanced Serial Peripheral Interface (SPI0)...................................................... 163
16.1.Signal Descriptions......................................................................................... 164
16.1.1.Master Out, Slave In (MOSI).................................................................. 164
16.1.2.Master In, Slave Out (MISO).................................................................. 164
16.1.3.Serial Clock (SCK) ................................................................................. 164
16.1.4.Slave Select (NSS) ................................................................................ 164
16.2.SPI0 Master Mode Operation ......................................................................... 165
16.3.SPI0 Slave Mode Operation ........................................................................... 167
16.4.SPI0 Interrupt Sources ................................................................................... 167
16.5.Serial Clock Timing......................................................................................... 168
16.6.SPI Special Function Registers...................................................................... 170
17.Timers ................................................................................................................... 177
17.1.Timer 0 and Timer 1 ....................................................................................... 177
17.1.1.Mode 0: 13-bit Counter/Timer ................................................................ 177
17.1.2.Mode 1: 16-bit Counter/Timer ................................................................ 179
17.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload...................................... 179
17.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)................................. 180
17.2.Timer 2 .......................................................................................................... 185
17.2.1.16-bit Timer with Auto-Reload................................................................ 185
17.2.2.8-bit Timers with Auto-Reload................................................................ 186
17.3.Timer 3 .......................................................................................................... 189
17.3.1.16-bit Timer with Auto-Reload................................................................ 189
17.3.2.8-bit Timers with Auto-Reload................................................................ 190
18.Programmable Counter Array ............................................................................ 193
18.1.PCA Counter/Timer ........................................................................................ 194
18.2.Capture/Compare Modules ............................................................................ 195
18.2.1.Edge-triggered Capture Mode................................................................ 196
18.2.2.Software Timer (Compare) Mode........................................................... 197
18.2.3.High-Speed Output Mode ...................................................................... 198
18.2.4.Frequency Output Mode ........................................................................ 199
18.2.5.8-Bit Pulse Width Modulator Mode......................................................... 200
18.2.6.16-Bit Pulse Width Modulator Mode....................................................... 201
18.3.Watchdog Timer Mode ................................................................................... 202
Rev. 1.5 5
C8051F310/1/2/3/4/5
18.3.1.Watchdog Timer Operation .................................................................... 202
18.3.2.Watchdog Timer Usage ......................................................................... 203
18.4.Register Descriptions for PCA........................................................................ 205
19.Revision Specific Behavior ................................................................................. 211
19.1.Revision Identification..................................................................................... 211
19.2.Reset Behavior............................................................................................... 211
19.2.1.Weak Pullups on GPIO Pins .................................................................. 211
19.2.2.VDD Monitor and the RST Pin ............................................................... 211
19.3.PCA Counter .................................................................................................. 212
20.C2 Interface ........................................................................................................... 213
20.1.C2 Interface Registers.................................................................................... 213
20.2.C2 Pin Sharing ............................................................................................... 215
Document Change List............................................................................................. 216
Contact Information.................................................................................................. 218
6 Rev. 1.5
C8051F310/1/2/3/4/5

List of Figures

1. System Overview
Figure 1.1. C8051F310 Block Diagram .................................................................... 19
Figure 1.2. C8051F311 Block Diagram .................................................................... 20
Figure 1.3. C8051F312 Block Diagram .................................................................... 21
Figure 1.4. C8051F313 Block Diagram .................................................................... 22
Figure 1.5. C8051F314 Block Diagram .................................................................... 23
Figure 1.6. C8051F315 Block Diagram .................................................................... 24
Figure 1.7. Comparison of Peak MCU Execution Speeds ....................................... 25
Figure 1.8. On-Chip Clock and Reset ...................................................................... 26
Figure 1.9. On-Board Memory Map.......................................................................... 27
Figure 1.10. Development/In-System Debug Diagram............................................. 28
Figure 1.11. Digital Crossbar Diagram ..................................................................... 29
Figure 1.12. PCA Block Diagram.............................................................................. 30
Figure 1.13. 10-Bit ADC Block Diagram................................................................... 31
Figure 1.14. Comparator0 Block Diagram ................................................................ 32
2. Absolute Maximum Ratings
3. Global DC Electrical Characteristics
4. Pinout and Package Definitions
Figure 4.1. LQFP-32 Pinout Diagram (Top View) .................................................... 37
Figure 4.2. LQFP-32 Package Diagram ................................................................... 38
Figure 4.3. MLP-28 Pinout Diagram (Top View) ...................................................... 39
Figure 4.4. MLP-28 Package Drawing ..................................................................... 40
Figure 4.5. Typical MLP-28 Landing Diagram .......................................................... 41
Figure 4.6. MLP-28 Solder Paste Recommendation ................................................ 42
5. 10-Bit ADC (ADC0, C8051F310/1/2/3 only)
Figure 5.1. ADC0 Functional Block Diagram............................................................ 43
Figure 5.2. Typical Temperature Sensor Transfer Function..................................... 45
Figure 5.3. Temperature Sensor Error with 1-Point Calibration ............................... 46
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing .............................. 48
Figure 5.5. ADC0 Equivalent Input Circuits .............................................................. 49
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data ... 56
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data ..... 56
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data ....... 57
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data.......... 57
6. Voltage Reference (C8051F310/1/2/3 only)
Figure 6.1. Voltage Reference Functional Block Diagram ....................................... 59
7. Comparators
Figure 7.1. Comparator0 Functional Block Diagram ................................................ 61
Figure 7.2. Comparator1 Functional Block Diagram ................................................ 62
Figure 7.3. Comparator Hysteresis Plot ................................................................... 63
8. CIP-51 Microcontroller
Figure 8.1. CIP-51 Block Diagram............................................................................ 71
Figure 8.2. Memory Map .......................................................................................... 77
Rev. 1.5 7
C8051F310/1/2/3/4/5
9. Reset Sources
Figure 9.1. Reset Sources........................................................................................ 97
Figure 9.2. Power-On and VDD Monitor Reset Timing ............................................ 98
10.Flash Memory
Figure 10.1. Flash Program Memory Map.............................................................. 105
11.External RAM
12.Oscillators
Figure 12.1. Oscillator Diagram.............................................................................. 111
Figure 12.2. 32.768 kHz External Crystal Example................................................ 116
13.Port Input/Output
Figure 13.1. Port I/O Functional Block Diagram ..................................................... 119
Figure 13.2. Port I/O Cell Block Diagram ............................................................... 120
Figure 13.3. Crossbar Priority Decoder with No Pins Skipped ............................... 121
Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped ........................ 122
14.SMBus
Figure 14.1. SMBus Block Diagram ....................................................................... 135
Figure 14.2. Typical SMBus Configuration ............................................................. 136
Figure 14.3. SMBus Transaction ............................................................................ 137
Figure 14.4. Typical SMBus SCL Generation......................................................... 141
Figure 14.5. Typical Master Transmitter Sequence................................................ 147
Figure 14.6. Typical Master Receiver Sequence.................................................... 148
Figure 14.7. Typical Slave Receiver Sequence...................................................... 149
Figure 14.8. Typical Slave Transmitter Sequence.................................................. 150
15.UART0
Figure 15.1. UART0 Block Diagram ....................................................................... 153
Figure 15.2. UART0 Baud Rate Logic .................................................................... 154
Figure 15.3. UART Interconnect Diagram .............................................................. 155
Figure 15.4. 8-Bit UART Timing Diagram............................................................... 155
Figure 15.5. 9-Bit UART Timing Diagram............................................................... 156
Figure 15.6. UART Multi-Processor Mode Interconnect Diagram .......................... 157
16.Enhanced Serial Peripheral Interface (SPI0)
Figure 16.1. SPI Block Diagram ............................................................................. 163
Figure 16.2. Multiple-Master Mode Connection Diagram ....................................... 166
Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram ............. 166
Figure 16.4. 4-Wire Single Master and Slave Mode Connection Diagram ............. 166
Figure 16.5. Master Mode Data/Clock Timing ........................................................ 168
Figure 16.6. Slave Mode Data/Clock Timing (CKPHA = 0) .................................... 169
Figure 16.7. Slave Mode Data/Clock Timing (CKPHA = 1) .................................... 169
Figure 16.8. SPI Master Timing (CKPHA = 0)........................................................ 173
Figure 16.9. SPI Master Timing (CKPHA = 1)........................................................ 173
Figure 16.10. SPI Slave Timing (CKPHA = 0)........................................................ 174
Figure 16.11. SPI Slave Timing (CKPHA = 1)........................................................ 174
17.Timers
Figure 17.1. T0 Mode 0 Block Diagram.................................................................. 178
Figure 17.2. T0 Mode 2 Block Diagram.................................................................. 179
8 Rev. 1.5
C8051F310/1/2/3/4/5
Figure 17.3. T0 Mode 3 Block Diagram.................................................................. 180
Figure 17.4. Timer 2 16-Bit Mode Block Diagram .................................................. 185
Figure 17.5. Timer 2 8-Bit Mode Block Diagram .................................................... 186
Figure 17.6. Timer 3 16-Bit Mode Block Diagram .................................................. 189
Figure 17.7. Timer 3 8-Bit Mode Block Diagram .................................................... 190
18.Programmable Counter Array
Figure 18.1. PCA Block Diagram............................................................................ 193
Figure 18.2. PCA Counter/Timer Block Diagram.................................................... 194
Figure 18.3. PCA Interrupt Block Diagram ............................................................. 195
Figure 18.4. PCA Capture Mode Diagram.............................................................. 196
Figure 18.5. PCA Software Timer Mode Diagram .................................................. 197
Figure 18.6. PCA High Speed Output Mode Diagram............................................ 198
Figure 18.7. PCA Frequency Output Mode ............................................................ 199
Figure 18.8. PCA 8-Bit PWM Mode Diagram ......................................................... 200
Figure 18.9. PCA 16-Bit PWM Mode...................................................................... 201
Figure 18.10. PCA Module 4 with Watchdog Timer Enabled ................................. 202
19.Revision Specific Behavior
Figure 19.1. Reading Package Marking ................................................................. 211
20.C2 Interface
Figure 20.1. Typical C2 Pin Sharing....................................................................... 215
Rev. 1.5 9
C8051F310/1/2/3/4/5
Notes
10 Rev. 1.5
C8051F310/1/2/3/4/5

List of Tables

1. System Overview
Table 1.1. Product Selection Guide ......................................................................... 18
2. Absolute Maximum Ratings
Table 2.1. Absolute Maximum Ratings .................................................................... 33
3. Global DC Electrical Characteristics
Table 3.1. Global DC Electrical Characteristics ....................................................... 34
4. Pinout and Package Definitions
Table 4.1. Pin Definitions for the C8051F31x .......................................................... 35
Table 4.2. LQFP-32 Package Dimensions .............................................................. 38
Table 4.3. MLP-28 Package Dimensions ................................................................ 40
5. 10-Bit ADC (ADC0, C8051F310/1/2/3 only)
Table 5.1. ADC0 Electrical Characteristics .............................................................. 58
6. Voltage Reference (C8051F310/1/2/3 only)
Table 6.1. External Voltage Reference Circuit Electrical Characteristics ................ 60
7. Comparators
Table 7.1. Comparator Electrical Characteristics .................................................... 70
8. CIP-51 Microcontroller
Table 8.1. CIP-51 Instruction Set Summary ............................................................ 73
Table 8.2. Special Function Register (SFR) Memory Map ...................................... 79
Table 8.3. Special Function Registers ..................................................................... 80
Table 8.4. Interrupt Summary .................................................................................. 88
9. Reset Sources
Table 9.1. Reset Electrical Characteristics ............................................................ 102
10.Flash Memory
Table 10.1. Flash Electrical Characteristics .......................................................... 104
11.External RAM
12.Oscillators
Table 12.1. Internal Oscillator Electrical Characteristics ....................................... 113
13.Port Input/Output
Table 13.1. Port I/O DC Electrical Characteristics ................................................. 133
14.SMBus
Table 14.1. SMBus Clock Source Selection .......................................................... 140
Table 14.2. Minimum SDA Setup and Hold Times ................................................ 141
Table 14.3. Sources for Hardware Changes to SMB0CN ..................................... 145
Table 14.4. SMBus Status Decoding ..................................................................... 151
15.UART0
Table 15.1. Timer Settings for Standard Baud Rates Using the Internal Oscillator 160 Table 15.2. Timer Settings for Standard Baud Rates Using an External
25 MHz Oscillator ............................................................................... 160
Table 15.3. Timer Settings for Standard Baud Rates Using an External
22.1184 MHz Oscillator ...................................................................... 161
Rev. 1.5 11
C8051F310/1/2/3/4/5
Table 15.4. Timer Settings for Standard Baud Rates Using an External
18.432 MHz Oscillator ........................................................................ 161
Table 15.5. Timer Settings for Standard Baud Rates Using an External
11.0592 MHz Oscillator ...................................................................... 162
Table 15.6. Timer Settings for Standard Baud Rates Using an External
3.6864 MHz Oscillator ........................................................................ 162
16.Enhanced Serial Peripheral Interface (SPI0)
Table 16.1. SPI Slave Timing Parameters ............................................................ 175
17.Timers
18.Programmable Counter Array
Table 18.1. PCA Timebase Input Options ............................................................. 194
Table 18.2. PCA0CPM Register Settings for PCA Capture/Compare Modules .... 195
Table 18.3. Watchdog Timer Timeout Intervals ..................................................... 204
19.Revision Specific Behavior
20.C2 Interface
12 Rev. 1.5
C8051F310/1/2/3/4/5

List of Registers

SFR Definition 5.1. AMX0P: AMUX0 Positive Channel Select . . . . . . . . . . . . . . . . . . . 50
SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select . . . . . . . . . . . . . . . . . . 51
SFR Definition 5.3. ADC0CF: ADC0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
SFR Definition 5.4. ADC0H: ADC0 Data Word MSB . . . . . . . . . . . . . . . . . . . . . . . . . . 52
SFR Definition 5.5. ADC0L: ADC0 Data Word LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
SFR Definition 5.6. ADC0CN: ADC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte . . . . . . . . . . . . . 54
SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte . . . . . . . . . . . . . . 54
SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte . . . . . . . . . . . . . . . . 55
SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte . . . . . . . . . . . . . . . . 55
SFR Definition 6.1. REF0CN: Reference Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
SFR Definition 7.1. CPT0CN: Comparator0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection . . . . . . . . . . . . . . . . . . . . 65
SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection . . . . . . . . . . . . . . . . . . . . 66
SFR Definition 7.4. CPT1CN: Comparator1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection . . . . . . . . . . . . . . . . . . . . 68
SFR Definition 7.6. CPT1MD: Comparator1 Mode Selection . . . . . . . . . . . . . . . . . . . . 69
SFR Definition 8.1. DPL: Data Pointer Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
SFR Definition 8.2. DPH: Data Pointer High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
SFR Definition 8.3. SP: Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
SFR Definition 8.4. PSW: Program Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
SFR Definition 8.5. ACC: Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
SFR Definition 8.6. B: B Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
SFR Definition 8.7. IE: Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
SFR Definition 8.8. IP: Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SFR Definition 8.9. EIE1: Extended Interrupt Enable 1 . . . . . . . . . . . . . . . . . . . . . . . . 91
SFR Definition 8.10. EIP1: Extended Interrupt Priority 1 . . . . . . . . . . . . . . . . . . . . . . . 92
SFR Definition 8.11. IT01CF: INT0/INT1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . 93
SFR Definition 8.12. PCON: Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
SFR Definition 9.1. VDM0CN: VDD Monitor Control . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SFR Definition 9.2. RSTSRC: Reset Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
SFR Definition 10.1. PSCTL: Program Store R/W Control . . . . . . . . . . . . . . . . . . . . . 107
SFR Definition 10.2. FLKEY: Flash Lock and Key . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SFR Definition 10.3. FLSCL: Flash Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
SFR Definition 11.1. EMI0CN: External Memory Interface Control . . . . . . . . . . . . . . 109
SFR Definition 12.1. OSCICL: Internal Oscillator Calibration . . . . . . . . . . . . . . . . . . . 112
SFR Definition 12.2. OSCICN: Internal Oscillator Control . . . . . . . . . . . . . . . . . . . . . 112
SFR Definition 12.3. CLKSEL: Clock Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SFR Definition 12.4. OSCXCN: External Oscillator Control . . . . . . . . . . . . . . . . . . . . 115
SFR Definition 13.1. XBR0: Port I/O Crossbar Register 0 . . . . . . . . . . . . . . . . . . . . . 124
SFR Definition 13.2. XBR1: Port I/O Crossbar Register 1 . . . . . . . . . . . . . . . . . . . . . 125
SFR Definition 13.3. P0: Port0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
SFR Definition 13.4. P0MDIN: Port0 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Rev. 1.5 13
C8051F310/1/2/3/4/5
SFR Definition 13.5. P0MDOUT: Port0 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . 127
SFR Definition 13.6. P0SKIP: Port0 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
SFR Definition 13.7. P1: Port1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
SFR Definition 13.8. P1MDIN: Port1 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
SFR Definition 13.9. P1MDOUT: Port1 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . 129
SFR Definition 13.10. P1SKIP: Port1 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
SFR Definition 13.11. P2: Port2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SFR Definition 13.12. P2MDIN: Port2 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SFR Definition 13.13. P2MDOUT: Port2 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 130
SFR Definition 13.14. P2SKIP: Port2 Skip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SFR Definition 13.15. P3: Port3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
SFR Definition 13.16. P3MDIN: Port3 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
SFR Definition 13.17. P3MDOUT: Port3 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 132
SFR Definition 14.1. SMB0CF: SMBus Clock/Configuration . . . . . . . . . . . . . . . . . . . 142
SFR Definition 14.2. SMB0CN: SMBus Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
SFR Definition 14.3. SMB0DAT: SMBus Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
SFR Definition 15.1. SCON0: Serial Port 0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . 158
SFR Definition 15.2. SBUF0: Serial (UART0) Port Data Buffer . . . . . . . . . . . . . . . . . 159
SFR Definition 16.1. SPI0CFG: SPI0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 170
SFR Definition 16.2. SPI0CN: SPI0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
SFR Definition 16.3. SPI0CKR: SPI0 Clock Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
SFR Definition 16.4. SPI0DAT: SPI0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
SFR Definition 17.1. TCON: Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
SFR Definition 17.2. TMOD: Timer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
SFR Definition 17.3. CKCON: Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
SFR Definition 17.4. TL0: Timer 0 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
SFR Definition 17.5. TL1: Timer 1 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
SFR Definition 17.6. TH0: Timer 0 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
SFR Definition 17.7. TH1: Timer 1 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
SFR Definition 17.8. TMR2CN: Timer 2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
SFR Definition 17.9. TMR2RLL: Timer 2 Reload Register Low Byte . . . . . . . . . . . . . 188
SFR Definition 17.10. TMR2RLH: Timer 2 Reload Register High Byte . . . . . . . . . . . 188
SFR Definition 17.11. TMR2L: Timer 2 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
SFR Definition 17.12. TMR2H Timer 2 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
SFR Definition 17.13. TMR3CN: Timer 3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
SFR Definition 17.14. TMR3RLL: Timer 3 Reload Register Low Byte . . . . . . . . . . . . 192
SFR Definition 17.15. TMR3RLH: Timer 3 Reload Register High Byte . . . . . . . . . . . 192
SFR Definition 17.16. TMR3L: Timer 3 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SFR Definition 17.17. TMR3H Timer 3 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
SFR Definition 18.1. PCA0CN: PCA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
SFR Definition 18.2. PCA0MD: PCA Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
SFR Definition 18.3. PCA0CPMn: PCA Capture/Compare Mode Registers . . . . . . . 207
SFR Definition 18.4. PCA0L: PCA Counter/Timer Low Byte . . . . . . . . . . . . . . . . . . . 208
SFR Definition 18.5. PCA0H: PCA Counter/Timer High Byte . . . . . . . . . . . . . . . . . . . 208
SFR Definition 18.6. PCA0CPLn: PCA Capture Module Low Byte . . . . . . . . . . . . . . . 208
14 Rev. 1.5
C8051F310/1/2/3/4/5
SFR Definition 18.7. PCA0CPHn: PCA Capture Module High Byte . . . . . . . . . . . . . . 209
C2 Register Definition 20.1. C2ADD: C2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
C2 Register Definition 20.2. DEVICEID: C2 Device ID . . . . . . . . . . . . . . . . . . . . . . . . 213
C2 Register Definition 20.3. REVID: C2 Revision ID . . . . . . . . . . . . . . . . . . . . . . . . . 214
C2 Register Definition 20.4. FPCTL: C2 Flash Programming Control . . . . . . . . . . . . 214
C2 Register Definition 20.5. FPDAT: C2 Flash Programming Data . . . . . . . . . . . . . . 214
Rev. 1.5 15
C8051F310/1/2/3/4/5
Notes
16 Rev. 1.5
C8051F310/1/2/3/4/5

1. System Overview

C8051F31x devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to
High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
In-system, full-speed, non-intrusive debug interface (on-chip)
True 10-bit 200 ksps 25-channel single-ended/differential ADC with analog multiplexer (C8051F310/1/2/3)
Precision programmable 25 MHz internal oscillator
16 kB (C8051F310/1) or 8 kB (C8051F312/3/4/5) of on-chip Flash memory
1280 bytes of on-chip RAM
SMBus/I2C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
Four general-purpose 16-bit timers
Programmable Counter/Timer Array (PCA) with five capture/compare modules and Watchdog Timer function
On-chip Power-On Reset, VDD Monitor, and Temperature Sensor
On-chip Voltage Comparators (2)
29/25 Port I/O (5 V tolerant)
With on-chip Power-On Reset, VDD monitor, Watchdog Timer, and clock oscillator, the C8051F31x devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed even in-cir
cuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User soft­ware has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.
Tab le 1.1 for specific product feature selection.
-
The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system programming and debugging without occupying package pins.
Each device is specified for 2.7-to-3.6 V operation over the industrial temperature range (–45 to +85 °C). The Port I/O and LQFP or a 28-pin MLP package.
RST pins are tolerant of input signals up to 5 V. The C8051F31x are available in a 32-pin
Rev. 1.5 17
C8051F310/1/2/3/4/5

Table 1.1. Product Selection Guide

MIPS (Peak)
Flash Memory
C8051F310 25 16 1280 3 3 3 3 4 3 29 3 3 2 LQFP-32
C8051F311 25 16 1280 3 3 3 3 4 3 25 3 3 2 MLP-28
C8051F312 25 8 1280 3 3 3 3 4 3 29 3 3 2 LQFP-32
C8051F313 25 8 1280 3 3 3 3 4 3 25 3 3 2 MLP-28
RAM
Calibrated Internal Oscillator
SMBus/I2C
Enhanced SPI
UART
Timers (16-bit)
Programmable Counter Array
Digital Port I/Os
10-bit 200ksps ADC
Temperature Sensor
Analog Comparators
Package
C8051F314 25 8 1280 3 3 3 3 4 3 29 2 LQFP-32
C8051F315 25 8 1280 3 3 3 3 4 3 25 2 MLP-28
18 Rev. 1.5
C8051F310/1/2/3/4/5
VDD
GND
/RST/C2CK
Analog/Digital
Power
C2D
XTAL1
XTAL2
POR
External
Oscillator
Circuit
2%
Internal
Oscillator
Debug HW
Brown-
Out
Reset
System Clock
8 0 5 1
C o
SFR Bus
r
e
16kbyte FLASH
256 byte
SRAM
1K byte
SRAM
Port 0
Latch
Port 1
Latch
UART
Timer
0,1,2,3 /
PCA/ WDT
SMBus
Port 2 Latch
Port 3
Latch
VDD
10-bit 200ksps ADC
RTC
SPI
VREF
P 0
D
r
v
C
P
R
1
O S
D
S
r
B
v
A R
P 2
D
r
v
P 3
D
r
v
CP0
+
-
CP1
+
-
Temp
A
AIN0-AIN20
M U X
VDD
P0.0/VREF P0.1 P0.2/XTAL1 P0.3/XTAL2 P0.4/TX P0.5/RX P0.6/CNVST P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0/C2D P3.1 P3.2 P3.3 P3.4

Figure 1.1. C8051F310 Block Diagram

Rev. 1.5 19
C8051F310/1/2/3/4/5
VDD
GND
/RST/C2CK
Analog/Digital
Power
C2D
XTAL1
XTAL2
POR
External
Oscillator
Circuit
2%
Internal
Oscillator
Debug HW
Brown-
Out
Reset
System Clock
8 0 5 1
C o
SFR Bus
r
e
16kbyte
FLASH
256 byte
SRAM
1K byte
SRAM
Port 0
Latch
Port 1
Latch
UART
Timer
0,1,2,3 /
SMBus
Port 2
Latch
Port 3
Latch
VDD
10-bit 200ksps ADC
RTC
PCA/ WDT
SPI
VREF
P 0
D
r
v
C
P
R
1
O S
D
S
r
B
v
A R
P 2
D
r
v
P 3
D
r
v
CP0
+
-
CP1
+
-
Temp
A
AIN0-AIN20
M U X
VDD
P0.0/VREF P0.1 P0.2/XTAL1 P0.3/XTAL2 P0.4/TX P0.5/RX P0.6/CNVST P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0/C2D

Figure 1.2. C8051F311 Block Diagram

20 Rev. 1.5
C8051F310/1/2/3/4/5
VDD
GND
/RST/C2CK
Analog/Digital
Power
C2D
XTAL1
XTAL2
POR
External
Oscillator
Circuit
2%
Internal
Oscillator
Debug HW
Brown-
Out
Reset
System Clock
8 0 5 1
C o
SFR Bus
r
e
8 kB
FLASH
256 byte
SRAM
1K byte
SRAM
Port 0
Latch
Port 1
Latch
UART
Timer
0,1,2,3 /
RTC
PCA/
WDT
SMBus
Port 2
Latch
Port 3
Latch
VDD
10-bit 200ksps ADC
SPI
VREF
CP0
CP1
Temp
VDD
+
-
+
-
A M U X
C R O S S B A R
AIN0-AIN20
P 0
D
r
v
P 1
D
r
v
P 2
D
r
v
P 3
D
r
v
P0.0/VREF P0.1 P0.2/XTAL1 P0.3/XTAL2 P0.4/TX P0.5/RX P0.6/CNVST P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0/C2D P3.1 P3.2 P3.3 P3.4

Figure 1.3. C8051F312 Block Diagram

Rev. 1.5 21
C8051F310/1/2/3/4/5
VDD
GND
/RST/C2CK
Analog/Digital
Power
C2D
XTAL1
XTAL2
POR
External
Oscillator
Circuit
2%
Internal
Oscillator
Debug HW
Brown-
Out
Reset
System Clock
8 0 5 1
C
o
SFR Bus
r
e
8 kB
FLASH
256 byte
SRAM
1K byte
SRAM
Port 0
Latch
Port 1
Latch
UART
Timer
0,1,2,3 /
RTC
PCA/ WDT
SMBus
Port 2
Latch
Port 3
Latch
VDD
10-bit 200ksps ADC
SPI
VREF
CP0
CP1
Temp
VDD
C R O S S B A R
+
-
+
-
A M U X
P 0
D
r
v
P 1
D
r
v
P
2
D
r v
P
3
D
r v
AIN0-AIN20
P0.0/VREF P0.1 P0.2/XTAL1 P0.3/XTAL2 P0.4/TX P0.5/RX P0.6/CNVST P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0/C2D

Figure 1.4. C8051F313 Block Diagram

22 Rev. 1.5
C8051F310/1/2/3/4/5
VDD
GND
/RST/C2CK
Analog/Digital
Power
C2D
XTAL1
XTAL2
POR
External
Oscillator
Circuit
2%
Internal
Oscillator
Debug HW
Brown-
Out
Reset
8 0 5 1
8 kB
FLASH
256 byte
SRAM
1K byte
SRAM
C
System Clock
o
SFR Bus
r e

Figure 1.5. C8051F314 Block Diagram

Port 0
Latch
Port 1
Latch
UART
Timer
0,1,2,3 /
RTC
PCA/ WDT
SMBus
SPI
Port 2
Latch
Port 3
Latch
P 0
D
r
v
C
P
R
1
O S
D
S
r
B
v
A R
P 2
D
r
v
P 3
D
r
v
CP0
+
-
CP1
+
-
P0.0/VREF P0.1 P0.2/XTAL1 P0.3/XTAL2 P0.4/TX P0.5/RX P0.6/CNVST P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0/C2D P3.1 P3.2 P3.3 P3.4
Rev. 1.5 23
C8051F310/1/2/3/4/5
VDD
GND
/RST/C2CK
Analog/Digital
Power
C2D
XTAL1
XTAL2
POR
External
Oscillator
Circuit
2%
Internal
Oscillator
Debug HW
Brown-
Out
Reset
System Clock
8 0 5 1
C
o
SFR Bus
r
e
8 kB
FLASH
256 byte
SRAM
1K byte
SRAM
Port 0
Latch
Port 1
Latch
UART
Timer
0,1,2,3 /
RTC
PCA/ WDT
SMBus
SPI
Port 2 Latch
Port 3
Latch
P 0
D
r
v
C
P
R
1
O S
D
S
r
B
v
A R
P 2
D
r v
P 3
D
r v
CP0
+
-
CP1
+
-
P0.0/VREF P0.1 P0.2/XTAL1 P0.3/XTAL2 P0.4/TX P0.5/RX P0.6/CNVST P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0/C2D

Figure 1.6. C8051F315 Block Diagram

24 Rev. 1.5
C8051F310/1/2/3/4/5

1.1. CIP-51™ Microcontroller Core

1.1.1. Fully 8051 Compatible

The C8051F31x family utilizes Silicon Labs' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The CIP-51 core offers all the peripherals included with a standard 8052, including four 16-bit counter/timers, a full-duplex UART with extended baud rate configuration, an enhanced SPI port, 1280 pins.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan­dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of 12-to-24 cutes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.
The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.
bytes of internal RAM, 128 byte Special Function Register (SFR) address space, and 29/25 I/O
MHz. By contrast, the CIP-51 core exe-
Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8
Number of Instructions 26 50 5 14 7 3 1 2 1
With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. Figure 1.7 shows a comparison of peak throughputs for various 8-bit microcontroller cores with their maximum sys­tem clocks.
25
20
15
MIPS
10
5
Silicon Labs
CIP-51
(25 MHz clk)
Microchip
PIC17C75x
(33 MHz clk)
Philips
80C51
(33 MHz clk)
ADuC812
8051
(16 MHz clk)

Figure 1.7. Comparison of Peak MCU Execution Speeds

Rev. 1.5 25
C8051F310/1/2/3/4/5

1.1.3. Additional Features

The C8051F31x SoC family includes several key enhancements to the CIP-51 core and peripherals to improve performance and ease of use in end applications.
The extended interrupt handler provides 14 interrupt sources into the CIP-51 (as opposed to 7 for the stan­dard 8051), allowing numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.
Eight reset sources are available: power-on reset circuitry (POR), an on-chip VDD monitor (forces reset when power supply voltage drops below V Missing Clock Detector, a voltage level detection from Comparator0, a forced software reset, an external
reset pin, and an errant Flash read/write protection circuit. Each reset source except for the POR, Reset Input Pin, or Flash error may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.
The internal oscillator is factory calibrated to 24.5 MHz ±2%. An external oscillator drive circuit is also included, allowing an external crystal, ceramic resonator, capacitor, RC, or CMOS clock source to generate the system clock. If desired, the system clock source may be switched on-the-fly between the internal and external oscillator circuits. An external oscillator can be extremely useful in low power applications, allow ing the MCU to run from a slow (power saving) external crystal source, while periodically switching to the fast internal oscillator as needed.
as given in Ta bl e 9.1 on page 102), a Watchdog Timer, a
RST
-
XTAL1
XTAL2
Internal
Oscillator
External Oscillator
Drive
Px.x
Px.x
VDD
Supply Monitor
Comparator 0
+
-
System Clock
Clock Select
C0RSEF
Missing
Clock
Detector
(one-
shot)
EN
MCD
Enable
CIP-51
Microcontroller
PCA WDT
EN
WDT
Enable
+
-
System Reset
Enable
(Software Reset)
SWRSF
'0'
Core
Extended Interrupt
Handler

Figure 1.8. On-Chip Clock and Reset

Power On
Reset
Operation
Errant
FLASH
(wired-OR)
Reset Funnel
/RST
26 Rev. 1.5
C8051F310/1/2/3/4/5

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.
Program memory consists of 8 or 16 kB of Flash. This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip programming voltage. See memory map.
Figure 1.9 for the MCU system
PROGRAM/DATA MEMORY
(Flash)
C8051F310/1
0x3E00
0x3DFF
0x0000
0x2000
0x1FFF
RESERVED
16 kB Flash
(In-System
Programmable in 512
Byte Sectors)
C8051F312/3/4/5
RESERVED
0xFF
0x80 0x7F
0x30 0x2F
0x20 0x1F
0x00
0xFFFF
DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE
Upper 128 RAM
(Indirect Addressing
Only)
(Direct and Indirect
Addressing)
Bit Addressable
General Purpose
Registers
Special Function
Register's
(Direct Addressing Only)
Lower 128 RAM (Direct and Indirect Addressing)
EXTERNAL DATA ADDRESS SPACE
Same 1024 bytes as from
0x0000 to 0x03FF, wrapped
on 1 kB boundaries
0x0000
8 kB Flash
(In-System
Programmable in 512
Byte Sectors)

Figure 1.9. On-Board Memory Map

0x0400
0x03FF
0x0000
XRAM - 1024 Bytes
(accessable using MOVX
instruction)
Rev. 1.5 27
C8051F310/1/2/3/4/5

1.3. On-Chip Debug Circuitry

The C8051F31x devices include on-chip Silicon Labs 2-Wire (C2) debug circuitry that provides non-intru­sive, full speed, in-circuit debugging of the production part installed in the end application.
Silicon Labs' debugging system supports inspection and modification of memory and registers, break­points, and single stepping. No additional target RAM, program memory, timers, or communications chan­nels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.
The C8051F310DK development kit provides all the hardware and software necessary to develop applica­tion code and perform in-circuit debugging with the C8051F31x MCUs. The kit includes software with a developer's studio and debugger, an integrated 8051 assembler, a serial adapter, a target application board with the associated MCU installed, and the required cables and wall-mount power supply. The Serial Adapter takes its power from the application board. For applications where there is not sufficient power available from the target board, the provided power supply can be connected directly to the Serial Adapter.
The Silicon Labs IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to be socketed. Silicon Labs' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.
Silicon Laboratories Integrated
Development Environment
WINDOWS 95 or later
Serial
Adapter
C2 (x2), VDD, GND
VDD GND
C8051F31x
TARGET PCB

Figure 1.10. Development/In-System Debug Diagram

28 Rev. 1.5
C8051F310/1/2/3/4/5

1.4. Programmable Digital I/O and Crossbar

C8051F310/2/4 devices include 29 I/O pins (three byte-wide Ports and one 5-bit-wide Port); C8051F311/3/5 devices include 25 I/O pins (three byte-wide Ports and one 1-bit-wide Port). The C8051F31x Ports behave like typical 8051 Ports with a few enhancements. Each Port pin may be config ured as an analog input or a digital I/O pin. Pins selected as digital I/Os may additionally be configured for push-pull or open-drain output. The “weak pullups” that are fixed on typical 8051 devices may be globally disabled, providing power savings capabilities.
The Digital Crossbar allows mapping of internal digital system resources to Port I/O pins (See Figure 1.11). On-chip counter/timers, serial buses, HW interrupts, comparator output, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.
-
Highest
Priority
Lowest Priority
XBR0, XBR1,
PnSKIP Registers
PnMDOUT,
PnMDIN Registers
Priority
Decoder
UART
SPI
SMBus
CP0
Outputs
CP1
Outputs
SYSCLK
(Internal Digital Signals)
PCA
T0, T1
P0
(P0.0-P0.7)
P1
(P1.0-P1.7)
P2
P3
(P2.0-P2.3)
(P2.4-P2.7)
(P3.0-P3.4)
(Port Latches)
2
4
2
2
2
6
2
8
8
4
4
5
Digital
Crossbar
8
8
4
P0
I/O
Cells
P1
I/O
Cells
P2
84
I/O
Cells
P3
5
I/O
Cells
Note: P3.1-P3.4 only available
on the C8051F310/2/4
P0.0
P0.7
P1.0
P1.7
P2.0
P2.7
P3.0
P3.4

Figure 1.11. Digital Crossbar Diagram

Rev. 1.5 29
C8051F310/1/2/3/4/5

1.5. Serial Ports

The C8051F31x Family includes an SMBus/I2C interface, a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.6. Programmable Counter Array

An on-chip Programmable Counter/Timer Array (PCA) is included in addition to the four 16-bit general pur­pose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with five programma­ble capture/compare modules. The PCA clock is derived from one of six sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflows, an External Clock Input (ECI), the system clock, or the external oscillator clock source divided by 8. The external clock source selection is useful for real-time clock functionality, where the PCA is clocked by an external source while the internal oscillator drives the system clock.
Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software Timer, High Speed Output, 8- or 16-bit Pulse Width Modulator, or Frequency Output. Additionally, Capture/Compare Module 4 offers watchdog timer (WDT) capabilities. Following a system reset, Module 4 is configured and enabled in WDT mode. The PCA Capture/Compare Module I/O and External Clock Input may be routed to Port I/O via the Digital Crossbar.
SYSCLK/12
SYSCLK/4
Timer 0 Overflow
ECI
SYSCLK
External Clock/8
Capture/Compare
Module 0
ECI
CEX0
PCA
CLOCK
MUX
Capture/Compare
Module 1
CEX1
16-Bit Counter/Timer
Capture/Compare
Module 2
CEX2
Capture/Compare
Module 3
CEX3
Capture/Compare
Module 4 / WDT
CEX4
Crossbar
Port I/O

Figure 1.12. PCA Block Diagram

30 Rev. 1.5
C8051F310/1/2/3/4/5

1.7. 10-Bit Analog to Digital Converter

The C8051F310/1/2/3 devices include an on-chip 10-bit SAR ADC with a 25-channel differential input mul­tiplexer. With a maximum throughput of 200 ksps, the ADC offers true 10-bit accuracy with an INL of ±1LSB. The ADC system includes a configurable analog multiplexer that selects both positive and nega tive ADC inputs. Ports1-3 are available as an ADC inputs; additionally, the on-chip Temperature Sensor output and the power supply voltage (V
) are available as ADC inputs. User firmware may shut down the
DD
ADC to save power.
Conversions can be started in six ways: a software command, an overflow of Timer 0, 1, 2, or 3, or an external convert start signal. This flexibility allows the start of conversion to be triggered by software events, a periodic signal (timer overflows), or external HW signals. Conversion completions are indicated by a status bit and an interrupt (if enabled). The resulting 10-bit data word is latched into the ADC data SFRs upon completion of a conversion.
Window compare registers for the ADC data can be configured to interrupt the controller when ADC data is either within or outside of a specified range. The ADC can monitor a key voltage continuously in back ground mode, but not interrupt the controller unless the converted data is within/outside the specified range.
-
-
P3.1-3.4
available on
C8051F310/2
Temp
Sensor
P3.1-3.4
available on
C8051F310/2
Analog Multiplexer
P1.0
P1.7 P2.0
P2.7 P3.0
P3.4
VDD
P1.0
P1.7 P2.0
P2.7 P3.0
P3.4
GND
23-to-1
AMUX
22-to-1
AMUX
Configuration, Control, and Data Registers
(+)
10-Bit
SAR
(-)
ADC
End of Conversion Interrupt
Start
Conversion
16
Window Compare
000 AD0BUSY (W)
001
010
011
100
101
Logic
Timer 0 Overflow
Timer 2 Overflow
Timer 1 Overflow
CNVSTR Input
Timer 3 Overflow
ADC Data
Registers
Window Compare Interrupt

Figure 1.13. 10-Bit ADC Block Diagram

Rev. 1.5 31
C8051F310/1/2/3/4/5

1.8. Comparators

C8051F31x devices include two on-chip voltage comparators that are enabled/disabled and configured via user software. Port I/O pins may be configured as comparator inputs via a selection mux. Two comparator outputs may be routed to a Port pin if desired: a latched output and/or an unlatched (asynchronous) output. Comparator response time is programmable, allowing the user to select between high-speed and low­power modes. Positive and negative hysteresis are also configurable.
Comparator interrupts may be generated on rising, falling, or both edges. When in IDLE mode, these inter­rupts may be used as a “wake-up” source. Comparator0 may also be configured as a reset source. Figure 1.14 shows he Comparator0 block diagram.
CP0EN
CP0OUT
CMX0N1
CMX0N0
CPT0MX
CMX0P1
CMX0P0
P1.0
P1.4
P2.0
P2.4
P1.1
P1.5
P2.1
P2.5
CP0RIF
CP0FIF
CP0HYP1
CPT0CN
CP0HYP0
CP0HYN1
CP0HYN0
CP0 +
CP0 -
VDD
CP0
Interrupt
CP0
Rising-edge
CP0
Falling-edge
Interrupt
Logic
+
-
SET
D
(SYNCHRONIZER)
SET
D
Q
Q
CLR
CLR
Q
Q
Crossbar
GND
CP0
CP0A
Reset
Decision
Tree
CP0RIE
CP0FIE
CPT0MD
CP0MD1
CP0MD0

Figure 1.14. Comparator0 Block Diagram

32 Rev. 1.5

2. Absolute Maximum Ratings

C8051F310/1/2/3/4/5
Table 2.1. Absolute Maximum Ratings
Parameter Conditions Min Typ Max Units
Ambient temperature under bias –55 125 °C
Storage Temperature –65 150 °C
DD
with
and
or any
Voltage on any Port I/O Pin or RST respect to GND
Voltage on V
Maximum Total current through V GND
Maximum output current sunk by RST Port pin
*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other condi­tions above those indicated in the operation listings of this specification is not implied. Exposure to maxi­mum rating conditions for extended periods may affect device reliability.
with respect to GND –0.3 4.2 V
DD
–0.3 5.8 V
——500mA
——100mA
*
Rev. 1.5 33
C8051F310/1/2/3/4/5

3. Global DC Electrical Characteristics

Table 3.1. Global DC Electrical Characteristics

–40°C to +85°C, 25 MHz System Clock unless otherwise specified.
Parameter Conditions Min Typ Max Units
Digital Supply Voltage
V
RST
3.0 3.6 V
Digital Supply Current with CPU active
Digital Supply Current with CPU inactive (not accessing Flash)
Digital Supply Current (shut-
V
= 2.7 V, Clock = 25 MHz
DD
= 2.7 V, Clock = 1 MHz
V
DD
V
= 2.7 V, Clock = 32 kHz
DD
V
= 2.7 V, Clock = 25 MHz
DD
= 2.7 V, Clock = 1 MHz
V
DD
V
= 2.7 V, Clock = 32 kHz
DD
—6.4
0.36 9
—3.2
180
5.5
—mA
—mA
Oscillator not running < 0.1 µA
mA
µA
µA µA
down)
Digital Supply RAM Data
—1.5— V
Retention Voltage
Specified Operating Temper-
–40 +85 °C
ature Range
SYSCLK (system clock fre-
0
—25MHz
quency)
Tsysl (SYSCLK low time) 18 ns
Tsysh (SYSCLK high time) 18 ns
Given in Table 9.1 on page 102.
SYSCLK must be at least 32 kHz to enable debugging.
34 Rev. 1.5

4. Pinout and Package Definitions

Table 4.1. Pin Definitions for the C8051F31x

Pin Numbers
Name
‘F310/2/4 ‘F311/3/5
Type Description
C8051F310/1/2/3/4/5
V
DD
GND 3 3 Ground.
RST/
C2CK
P3.0/
C2D
P0.0/
VREF
P0.1 1 1 D I/O Port 0.1. See Section 13 for a complete description.
P0.2/
XTAL1
P0.3/
4 4
D I/O
5 5
D I/O
D I/O
6 6
D I/O
D I/O
2 2
A In
D I/O
32 28
A In
D I/O
Power Supply Voltage.
Device Reset. Open-drain output of internal POR. An exter­nal source can initiate a system reset by driving this pin low for at least 10
Clock signal for the C2 Debug Interface.
Port 3.0. See Section 13 for a complete description.
Bi-directional data signal for the C2 Debug Interface.
Port 0.0. See Section 13 for a complete description.
External VREF input. (‘F310/1/2/3 only)
Port 0.2. See Section 13 for a complete description.
External Clock Input. This pin is the external oscillator return for a crystal or resonator.
Port 0.3. See Section 13 for a complete description.
µs.
31 27
A Out or
XTAL2
P0.4 30 26 D I/O Port 0.4. See Section 13 for a complete description.
P0.5 29 25 D I/O Port 0.5. See Section 13 for a complete description.
P0.6/
28 24
CNVSTR
P0.7 27 23 D I/O Port 0.7. See Section 13 for a complete description.
P1.0 26 22
P1.1 25 21
P1.2 24 20
D In
D I/O or
A In
D I/O or
A In
D I/O or
A In
External Clock Output. For an external crystal or resonator, this pin is the excitation driver. This pin is the external clock input for CMOS, capacitor, or RC oscillator configurations.
Port 0.6. See Section 13 for a complete description.
ADC0 External Convert Start Input. (‘F310/1/2/3 only)
Port 1.0. See Section 13 for a complete description.
Port 1.1. See Section 13 for a complete description.
Port 1.2. See Section 13 for a complete description.
Rev. 1.5 35
C8051F310/1/2/3/4/5
Table 4.1. Pin Definitions for the C8051F31x (Continued)
Pin Numbers
Name
‘F310/2/4 ‘F311/3/5
Type Description
P1.3 23 19
P1.4 22 18
P1.5 21 17
P1.6 20 16
P1.7 19 15
P2.0 18 14
P2.1 17 13
P2.2 16 12
P2.3 15 11
P2.4 14 10
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
Port 1.3. See Section 13 for a complete description.
Port 1.4. See Section 13 for a complete description.
Port 1.5. See Section 13 for a complete description.
Port 1.6. See Section 13 for a complete description.
Port 1.7. See Section 13 for a complete description.
Port 2.0. See Section 13 for a complete description.
Port 2.1. See Section 13 for a complete description.
Port 2.2. See Section 13 for a complete description.
Port 2.3. See Section 13 for a complete description.
Port 2.4. See Section 13 for a complete description.
P2.5 13 9
P2.6 12 8
P2.7 11 7
P3.1 7
P3.2 8
P3.3 9
P3.4 10
36 Rev. 1.5
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
D I/O or
A In
Port 2.5. See Section 13 for a complete description.
Port 2.6. See Section 13 for a complete description.
Port 2.7. See Section 13 for a complete description.
Port 3.1. See Section 13 for a complete description.
Port 3.2. See Section 13 for a complete description.
Port 3.3. See Section 13 for a complete description.
Port 3.4. See Section 13 for a complete description.
P0.2
32
P0.3
31
P0.4
30
P0.5
29
C8051F310/1/2/3/4/5
P1.1
P1.0
P0.7
P0.6
28
27
26
25
P0.1
P0.0
GND
/RST/C2CK
P3.0/C2D
P3.1
P3.2
1
2
3
4
5
6
7
8
C8051F310/2/4
Top View
9
10
11
12
P3.3
P3.4
P2.6
P2.7
13
P2.5
14
P2.4
15
P2.3
16
P2.2

Figure 4.1. LQFP-32 Pinout Diagram (Top View)

24
23
22
21
20
19
18
17
P1.2
P1.3
P1.4
P1.5VDD
P1.6
P1.7
P2.0
P2.1
Rev. 1.5 37
C8051F310/1/2/3/4/5
32
PIN 1
IDENTIFIER
A2
L
D
Table 4.2. LQFP-32
Package Dimensions
D1
MIN TYP MAX
A- -1.60 A1 0.05 - 0.15 A2 1.35 1.40 1.45
b 0.30 0.37 0.45
E1
1
E
D-9.00­D1 - 7.00 -
e-0.80-
E-9.00­E1 - 7.00 -
L 0.45 0.60 0.75
MM
A
A1
eb

Figure 4.2. LQFP-32 Package Diagram

38 Rev. 1.5
C8051F310/1/2/3/4/5
GND
P0.1
P0.0
GND
VDD
/RST/C2CK
P3.0/C2D
P2.7
P0.2
28
1
2
3
P0.3
27
P0.4
26
P0.5
25
P0.6
24
P0.7
23
P1.0
22
21
20
19
P1.1
P1.2
P1.3
C8051F311/3/5
4
18
P1.4
Top View
5
6
GND
7
8
9
10
11
12
13
14
17
16
15
P1.5
P1.6
P1.7
P2.6
P2.5
P2.4
P2.3
P2.2
P2.1
P2.0

Figure 4.3. MLP-28 Pinout Diagram (Top View)

Rev. 1.5 39
C8051F310/1/2/3/4/5
Bottom View
Table 4.3. MLP-28
Package Dimensions
8
9
L
7
6
b
5
4
e
3
2
1
DETAIL 1
28
D2
2
27
10
26
11
D2
25
6 x e
D
E2
12
24
13
14
MIN TYP MAX
15
16
17
E2
2
23
R
22
18
6 x e
19
20
21
A 0.80 0.90 1.00 A1 0 0.02 0.05 A2 0 0.65 1.00 A3 - 0.25 -
b 0.18 0.23 0.30
D-5.00-
E
D2 2.90 3.15 3.35
E-5.00­E2 2.90 3.15 3.35
e-0.5-
L 0.45 0.55 0.65
N-28-
ND - 7 ­NE - 7 -
R0.09 - -
AA - 0.435 ­BB - 0.435 ­CC - 0.18 ­DD - 0.18 -
MM
Side View
A3
DETAIL 1
A2
e
AA
BB
CC
DD
A
A1

Figure 4.4. MLP-28 Package Drawing

40 Rev. 1.5
C8051F310/1/2/3/4/5
Top View
0.85 mm
0.50 mm
0.20 mm
0.30 mm
0.20 mm
0.50 mm
0.20 mm
Optional
GND
Connection
0.20 mm
0.30 mm
0.50 mm
0.10 mm
0.35 mm
b
D2
L
E2
e
D
0.85 mm
0.50 mm
0.10 mm
0.35 mm
E

Figure 4.5. Typical MLP-28 Landing Diagram

Rev. 1.5 41
C8051F310/1/2/3/4/5
0.20 mm
0.50 mm
Top View
0.20 mm
0.85 mm
0.30 mm
0.50 mm
0.20 mm
0.20 mm
0.50 mm
0.10 mm
0.60 mm
0.60 mm
0.70 mm
b
L
e
E2
0.30 mm
0.20 mm
0.40 mm
0.35 mm
D2
D
0.30 mm
0.50 mm
0.85 mm
0.35 mm
0.10 mm

Figure 4.6. MLP-28 Solder Paste Recommendation

42 Rev. 1.5
E
C8051F310/1/2/3/4/5

5. 10-Bit ADC (ADC0, C8051F310/1/2/3 only)

The ADC0 subsystem for the C8051F310/1/2/3 consists of two analog multiplexers (referred to collectively as AMUX0) with 25 total input selections, and a 200 with integrated track-and-hold and programmable window detector. The AMUX0, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in
Figure 5.1. ADC0 operates in both Single-ended and Differential modes, and may be configured to mea-
sure P1.0-P3.4, the Temperature Sensor output, or VDD with respect to P1.0-P3.4, VREF, or GND. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to
logic
1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.
ksps, 10-bit successive-approximation-register ADC
P3.1-3.4
available on
C8051F310/2
Temp
Sensor
P3.1-3.4
available on
C8051F310/2
P1.0
P1.7 P2.0
P2.7 P3.0
P3.4
VDD
P1.0
P1.7 P2.0
P2.7 P3.0
P3.4
VREF
GND
23-to-1
AMUX
AMX0P
AMX0P4
AMX0P3
AMX0P2
AMX0P1
AMX0P0
VDD
(+)
10-Bit
AD0EN
ADC0CN
AD0TM
AD0INT
AD0BUSY
SAR
23-to-1
AMUX
AMX0N
AMX0N4
(-)
AD0SC2
AD0SC3
AMX0N3
AMX0N2
AMX0N1
AD0SC4
AMX0N0
ADC0CF
AD0SC1
AD0SC0
AD0LJST
ADC
REF
SYSCLK
ADC0LTH
ADC0GTH ADC0GTL

Figure 5.1. ADC0 Functional Block Diagram

AD0CM1
AD0CM2
AD0WINT
Start
Conversion
ADC0LTL
AD0CM0
000 AD0BUSY (W)
Timer 0 Overflow
001
Timer 2 Overflow
010
Timer 1 Overflow
011
100
CNVSTR Input
101 Timer 3 Overflow
ADC0L
ADC0H
AD0WINT
Window
Compare
32
Logic
Rev. 1.5 43
C8051F310/1/2/3/4/5

5.1. Analog Multiplexer

AMUX0 selects the positive and negative inputs to the ADC. Any of the following may be selected as the positive input: P1.0-P3.4, the on-chip temperature sensor, or the positive power supply (V
following may be selected as the negative input: P1.0-P3.4, VREF, or GND. When GND is selected as
the negative input, ADC0 operates in Single-ended Mode; all other times, ADC0 operates in Differ ential Mode. The ADC0 input channels are selected in the AMX0P and AMX0N registers as described in
SFR Definition 5.1 and SFR Definition 5.2.
The conversion code format differs between Single-ended and Differential modes. The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.0). When in Single-ended Mode, conversion codes are represented as 10-bit unsigned integers. Inputs are measured from ‘0’ to VREF * 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to ‘0’.
). Any of the
DD
-
Input Voltage Right-Justified ADC0H:ADC0L
(AD0LJST = 0)
VREF x 1023/1024 0x03FF 0xFFC0
VREF x 512/1024 0x0200 0x8000 VREF x 256/1024 0x0100 0x4000
0 0x0000 0x0000
When in Differential Mode, conversion codes are represented as 10-bit signed 2’s complement numbers. Inputs are measured from -VREF to VREF * 511/512. Example codes are shown below for both right-justi fied and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the data word. For left-justified data, the unused LSBs in the ADC0L register are set to ‘0’.
Input Voltage Right-Justified ADC0H:ADC0L
(AD0LJST = 0)
VREF x 511/512 0x01FF 0x7FC0 VREF x 256/512 0x0100 0x4000
0 0x0000 0x0000
–VREF x 256/512 0xFF00 0xC000
–VREF 0xFE00 0x8000
Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be config­ured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to ‘0’ the corresponding bit in register PnMDIN (for n = 0,1,2,3). To force the Crossbar to skip a Port pin, set to ‘1’ the corresponding bit in register PnSKIP (for n = 0,1,2). See
Output” on page 119 for more Port I/O configuration details.
Left-Justified ADC0H:ADC0L
(AD0LJST = 1)
Left-Justified ADC0H:ADC0L
(AD0LJST = 1)
Section “13. Port Input/
-
44 Rev. 1.5

5.2. Temperature Sensor

C8051F310/1/2/3/4/5
The typical temperature sensor transfer function is shown in Figure 5.2. The output voltage (V
TEMP
) is the
positive ADC input when the temperature sensor is selected by bits AMX0P4-0 in register AMX0P.
(mV)
1200
1100
1000
900
800
700
0-50 50 100
V
= 3.35*(TEMPC) + 897 mV
TEMP
(Celsius)

Figure 5.2. Typical Temperature Sensor Transfer Function

The uncalibrated temperature sensor output is extremely linear and suitable for relative temperature mea­surements (see Ta bl e 5.1 for linearity specifications). For absolute temperature measurements, gain and/ or offset calibration is recommended. Typically a 1-point calibration includes the following steps:
Step 1. Control/measure the ambient temperature (this temperature must be known). Step 2. Power the device, and delay for a few seconds to allow for self-heating. Step 3. Perform an ADC conversion with the temperature sensor selected as the positive input
and GND selected as the negative input.
Step 4. Calculate the offset and/or gain characteristics, and store these values in non-volatile
memory for use with subsequent temperature sensor measurements.
Figure 5.3 shows the typical temperature sensor error assuming a 1-point calibration at 25 °C. Note that
parameters which affect ADC measurement, in particular the voltage reference value, will also affect temperature measurement.
Rev. 1.5 45
C8051F310/1/2/3/4/5
5.00
4.00
3.00
2.00
1.00
0.00
-40.00 -20.00 0.00
-1.00
Error (degrees C)
-2.00
-3.00
-4.00
-5.00
20.00
Temperature (degrees C)
40.00
60.00
80.00
5.00
4.00
3.00
2.00
1.00
0.00
-1.00
-2.00
-3.00
-4.00
-5.00

Figure 5.3. Temperature Sensor Error with 1-Point Calibration

46 Rev. 1.5
C8051F310/1/2/3/4/5

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps. The ADC0 conversion clock is a divided version of the system clock, determined by the AD0SC bits in the ADC0CF register (system clock divided by (AD0SC

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2-0) in register ADC0CN. Conversions may be initiated by one of the fol lowing:
Writing a ‘1’ to AD0BUSY provides software control of ADC0 whereby conversions are performed "on­demand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte over flows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See
Section “17. Timers” on page 177 for timer configuration.
+ 1) for 0 AD0SC 31).
-
1. Writing a ‘1’ to the AD0BUSY bit of register ADC0CN
2. A Timer 0 overflow (i.e., timed continuous conversions)
3. A Timer 2 overflow
4. A Timer 1 overflow
5. A rising edge on the CNVSTR input signal (pin P0.6)
6. A Timer 3 overflow
-
Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.6. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.6 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.6, set to ‘1’ Bit6 in register P0SKIP. See
Input/Output” on page 119 for details on Port I/O configuration.
Section “13. Port
Rev. 1.5 47
C8051F310/1/2/3/4/5

5.3.2. Tracking Modes

According to Ta bl e 5.1, each ADC0 conversion must be preceded by a minimum tracking time for the con­verted result to be accurate. The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode. In its default state, the ADC0 input is continuously tracked, except when a conversion is in progress. When the AD0TM bit is logic 1, ADC0 operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a tracking period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR signal is used to initiate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR is low; conversion begins on the rising edge of CNVSTR (see down) when the device is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX settings are frequently changed, due to the settling time requirements described in
Section “5.3.3. Settling Time Requirements” on page 49.
A. ADC0 Timing for External Trigger Source
CNVSTR
(AD0CM[2:0]=100)
Figure 5.4). Tracking can also be disabled (shut-
SAR Clocks
AD0TM=1
Write '1' to AD0BUSY,
Timer 0, Timer 2,
Timer 1, Timer 3 Overflow
(AD0CM[2:0]=000, 001,010
011, 101)
SAR Clocks
AD0TM=1
SAR Clocks
AD0TM=0
Low Power
or Convert
Track or Convert Convert TrackAD0TM=0
123456789
Track Convert
10 11
Low Power
B. ADC0 Timing for Internal Trigger Source
Low Power
or Convert
Track or
Convert
123456789101112
Track Convert Low Power Mode
123456789
Convert Track
10
13 14
11
Mode

Figure 5.4. 10-Bit ADC Track and Conversion Example Timing

48 Rev. 1.5
C8051F310/1/2/3/4/5

5.3.3. Settling Time Requirements

When the ADC0 input configuration is changed (i.e., a different AMUX0 selection is made), a minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUX0 resistance, the ADC0 sampling capacitance, any external source resistance, and the accu racy required for the conversion. In low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.
Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Sensor output or VDD with respect to GND, R
TOTAL
settling time requirements.
Equation 5.1. ADC0 Settling Time Requirements
n
2

t
-------
×ln=

SA
R
Equation 5.1. When measuring the Temperature
reduces to R
TOTALCSAMPLE
. See Ta bl e 5.1 for ADC0 minimum
MUX
-
Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) t is the required settling time in seconds R
is the sum of the AMUX0 resistance and any external source resistance.
TOTAL
n is the ADC resolution in bits (10).
Differential Mode
MUX Select
Px.x
RC
= R
Input
MUX
Px.x
MUX Select
R
* C
R
MUX
MUX
= 5k
SAMPLE
= 5k
C
C
SAMPLE
SAMPLE
= 5pF
= 5pF
Single-Ended Mode
MUX Select
Px.x
RC
Input
= R
MUX
R
* C
MUX
= 5k
SAMPLE
C
SAMPLE
= 5pF

Figure 5.5. ADC0 Equivalent Input Circuits

Rev. 1.5 49
C8051F310/1/2/3/4/5

SFR Definition 5.1. AMX0P: AMUX0 Positive Channel Select

R R R R/W R/W R/W R/W R/W Reset Value
- - - AMX0P4 AMX0P3 AMX0P2 AMX0P1 AMX0P0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-5: UNUSED. Read = 000b; Write = don’t care. Bits4-0: AMX0P4-0: AMUX0 Positive Input Selection
AMX0P4-0 ADC0 Positive Input
00000 P1.0 00001 P1.1 00010 P1.2 00011 P1.3 00100 P1.4 00101 P1.5 00110 P1.6
00111 P1.7 01000 P2.0 01001 P2.1 01010 P2.2 01011 P2.3 01100 P2.4 01101 P2.5
01110 P2.6
01111 P2.7 10000 P3.0
10001† P3.1† 10010† P3.2† 10011† P3.3† 10100† P3.4†
10101 - 11101 RESERVED
11110 Temp Sensor
11111 V
DD
0xBB
†Only applies to C8051F310/2; selection RESERVED on C8051F311/3 devices.
50 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 5.2. AMX0N: AMUX0 Negative Channel Select

R R R R/W R/W R/W R/W R/W Reset Value
- - - AMX0N4 AMX0N3 AMX0N2 AMX0N1 AMX0N0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-5: UNUSED. Read = 000b; Write = don’t care. Bits4-0: AMX0N4-0: AMUX0 Negative Input Selection.
Note that when GND is selected as the Negative Input, ADC0 operates in Single-ended mode. For all other Negative Input selections, ADC0 operates in Differential mode.
AMX0N4-0 ADC0 Negative Input
00000 P1.0 00001 P1.1 00010 P1.2 00011 P1.3 00100 P1.4 00101 P1.5 00110 P1.6
00111 P1.7 01000 P2.0 01001 P2.1 01010 P2.2 01011 P2.3 01100 P2.4 01101 P2.5
01110 P2.6
01111 P2.7 10000 P3.0
10001† P3.1† 10010† P3.2† 10011† P3.3† 10100† P3.4†
10101 - 11101 RESERVED
11110 VREF
11111 GND (ADC in Single-Ended Mode)
0xBA
†Only applies to C8051F310/2; selection RESERVED on C8051F311/3 devices.
Rev. 1.5 51
C8051F310/1/2/3/4/5

SFR Definition 5.3. ADC0CF: ADC0 Configuration

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AD0LJST - - 11111000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-3: AD0SC4-0: ADC0 SAR Conversion Clock Period Bits.
SAR Conversion clock is derived from system clock by the following equation, where AD0SC refers to the 5-bit value held in bits AD0SC4-0. SAR Conversion clock requirements are given in Table 5.1.
SYSCLK
AD0SC
Bit2: AD0LJST: ADC0 Left Justify Select.
0: Data in ADC0H:ADC0L registers are right-justified. 1: Data in ADC0H:ADC0L registers are left-justified.
Bits1-0: UNUSED. Read = 00b; Write = don’t care.
----------------------
CLK
SAR
1=
0xBC

SFR Definition 5.4. ADC0H: ADC0 Data Word MSB

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-0: ADC0 Data Word High-Order Bits.
For AD0LJST = 0: Bits 7-2 are the sign extension of Bit1. Bits 1-0 are the upper 2 bits of the 10-bit ADC0 Data Word. For AD0LJST = 1: Bits 7-0 are the most-significant bits of the 10-bit ADC0 Data Word.

SFR Definition 5.5. ADC0L: ADC0 Data Word LSB

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-0: ADC0 Data Word Low-Order Bits.
For AD0LJST = 0: Bits 7-0 are the lower 8 bits of the 10-bit Data Word. For AD0LJST = 1: Bits 7-6 are the lower 2 bits of the 10-bit Data Word. Bits 5-0 will always read ‘0’.
0xBE
0xBD
52 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 5.6. ADC0CN: ADC0 Control

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
AD0EN AD0TM AD0INT AD0BUSY AD0WINT AD0CM2 AD0CM1 AD0CM0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bit7: AD0EN: ADC0 Enable Bit.
0: ADC0 Disabled. ADC0 is in low-power shutdown. 1: ADC0 Enabled. ADC0 is active and ready for data conversions.
Bit6: AD0TM: ADC0 Track Mode Bit.
0: Normal Track Mode: When ADC0 is enabled, tracking is continuous unless a conversion is in progress. 1: Low-power Track Mode: Tracking Defined by AD0CM2-0 bits (see below).
Bit5: AD0INT: ADC0 Conversion Complete Interrupt Flag.
0: ADC0 has not completed a data conversion since the last time AD0INT was cleared. 1: ADC0 has completed a data conversion.
Bit4: AD0BUSY: ADC0 Busy Bit.
Read: 0: ADC0 conversion is complete or a conversion is not currently in progress. AD0INT is set to logic 1 on the falling edge of AD0BUSY. 1: ADC0 conversion is in progress. Write: 0: No Effect. 1: Initiates ADC0 Conversion if AD0CM2-0 = 000b
Bit3: AD0WINT: ADC0 Window Compare Interrupt Flag.
0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared. 1: ADC0 Window Comparison Data match has occurred.
Bits2-0: AD0CM2-0: ADC0 Start of Conversion Mode Select.
When AD0TM = 0: 000: ADC0 conversion initiated on every write of ‘1’ to AD0BUSY. 001: ADC0 conversion initiated on overflow of Timer 0. 010: ADC0 conversion initiated on overflow of Timer 2. 011: ADC0 conversion initiated on overflow of Timer 1. 100: ADC0 conversion initiated on rising edge of external CNVSTR. 101: ADC0 conversion initiated on overflow of Timer 3. 11x: Reserved. When AD0TM = 1: 000: Tracking initiated on write of ‘1’ to AD0BUSY and lasts 3 SAR clocks, followed by con­version. 001: Tracking initiated on overflow of Timer 0 and lasts 3 SAR clocks, followed by conversion. 010: Tracking initiated on overflow of Timer 2 and lasts 3 SAR clocks, followed by conversion. 011: Tracking initiated on overflow of Timer 1 and lasts 3 SAR clocks, followed by conversion. 100: ADC0 tracks only when CNVSTR input is logic low; conversion starts on rising CNVSTR edge. 101: Tracking initiated on overflow of Timer 3 and lasts 3 SAR clocks, followed by conversion. 11x: Reserved
.
(bit addressable)
0xE8
Rev. 1.5 53
C8051F310/1/2/3/4/5

5.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-pro­grammed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) reg isters hold the comparison values. The window detector flag can be programmed to indicate when mea­sured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xC4
Bits7-0: High byte of ADC0 Greater-Than Data Word.
-

SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
11111111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-0: Low byte of ADC0 Greater-Than Data Word.
0xC3
54 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-0: High byte of ADC0 Less-Than Data Word.

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-0: Low byte of ADC0 Less-Than Data Word.
0xC6
0xC5
Rev. 1.5 55
C8051F310/1/2/3/4/5

5.4.1. Window Detector In Single-Ended Mode

Figure 5.6 shows two example window comparisons for right-justified, single-ended data, with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). In single-ended mode, the input voltage can range from ‘0’ to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ple using left-justified data with the same comparison values.
Input Voltage
(Px.x - GND)
VREF x (1023/1024)
0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt
ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 5.7 shows an exam-
ADC0H:ADC0L ADC0H:ADC0L
Input Voltage (Px.x - GND)
0x03FF
VREF x (1023/1024)
0x03FF
VREF x (128/1024)
VREF x (64/1024)
0
0x0081
0x0080
0x007F
0x0041
0x0040
0x003F
0x0000
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GT L
AD0WINT
not affected
AD0WINT=1
VREF x (128/1024)
VREF x (64/1024)
0
0x0081
0x0080
0x007F
0x0041
0x0040
0x003F
0x0000
ADC0GTH:ADC0GTL
AD0WINT
not affected
ADC0LTH:ADC0LTL
AD0WINT=1
AD0WINT=1

Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data

ADC0H:ADC0L ADC0H:ADC0L
Input Voltage
(Px.x - GND)
VREF x (1023/1024)
VREF x (128/1024)
VREF x (64/1024)
0xFFC0
0x2040
0x2000
0x1FC0
0x1040
0x1000
0x0FC0
AD0WINT
not affected
ADC0LTH:ADC0LTL
AD0WINT=1
ADC0GTH:ADC0GTL
Input Voltage (Px.x - GND)
VREF x (1023/1024)
VREF x (128/1024)
VREF x (64/1024)
0xFFC0
0x2040
0x2000
0x1FC0
0x1040
0x1000
0x0FC0
ADC0GTH:ADC0GTL
AD0WINT
not affected
ADC0LTH:ADC0LTL
AD0WINT=1
AD0WINT
not affected
0
0x0000
0
0x0000
AD0WINT=1

Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data

56 Rev. 1.5
C8051F310/1/2/3/4/5

5.4.2. Window Detector In Differential Mode

Figure 5.8 shows two example window comparisons for right-justified, differential data, with ADC0LTH:ADC0LTL = 0x0040 (+64d) and ADC0GTH:ADC0GTH = 0xFFFF (-1d). In differential mode, the measurable voltage between the input pins is between -VREF and VREF*(511/512). Output codes are rep resented as 10-bit 2’s complement signed integers. In the left example, an AD0WINT interrupt will be gen­erated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if
0xFFFF (-1d) < ADC0H:ADC0L < 0x0040 (64d)). In the right example, an AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if
ADC0H:ADC0L < 0xFFFF (-1d) or ADC0H:ADC0L > 0x0040 (+64d)).
Figure 5.9 shows an example using left-justified data with the same comparison values.
ADC0H:ADC0LADC0H:ADC0L
Input Voltage
(Px.x - Px.x)
VREF x (511/512)
0x01FF
Input Voltage
(Px.x - Px.x)
VREF x (511/512)
0x01FF
-
VREF x (64/512)
VREF x (-1/512)
-VREF
0x0041
0x0040
0x003F
0x0000
0xFFFF
0xFFFE
0x0200
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
AD0WINT
not affected
AD0WINT=1
VREF x (64/512)
VREF x (-1/512)
-VREF
0x0041
0x0040
0x003F
0x0000
0xFFFF
0xFFFE
0x0200
ADC0GTH:ADC0GTL
AD0WINT
not affected
ADC0LTH:ADC0LTL
AD0WINT=1
AD0WINT=1

Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data

ADC0H:ADC0LADC0H:ADC0L
Input Voltage
(Px.x - Px.x)
VREF x (511/512)
VREF x (64/512)
VREF x (-1/512)
0x7FC0
0x1040
0x1000
0x0FC0
0x0000
0xFFC0
0xFF80
AD0WINT
not affected
ADC0LTH:ADC0LTL
ADC0GTH:ADC0GTL
AD0WINT=1
Input Voltage
(Px.x - Px.y)
VREF x (511/512)
VREF x (64/512)
VREF x (-1/512)
0x7FC0
0x1040
0x1000
0x0FC0
0x0000
0xFFC0
0xFF80
ADC0GTH:ADC0GTL
AD0WINT
not affected
ADC0LTH:ADC0LTL
AD0WINT=1
AD0WINT=1
-VREF
0x8000
AD0WINT
not affected
-VREF
0x8000

Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data

Rev. 1.5 57
C8051F310/1/2/3/4/5

Table 5.1. ADC0 Electrical Characteristics

VDD = 3.0 V, VREF = 2.40 V (REFSL=0), –40 to +85 °C unless otherwise specified
Parameter Conditions Min Typ Max Units
DC Accuracy
Resolution 10 bits
Integral Nonlinearity —±0.1LSB
Differential Nonlinearity Guaranteed Monotonic ±0.5 ±1 LSB
Offset Error –12 1 +12 LSB
Full Scale Error Differential mode –15 –5 +5 LSB
Offset Temperature Coefficient 3.6 ppm/°C
Dynamic Performance (10 kHz sine-wave Single-ended input, 0 to 1 dB below Full Scale, 200 ksps)
Signal-to-Noise Plus Distortion 53 55.5 dB
Total Harmonic Distortion
Spurious-Free Dynamic Range —78—dB
Conversion Rate
SAR Conversion Clock —— 3MHz
Conversion Time in SAR Clocks 10 clocks
Track/Hold Acquisition Time 300 ns
Throughput Rate 200 ksps
Analog Inputs
Input Voltage Range 0—VREFV
Input Capacitance —5—pF
Temperature Sensor ———
Linearity Notes 1, 2 ±0.5 °C
Gain Notes 1, 2 3350 ± 10 µV / °C
Offset Notes 1, 2 (Temp = 0 °C) 897 ± 31 mV
Power Specifications
Power Supply Current (VDD supplied to ADC0)
Up to the 5th harmonic
Operating Mode, 200 ksps 400 900 µA
—–67—dB
Power Supply Rejection —±0.3—mV/V
Note 1: Represents one standard deviation from the mean. Note 2: Includes ADC offset, gain, and linearity variations.
58 Rev. 1.5
C8051F310/1/2/3/4/5

6. Voltage Reference (C8051F310/1/2/3 only)

The voltage reference MUX on C8051F310/1/2/3 devices is configurable to use an externally connected voltage reference, or the power supply voltage (see register (REF0CN) selects the reference source. For an external source, REFSL should be set to ‘0’; For V
as the reference source, REFSL should be set to ‘1’.
DD
The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, and Internal Oscillator. This bit is forced to logic 1 when any of the aforementioned peripherals is enabled. The bias generator may be enabled manually by writing a ‘1’ to the BIASE bit in register REF0CN; see SFR Definition 6.1 for REF0CN register details. The electrical specifications for the voltage reference cir­cuit are given in Ta bl e 6.1.
Important Note About the VREF Input: Port pin P0.0 is used as the external VREF input. When using an external voltage reference, P0.0 should be configured as analog input and skipped by the Digital Crossbar. To configure P0.0 as analog input, set to ‘0’ Bit0 in register P0MDIN. To configure the Crossbar to skip P0.0, set to ‘1’ Bit0 in register P0SKIP. Refer to plete Port I/O configuration details.
The temperature sensor connects to the highest order input of the ADC0 positive input multiplexer (see
Section “5.1. Analog Multiplexer” on page 44 for details). The TEMPE bit in register REF0CN
enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high imped­ance state and any ADC0 measurements performed on the sensor result in meaningless data.
Figure 6.1). The REFSL bit in the Reference Control
Section “13. Port Input/Output” on page 119 for com-
VDD
GND
R1
REF0CN
BIASE
REFSL
TEMPE
EN
Bias Generator
0
1
IOSCEN
EN
Temp Sensor
External
Voltage
Reference
Circuit
VREF
VDD

Figure 6.1. Voltage Reference Functional Block Diagram

To ADC, Internal Oscillator
To Analog Mux
Internal VREF (to ADC)
Rev. 1.5 59
C8051F310/1/2/3/4/5

SFR Definition 6.1. REF0CN: Reference Control

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
REFSL TEMPE BIASE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-4: UNUSED. Read = 0000b; Write = don’t care. Bit3: REFSL: Voltage Reference Select.
This bit selects the source for the internal voltage reference. 0: VREF input pin used as voltage reference. 1: V
used as voltage reference.
DD
Bit2: TEMPE: Temperature Sensor Enable Bit.
0: Internal Temperature Sensor off. 1: Internal Temperature Sensor on.
Bit1: BIASE: Internal Analog Bias Generator Enable Bit. (Must be ‘1’ if using ADC).
0: Internal Bias Generator off. 1: Internal Bias Generator on.
Bit0: UNUSED. Read = 0b. Write = don’t care.
0xD1

Table 6.1. External Voltage Reference Circuit Electrical Characteristics

VDD = 3.0 V; –40 to +85 °C unless otherwise specified
Parameter Conditions Min Typ Max Units
Input Voltage Range
Input Current
Sample Rate = 200 ksps;
VREF = 3.0 V
0V
12 µA
V
DD
60 Rev. 1.5
C8051F310/1/2/3/4/5

7. Comparators

C8051F31x devices include two on-chip programmable voltage comparators: Comparator0 is shown in Figure 7.1; Comparator1 is shown in Figure 7.2. The two comparators operate identically with the following exceptions: (1) Their input selections differ as shown in Figure 7.1 and Figure 7.2; (2) Comparator0 can be used as a reset source.
The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous “latched” output (CP0, CP1), or an asynchronous “raw” output (CP0A, CP1A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see reset source (see Section “9.5. Comparator0 Reset” on page 100).
The Comparator0 inputs are selected in the CPT0MX register (SFR Definition 7.2). The CMX0P1-CMX0P0 bits select the Comparator0 positive input; the CMX0N1-CMX0N0 bits select the Comparator0 negative input. The Comparator1 inputs are selected in the CPT1MX register ( CMX1P0 bits select the Comparator1 positive input; the CMX1N1-CMX1N0 bits select the Comparator1 negative input.
Section “13.2. Port I/O Initialization” on page 123). Comparator0 may also be used as a
SFR Definition 7.5). The CMX1P1-
Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be con­figured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see
CP0EN
CP0OUT
CP0RIF
CP0FIF
CMX0N1
CMX0N0
CPT0MX
CMX0P1
CMX0P0
P1.0
P1.4
P2.0
P2.4
P1.1
P1.5
P2.1
P2.5
CP0HYP1
CPT0CN
CP0HYP0
CP0HYN1
CP0HYN0
CP0 +
CP0 -
Section “13.3. General Purpose Port I/O” on page 126).
VDD
CP0
Interrupt
CP0
Rising-edge
Interrupt
+
-
GND
Reset
Decision
Tree
SET
SET
D
D
Q
Q
CLR
CLR
(SYNCHRONIZER)
Q
Q
Crossbar
Logic
CP0
Falling-edge
CP0
CP0A
CP0RIE
CP0FIE
CPT0MD
CP0MD1
CP0MD0

Figure 7.1. Comparator0 Functional Block Diagram

Rev. 1.5 61
C8051F310/1/2/3/4/5
The Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When dis abled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and its supply current falls to less than 100
page 121 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be
externally driven from –0.25 V to (VDD) + 0.25 V without damage or upset. The complete Comparator elec­trical specifications are given in Tab le 7.1.
The Comparator response time may be configured in software via the CPTnMD registers (see SFR Defini­tion 7.3 and SFR Definition 7.6). Selecting a longer response time reduces the Comparator supply current. See Ta bl e 7.1 for complete timing and current consumption specifications.
CP1EN
CP1OUT
CP1RIF
CP1FIF
CMX1N1
CMX1N0
CPT1MX
CMX1P1
CMX1P0
P1.2
P1.6
P2.2
P2.6
P1.3
P1.7
P2.3
P2.7
CP1HYP1
CPT1CN
CP1HYP0
CP1HYN1
CP1HYN0
CP1 +
CP1 -
nA. See Section “13.1. Priority Crossbar Decoder” on
VDD
CP1
Interrupt
CP1
Rising-edge
Interrupt
Logic
+
-
GND
Reset
Decision
Tree
SET
SET
Q
D
D
Q
CLR
CLR
(SYNCHRONIZER)
Q
Q
Crossbar
CP1
Falling-edge
CP1
CP1A
-
CP1RIE
CP1FIE
CPT1MD
CP1MD1
CP1MD0

Figure 7.2. Comparator1 Functional Block Diagram

62 Rev. 1.5
CP0+
VIN+
CP0-
VIN-
CIRCUIT CONFIGURATION
Positive Hysteresis Voltage
(Programmed with CP0HYP Bits)
VIN-
INPUTS
VIN+
OUTPUT
V
OL
Positive Hysteresis
Disabled
C8051F310/1/2/3/4/5
+
CP0
_
V
OH
OUT
Maximum
Positive Hysteresis
Negative Hysteresis
Disabled
Negative Hysteresis Voltage
(Programmed by CP0HYN Bits)
Maximum
Negative Hysteresis

Figure 7.3. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via its Comparator Control register CPTnCN (for n
= 0 or 1). The user can program both the amount of hysteresis voltage (referred to the input voltage) and
the positive and negative-going symmetry of this hysteresis around the threshold voltage.
The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in determined by the settings of the CPnHYN bits. As shown in Ta b le 7.1, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.
Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Inter­rupt enable and priority control, see Section “8.3. Interrupt Handler” on page 86). The CPnFIF flag is set to logic 1 upon a Comparator falling-edge interrupt, and the CPnRIF flag is set to logic 1 upon the Compar­ator rising-edge interrupt. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by set ting the CPnEN bit to logic 1, and is disabled by clearing this bit to logic 0.
The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Compar­ator is enabled by setting the CPnEN bit to logic 1, and is disabled by clearing this bit to logic 0.
Note that false rising edges and falling edges can be detected when the comparator is first powered-on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic enabled or its mode bits have been changed. This Power Up Time is specified in
SFR Definition 7.1 and SFR Definition 7.4). The amount of negative hysteresis voltage is
0 a short time after the comparator is
Ta bl e 7.1 on page 70.
-
Rev. 1.5 63
C8051F310/1/2/3/4/5

SFR Definition 7.1. CPT0CN: Comparator0 Control

R/W R R/W R/W R/W R/W R/W R/W Reset Value
CP0EN CP0OUT CP0RIF CP0FIF CP0HYP1 CP0HYP0 CP0HYN1 CP0HYN0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bit7: CP0EN: Comparator0 Enable Bit.
0: Comparator0 Disabled. 1: Comparator0 Enabled.
Bit6: CP0OUT: Comparator0 Output State Flag.
0: Voltage on CP0+ < CP0-. 1: Voltage on CP0+ > CP0-.
Bit5: CP0RIF: Comparator0 Rising-Edge Interrupt Flag.
0: No Comparator0 Rising Edge Interrupt has occurred since this flag was last cleared. 1: Comparator0 Rising Edge Interrupt has occurred.
Bit4: CP0FIF: Comparator0 Falling-Edge Interrupt Flag.
0: No Comparator0 Falling-Edge Interrupt has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge Interrupt has occurred.
Bits3-2: CP0HYP1-0: Comparator0 Positive Hysteresis Control Bits.
00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
Bits1-0: CP0HYN1-0: Comparator0 Negative Hysteresis Control Bits.
00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.
0x9B
64 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 7.2. CPT0MX: Comparator0 MUX Selection

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - CMX0N1 CMX0N0 - - CMX0P1 CMX0P0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-6: UNUSED. Read = 00b, Write = don’t care. Bits5-4: CMX0N1-CMX0N0: Comparator0 Negative Input MUX Select.
These bits select which Port pin is used as the Comparator0 negative input.
CMX0N1 CMX0N0 Negative Input
00 P1.1 01 P1.5 10 P2.1 11 P2.5
Bits3-2: UNUSED. Read = 00b, Write = don’t care. Bits1-0: CMX0P1-CMX0P0: Comparator0 Positive Input MUX Select.
These bits select which Port pin is used as the Comparator0 positive input.
0x9F
CMX0P1 CMX0P0 Positive Input
00 P1.0 01 P1.4 10 P2.0 11 P2.4
Rev. 1.5 65
C8051F310/1/2/3/4/5

SFR Definition 7.3. CPT0MD: Comparator0 Mode Selection

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - CP0RIE CP0FIE - - CP0MD1 CP0MD0 00000010
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-6: UNUSED. Read = 00b. Write = don’t care. Bit5: CP0RIE: Comparator Rising-Edge Interrupt Enable.
0: Comparator rising-edge interrupt disabled. 1: Comparator rising-edge interrupt enabled.
Bit4: CP0FIE: Comparator Falling-Edge Interrupt Enable.
0: Comparator falling-edge interrupt disabled. 1: Comparator falling-edge interrupt enabled.
Bits1-0: CP0MD1-CP0MD0: Comparator0 Mode Select
These bits select the response time for Comparator0.
Mode CP0MD1 CP0MD0 CP0 Response Time (TYP)
0 0 0 Fastest Response Time 101 — 210 — 3 1 1 Lowest Power Consumption
0x9D
66 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 7.4. CPT1CN: Comparator1 Control

R/W R R/W R/W R/W R/W R/W R/W Reset Value
CP1EN CP1OUT CP1RIF CP1FIF CP1HYP1 CP1HYP0 CP1HYN1 CP1HYN0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x9A
Bit7: CP1EN: Comparator1 Enable Bit.
0: Comparator1 Disabled. 1: Comparator1 Enabled.
Bit6: CP1OUT: Comparator1 Output State Flag.
0: Voltage on CP1+ < CP1–. 1: Voltage on CP1+ > CP1–.
Bit5: CP1RIF: Comparator1 Rising-Edge Interrupt Flag.
0: No Comparator1 Rising Edge Interrupt has occurred since this flag was last cleared. 1: Comparator1 Rising Edge Interrupt has occurred.
Bit4: CP1FIF: Comparator1 Falling-Edge Interrupt Flag.
0: No Comparator1 Falling-Edge Interrupt has occurred since this flag was last cleared. 1: Comparator1 Falling-Edge Interrupt has occurred.
Bits3-2: CP1HYP1-0: Comparator1 Positive Hysteresis Control Bits.
00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
Bits1-0: CP1HYN1-0: Comparator1 Negative Hysteresis Control Bits.
00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.
Rev. 1.5 67
C8051F310/1/2/3/4/5

SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - CMX1N1 CMX1N0 - - CMX1P1 CMX1P0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-6: UNUSED. Read = 00b, Write = don’t care. Bits5-4: CMX1N1-CMX1N0: Comparator1 Negative Input MUX Select.
These bits select which Port pin is used as the Comparator1 negative input.
CMX1N1 CMX1N0 Negative Input
00 P1.3 01 P1.7 10 P2.3 11 P2.7
Bits3-2: UNUSED. Read = 00b, Write = don’t care. Bits1-0: CMX1P1-CMX1P0: Comparator1 Positive Input MUX Select.
These bits select which Port pin is used as the Comparator1 positive input.
0x9E
CMX1P1 CMX1P0 Positive Input
00 P1.2 01 P1.6 10 P2.2 11 P2.6
68 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 7.6. CPT1MD: Comparator1 Mode Selection

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- - CP1RIE CP1FIE - - CP1MD1 CP1MD0 00000010
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-6: UNUSED. Read = 00b, Write = don’t care. Bit5: CP1RIE: Comparator Rising-Edge Interrupt Enable.
0: Comparator rising-edge interrupt disabled 1: Comparator rising-edge interrupt enabled.
Bit4: CP1FIE: Comparator Falling-Edge Interrupt Enable.
0: Comparator falling-edge interrupt disabled. 1: Comparator falling-edge interrupt enabled.
Bits1-0: CP1MD1-CP1MD0: Comparator1 Mode Select.
These bits select the response time for Comparator1.
Mode CP1MD1 CP1MD0 CP1 Response Time (TYP)
0 0 0 Fastest Response Time 101 — 210 — 3 1 1 Lowest Power Consumption
0x9C
Rev. 1.5 69
C8051F310/1/2/3/4/5

Table 7.1. Comparator Electrical Characteristics

VDD = 3.0 V, –40 to +85 °C unless otherwise noted. All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.
Parameter Conditions Min Typ Max Units
Response Time:
Mode 0, Vcm† = 1.5 V
Response Time:
Mode 1, Vcm† = 1.5 V
Response Time:
Mode 2, Vcm† = 1.5 V
Response Time:
Mode 3, Vcm† = 1.5 V
Common-Mode Rejection Ratio —1.5 4 mV/V
Positive Hysteresis 1 CP0HYP1-0 = 00 0 1 mV
Positive Hysteresis 2 CP0HYP1-0 = 01 2 5 7 mV
Positive Hysteresis 3 CP0HYP1-0 = 10 5 10 13 mV
Positive Hysteresis 4 CP0HYP1-0 = 11 12 20 25 mV
Negative Hysteresis 1 CP0HYN1-0 = 00 0 1 mV
Negative Hysteresis 2 CP0HYN1-0 = 01 2 5 7 mV
Negative Hysteresis 3 CP0HYN1-0 = 10 5 10 13 mV
Negative Hysteresis 4 CP0HYN1-0 = 11 12 20 25 mV
Inverting or Non-Inverting Input Voltage Range
Input Capacitance —7— pF
Input Bias Current —1— nA
Input Offset Voltage –5 +5 mV
Power Supply
Power Supply Rejection††
Power-up Time —10— µs
Supply Current at DC
Vcm is the common-mode voltage on CP0+ and CP0–.
††
Guaranteed by design and/or characterization.
CP0+ – CP0– = 100 mV 100 ns
CP0+ – CP0– = –100 mV 250 ns
CP0+ – CP0– = 100 mV 175 ns
CP0+ – CP0– = –100 mV 500 ns
CP0+ – CP0– = 100 mV 320 ns
CP0+ – CP0– = –100 mV 1100 ns
CP0+ – CP0– = 100 mV 1050 ns
CP0+ – CP0– = –100 mV 5200 ns
–0.25 VDD +
0.25
—0.1 1 mV/V
Mode 0 7.6 20 µA
Mode 1 3.2 10 µA
Mode 2 1.3 5 µA
Mode 3 0.4 2.5 µA
V
70 Rev. 1.5
C8051F310/1/2/3/4/5

8. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft ware. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in in Section 15), an Enhanced SPI (see description in Section 16), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (Section 8.2.6), and 29 Port I/O (see description in Sec-
tion 13). The CIP-51 also includes on-chip debug hardware (see description in Section 20), and interfaces
directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.
The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see The CIP-51 includes the following features:
Section 17), an enhanced full-duplex UART (see description
Figure 8.1 for a block diagram).
-
- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 29 Port I/O
ACCUMULATOR
PSW
DATA BUS
PROGRAM COUNTER (PC)
RESET
CLOCK
STOP
IDLE
CONTROL
D8
D8
DATA POINTER
PC INCREMENTER
PRGM. ADDRESS REG.
LOGIC
POWER CONTROL
REGISTER
D8
TMP1 TMP2
ALU
D8
BUFFER
PIPELINE
- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security
DATA BUS
D8
DATA BUS
D8
D8
DATA BUS
D8
B REGISTER
ADDRESS
REGISTER
D8
INTERFACE
D8
A16
INTERFACE
D8
INTERRUPT INTERFACE
D8
D8
SRAM
D8
SFR BUS
MEMORY
D8
STACK POINTER
SRAM
(256 X 8)
D8
SFR_ADDRESS
SFR_CONTROL
SFR_WRITE_ DATA
SFR_READ_DATA
MEM_ADDRESS
MEM_CONTROL
MEM_WRITE_DATA
MEM_READ_D ATA
SYSTEM_IRQs
EMULATION_IRQ

Figure 8.1. CIP-51 Block Diagram

Rev. 1.5 71
C8051F310/1/2/3/4/5
Performance
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan­dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.
With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execu tion time.
Clocks to Execute 1 2 2/3 3 3/4 4 4/5 5 8
Number of Instructions 26 50 5 14 7 3 1 2 1
Programming and Debugging Support
In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2). The re-programmable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.
MHz. By contrast, the CIP-51
-
The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and mem ory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources. C2 details can be found in
The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro­vides an integrated development environment (IDE) including an editor, evaluation compiler, assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 inter face to provide fast and efficient in-system device programming and debugging. Third party macro assem­blers and C compilers are also available.
Section “20. C2 Interface” on page 213.
-
-
72 Rev. 1.5
C8051F310/1/2/3/4/5

8.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc­tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan dard 8051.

8.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.
Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

8.1.2. MOVX Instruction and Program Memory

Table 8.1 is the
-
The MOVX instruction is typically used to access external data memory (Note: the C8051F31x does not support external data or program memory). In the CIP-51, the MOVX write instruction is used to accesses external RAM and the on-chip program memory space implemented as re-programmable Flash memory. The Flash access feature provides a mechanism for the CIP-51 to update program code and use the pro gram memory space for non-volatile data storage. Refer to Section “10. Flash Memory” on page 103 for further details.

Table 8.1. CIP-51 Instruction Set Summary

Mnemonic Description Bytes
Arithmetic Operations
ADD A, Rn Add register to A 1 1 ADD A, direct Add direct byte to A 2 2 ADD A, @Ri Add indirect RAM to A 1 2 ADD A, #data Add immediate to A 2 2 ADDC A, Rn Add register to A with carry 1 1 ADDC A, direct Add direct byte to A with carry 2 2 ADDC A, @Ri Add indirect RAM to A with carry 1 2 ADDC A, #data Add immediate to A with carry 2 2 SUBB A, Rn Subtract register from A with borrow 1 1 SUBB A, direct Subtract direct byte from A with borrow 2 2 SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2 SUBB A, #data Subtract immediate from A with borrow 2 2 INC A Increment A 1 1 INC Rn Increment register 1 1 INC direct Increment direct byte 2 2 INC @Ri Increment indirect RAM 1 2 DEC A Decrement A 1 1
Clock
Cycles
-
Rev. 1.5 73
C8051F310/1/2/3/4/5
Table 8.1. CIP-51 Instruction Set Summary (Continued)
Mnemonic Description Bytes
DEC Rn Decrement register 1 1 DEC direct Decrement direct byte 2 2 DEC @Ri Decrement indirect RAM 1 2 INC DPTR Increment Data Pointer 1 1 MUL AB Multiply A and B 1 4 DIV AB Divide A by B 1 8 DA A Decimal adjust A 1 1
Logical Operations
ANL A, Rn AND Register to A 1 1 ANL A, direct AND direct byte to A 2 2 ANL A, @Ri AND indirect RAM to A 1 2 ANL A, #data AND immediate to A 2 2 ANL direct, A AND A to direct byte 2 2 ANL direct, #data AND immediate to direct byte 3 3 ORL A, Rn OR Register to A 1 1 ORL A, direct OR direct byte to A 2 2 ORL A, @Ri OR indirect RAM to A 1 2 ORL A, #data OR immediate to A 2 2 ORL direct, A OR A to direct byte 2 2 ORL direct, #data OR immediate to direct byte 3 3 XRL A, Rn Exclusive-OR Register to A 1 1 XRL A, direct Exclusive-OR direct byte to A 2 2 XRL A, @Ri Exclusive-OR indirect RAM to A 1 2 XRL A, #data Exclusive-OR immediate to A 2 2 XRL direct, A Exclusive-OR A to direct byte 2 2 XRL direct, #data Exclusive-OR immediate to direct byte 3 3 CLR A Clear A 1 1 CPL A Complement A 1 1 RL A Rotate A left 1 1 RLC A Rotate A left through Carry 1 1 RR A Rotate A right 1 1 RRC A Rotate A right through Carry 1 1 SWAP A Swap nibbles of A 1 1
Data Transfer
MOV A, Rn Move Register to A 1 1 MOV A, direct Move direct byte to A 2 2 MOV A, @Ri Move indirect RAM to A 1 2 MOV A, #data Move immediate to A 2 2 MOV Rn, A Move A to Register 1 1 MOV Rn, direct Move direct byte to Register 2 2 MOV Rn, #data Move immediate to Register 2 2 MOV direct, A Move A to direct byte 2 2 MOV direct, Rn Move Register to direct byte 2 2 MOV direct, direct Move direct byte to direct byte 3 3 MOV direct, @Ri Move indirect RAM to direct byte 2 2
Clock
Cycles
74 Rev. 1.5
C8051F310/1/2/3/4/5
Table 8.1. CIP-51 Instruction Set Summary (Continued)
Mnemonic Description Bytes
MOV direct, #data Move immediate to direct byte 3 3 MOV @Ri, A Move A to indirect RAM 1 2 MOV @Ri, direct Move direct byte to indirect RAM 2 2 MOV @Ri, #data Move immediate to indirect RAM 2 2 MOV DPTR, #data16 Load DPTR with 16-bit constant 3 3 MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3 MOVC A, @A+PC Move code byte relative PC to A 1 3 MOVX A, @Ri Move external data (8-bit address) to A 1 3 MOVX @Ri, A Move A to external data (8-bit address) 1 3 MOVX A, @DPTR Move external data (16-bit address) to A 1 3 MOVX @DPTR, A Move A to external data (16-bit address) 1 3 PUSH direct Push direct byte onto stack 2 2 POP direct Pop direct byte from stack 2 2 XCH A, Rn Exchange Register with A 1 1 XCH A, direct Exchange direct byte with A 2 2 XCH A, @Ri Exchange indirect RAM with A 1 2 XCHD A, @Ri Exchange low nibble of indirect RAM with A 1 2
Boolean Manipulation
CLR C Clear Carry 1 1 CLR bit Clear direct bit 2 2 SETB C Set Carry 1 1 SETB bit Set direct bit 2 2 CPL C Complement Carry 1 1 CPL bit Complement direct bit 2 2 ANL C, bit AND direct bit to Carry 2 2 ANL C, /bit AND complement of direct bit to Carry 2 2 ORL C, bit OR direct bit to carry 2 2 ORL C, /bit OR complement of direct bit to Carry 2 2 MOV C, bit Move direct bit to Carry 2 2 MOV bit, C Move Carry to direct bit 2 2 JC rel Jump if Carry is set 2 2/3 JNC rel Jump if Carry is not set 2 2/3 JB bit, rel Jump if direct bit is set 3 3/4 JNB bit, rel Jump if direct bit is not set 3 3/4 JBC bit, rel Jump if direct bit is set and clear bit 3 3/4
Program Branching
ACALL addr11 Absolute subroutine call 2 3 LCALL addr16 Long subroutine call 3 4 RET Return from subroutine 1 5 RETI Return from interrupt 1 5 AJMP addr11 Absolute jump 2 3 LJMP addr16 Long jump 3 4 SJMP rel Short jump (relative address) 2 3 JMP @A+DPTR Jump indirect relative to DPTR 1 3 JZ rel Jump if A equals zero 2 2/3
Clock
Cycles
Rev. 1.5 75
C8051F310/1/2/3/4/5
Table 8.1. CIP-51 Instruction Set Summary (Continued)
Mnemonic Description Bytes
JNZ rel Jump if A does not equal zero 2 2/3 CJNE A, direct, rel Compare direct byte to A and jump if not equal 3 3/4 CJNE A, #data, rel Compare immediate to A and jump if not equal 3 3/4
CJNE Rn, #data, rel
CJNE @Ri, #data, rel
DJNZ Rn, rel Decrement Register and jump if not zero 2 2/3 DJNZ direct, rel Decrement direct byte and jump if not zero 3 3/4 NOP No operation 1 1
Notes on Registers, Operands and Addressing Modes:
Rn - Register R0-R7 of the currently selected register bank.
@Ri - Data RAM location addressed indirectly through R0 or R1.
rel - 8-bit, signed (two’s complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.
direct - 8-bit internal data location’s address. This could be a direct-access Data RAM location (0x00­0x7F) or an SFR (0x80-0xFF).
Compare immediate to Register and jump if not equal
Compare immediate to indirect and jump if not equal
3 3/4
3 4/5
Clock
Cycles
#data - 8-bit constant
#data16 - 16-bit constant
bit - Direct-accessed bit in Data RAM or SFR
addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same
2K-byte page of program memory as the first byte of the following instruction.
addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8K-byte program memory space.
There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.
76 Rev. 1.5
C8051F310/1/2/3/4/5

8.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in
Figure 8.2.
PROGRAM/DATA MEMORY
(Flash)
C8051F310/1
0x3E00
0x3DFF
0x0000
0x2000
0x1FFF
RESERVED
16 kB Flash
(In-System
Programmable in 512
Byte Sectors)
C8051F312/3/4/5
RESERVED
8 kB Flash
(In-System
Programmable in 512
Byte Sectors)
0xFF
0x80
0x7F
0x30
0x2F
0x20
0x1F
0x00
0xFFFF
0x0400
0x03FF
0x0000
DATA MEMORY (RAM)
INTERNAL DATA ADDRESS SPACE
Upper 128 RAM
(Indirect Addressing
Only)
(Direct and Indirect
Addressing)
Bit Addressable
General Purpose
Registers
Special Function
Register's
(Direct Addressing Only)
Lower 128 RAM (Direct and Indirect Addressing)
EXTERNAL DATA ADDRESS SPACE
Same 1024 bytes as from
0x0000 to 0x03FF, wrapped
on 1 kB boundaries
XRAM - 1024 Bytes
(accessable using MOVX
instruction)
0x0000

Figure 8.2. Memory Map

8.2.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F310/1 and C8051F312/3/4/5 imple­ment 16 and 8 kB, respectively, of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x3FFF or 0x0000 to 0x1FFF. Addresses above 0x3E00 are reserved on the 16
Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature pro vides a mechanism for the CIP-51 to update program code and use the program memory space for non­volatile data storage. Refer to
Section “10. Flash Memory” on page 103 for further details.
kB devices.
-
Rev. 1.5 77
C8051F310/1/2/3/4/5

8.2.2. Data Memory

The CIP-51 includes 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 ory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Loca­tions 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes or as 128
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128
bytes of data memory. Figure 8.2 illustrates the data memory organization of the CIP-51.

8.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen­eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.
bytes of data memory are used for general purpose registers and scratch pad mem-
bytes, locations 0x20 through 0x2F, may either be addressed as
bit locations accessible with the direct addressing mode.
bytes of data memory space or the SFRs. Instructions that use
SFR Definition 8.4). This allows

8.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through 0x2F are also accessible as 128 0x00 to 0x7F. Bit 0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destina tion).
The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the byte address and B is the bit position within the byte. For example, the instruction:
MOV C, 22.3h
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.
0 of the byte at 0x20 has bit address 0x00 while bit7 of the byte at 0x20 has bit address
individually addressable bits. Each bit has a bit address from

8.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is desig­nated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256
bytes.
-
78 Rev. 1.5
C8051F310/1/2/3/4/5

8.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51™ instruction set. mented in the CIP-51 System Controller.
The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCON0, IE, etc.) are bit­addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in for a detailed description of each register.

Table 8.2. Special Function Register (SFR) Memory Map

F8 SPI0CN PCA0L PCA0H PCA0CPL0 PCA0CPH0 PCA0CPL4 PCA0CPH4 VDM0CN
F0 B P0MDIN P1MDIN P2MDIN P3MDIN EIP1 E8 ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPH3 RSTSRC E0 ACC XBR0 XBR1 IT01CF EIE1 D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 D0 PSW REF0CN P0SKIP P1SKIP P2SKIP C8 TMR2CN TMR2RLL TMR2RLH TMR2L TMR2H C0 SMB0CN SMB0CF SMB0DAT ADC0GTL ADC0GTH ADC0LTL ADC0LTH B8 IP AMX0N AMX0P ADC0CF ADC0L ADC0H B0 P3 OSCXCN OSCICN OSCICL FLSCL FLKEY A8 IE CLKSEL EMI0CN A0 P2 SPI0CFG SPI0CKR SPI0DAT P0MDOUT P1MDOUT P2MDOUT P3MDOUT
98 SCON0 SBUF0 CPT1CN CPT0CN CPT1MD CPT0MD CPT1MX CPT0MX
90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H
88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL
80 P0 SP DPL DPH PCON
0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)
(bit addressable)
Ta bl e 8.2 lists the SFRs imple-
Ta bl e 8.3,
Rev. 1.5 79
C8051F310/1/2/3/4/5

Table 8.3. Special Function Registers

Register Address Description Page
SFRs are listed in alphabetical order. All undefined SFR locations are reserved
ACC 0xE0
ADC0CF 0xBC ADC0 Configuration 52
ADC0CN 0xE8 ADC0 Control 53
ADC0GTH 0xC4 ADC0 Greater-Than Compare High 54
ADC0GTL 0xC3 ADC0 Greater-Than Compare Low 54
ADC0H 0xBE ADC0 High 52
ADC0L 0xBD ADC0 Low 52
ADC0LTH 0xC6 ADC0 Less-Than Compare Word High 55
ADC0LTL 0xC5 ADC0 Less-Than Compare Word Low 55
AMX0N 0xBA AMUX0 Negative Channel Select 51
AMX0P 0xBB AMUX0 Positive Channel Select 50
B 0xF0 B Register 85
CKCON 0x8E Clock Control 183
CLKSEL 0xA9 Clock Select 113
CPT0CN 0x9B Comparator0 Control 64
CPT0MD 0x9D Comparator0 Mode Selection 66
CPT0MX 0x9F Comparator0 MUX Selection 65
CPT1CN 0x9A Comparator1 Control 67
CPT1MD 0x9C Comparator1 Mode Selection 69
CPT1MX 0x9E Comparator1 MUX Selection 68
DPH 0x83 Data Pointer High 83
DPL 0x82 Data Pointer Low 82
EIE1 0xE6 Extended Interrupt Enable 1 91
EIP1 0xF6 Extended Interrupt Priority 1 92
EMI0CN 0xAA External Memory Interface Control 109
FLKEY 0xB7 Flash Lock and Key 107
FLSCL 0xB6 Flash Scale 108
IE 0xA8 Interrupt Enable 89
IP 0xB8 Interrupt Priority 90
IT01CF 0xE4 INT0/INT1 Configuration 93
OSCICL 0xB3 Internal Oscillator Calibration 112
OSCICN 0xB2 Internal Oscillator Control 112
OSCXCN 0xB1 External Oscillator Control 115
P0 0x80 Port 0 Latch 126
P0MDIN 0xF1 Port 0 Input Mode Configuration 126
P0MDOUT 0xA4 Port 0 Output Mode Configuration 127
P0SKIP 0xD4 Port 0 Skip 127
P1 0x90 Port 1 Latch 128
P1MDIN 0xF2 Port 1 Input Mode Configuration 128
P1MDOUT 0xA5 Port 1 Output Mode Configuration 129
P1SKIP 0xD5 Port 1 Skip 129
P2 0xA0 Port 2 Latch 130
P2MDIN 0xF3 Port 2 Input Mode Configuration 130
P2MDOUT 0xA6 Port 2 Output Mode Configuration 130
Accumulator 84
80 Rev. 1.5
C8051F310/1/2/3/4/5
Table 8.3. Special Function Registers (Continued)
Register Address Description Page
P2SKIP 0xD6 Port 2 Skip 131
P3 0xB0 Port 3 Latch 131
P3MDIN 0xF4 Port 3 Input Mode Configuration 132
P3MDOUT 0xA7 Port 3 Output Mode Configuration 132
PCA0CN 0xD8 PCA Control 205
PCA0CPH0 0xFC PCA Capture 0 High 209
PCA0CPH1 0xEA PCA Capture 1 High 209
PCA0CPH2 0xEC PCA Capture 2 High 209
PCA0CPH3 0xEE PCA Capture 3High 209
PCA0CPH4 0xFE PCA Capture 4 High 209
PCA0CPL0 0xFB PCA Capture 0 Low 208
PCA0CPL1 0xE9 PCA Capture 1 Low 208
PCA0CPL2 0xEB PCA Capture 2 Low 208
PCA0CPL3 0xED PCA Capture 3Low 208
PCA0CPL4 0xFD PCA Capture 4 Low 208
PCA0CPM0 0xDA PCA Module 0 Mode 207
PCA0CPM1 0xDB PCA Module 1 Mode 207
PCA0CPM2 0xDC PCA Module 2 Mode 207
PCA0CPM3 0xDD PCA Module 3 Mode 207
PCA0CPM4 0xDE PCA Module 4 Mode 207
PCA0H 0xFA PCA Counter High 208
PCA0L 0xF9 PCA Counter Low 208
PCA0MD 0xD9 PCA Mode 206
PCON 0x87 Power Control 95
PSCTL 0x8F Program Store R/W Control 107
PSW 0xD0 Program Status Word 84
REF0CN 0xD1 Voltage Reference Control 60
RSTSRC 0xEF Reset Source Configuration/Status 101
SBUF0 0x99 UART0 Data Buffer 159
SCON0 0x98 UART0 Control 158
SMB0CF 0xC1 SMBus Configuration 142
SMB0CN 0xC0 SMBus Control 144
SMB0DAT 0xC2 SMBus Data 146
SP 0x81 Stack Pointer 83
SPI0CFG 0xA1 SPI Configuration 170
SPI0CKR 0xA2 SPI Clock Rate Control 172
SPI0CN 0xF8 SPI Control 171
SPI0DAT 0xA3 SPI Data 172
TCON 0x88 Timer/Counter Control 181
TH0 0x8C Timer/Counter 0 High 184
TH1 0x8D Timer/Counter 1 High 184
TL0 0x8A Timer/Counter 0 Low 184
TL1 0x8B Timer/Counter 1 Low 184
TMOD 0x89 Timer/Counter Mode 182
TMR2CN 0xC8 Timer/Counter 2 Control 187
TMR2H 0xCD Timer/Counter 2 High 188
Rev. 1.5 81
C8051F310/1/2/3/4/5
Table 8.3. Special Function Registers (Continued)
Register Address Description Page
TMR2L 0xCC Timer/Counter 2 Low 188
TMR2RLH 0xCB Timer/Counter 2 Reload High 188
TMR2RLL 0xCA Timer/Counter 2 Reload Low 188
TMR3CN 0x91 Timer/Counter 3Control 191
TMR3H 0x95 Timer/Counter 3 High 192
TMR3L 0x94 Timer/Counter 3Low 192
TMR3RLH 0x93 Timer/Counter 3 Reload High 192
TMR3RLL 0x92 Timer/Counter 3 Reload Low 192
VDM0CN 0xFF
XBR1 0xE2 Port I/O Crossbar Control 1 125
XBR0 0xE1 Port I/O Crossbar Control 0 124
0x84-0x86, 0x96-0x97,
0xAB-0xAF, 0xB4, 0xB9,
0xBF, 0xC7, 0xC9, 0xCE,
0xCF, 0xD2, 0xD3, 0xD7,
0xDF, 0xE3, 0xE5, 0xF5
VDD Monitor Control
Reserved
99

8.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic which case the reset value of the bit will be logic tions of the remaining SFRs are included in the sections of the data sheet associated with their corre­sponding system function.
1. Future product versions may use these bits to implement new features in 0, selecting the feature's default state. Detailed descrip-

SFR Definition 8.1. DPL: Data Pointer Low Byte

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x82
Bits7-0: DPL: Data Pointer Low.
The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly addressed Flash memory.
82 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 8.2. DPH: Data Pointer High Byte

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bits7-0: DPH: Data Pointer High.
The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indirectly addressed Flash memory.

SFR Definition 8.3. SP: Stack Pointer

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
00000111
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0x83
0x81
Bits7-0: SP: Stack Pointer.
The Stack Pointer holds the location of the top of the stack. The stack pointer is incremented before every PUSH operation. The SP register defaults to 0x07 after reset.
Rev. 1.5 83
C8051F310/1/2/3/4/5

SFR Definition 8.4. PSW: Program Status Word

R/WR/WR/WR/WR/WR/WR/W RReset Value
CY AC F0 RS1 RS0 OV F1 PARITY 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable)
Bit7: CY: Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to logic 0 by all other arithmetic operations.
Bit6: AC: Auxiliary Carry Flag
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic opera­tions.
Bit5: F0: User Flag 0.
This is a bit-addressable, general purpose flag for use under software control.
Bits4-3: RS1-RS0: Register Bank Select.
These bits select which register bank is used during register accesses.
RS1 RS0 Register Bank Address
0 0 0 0x00–0x07 0 1 1 0x08–0x0F 1 0 2 0x10–0x17 1 1 3 0x18–0x1F
0xD0
Bit2: OV: Overflow Flag.
This bit is set to 1 under the following circumstances: an ADD, ADDC, or SUBB instruction causes a sign-change overflow, a MUL instruction results in an overflow (result is greater than 255), or a DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.
Bit1: F1: User Flag 1.
This is a bit-addressable, general purpose flag for use under software control.
Bit0: PARITY: Parity Flag.
This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.

SFR Definition 8.5. ACC: Accumulator

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
ACC.7 ACC.6 ACC.5 ACC.4 ACC.3 ACC.2 ACC.1 ACC.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable)
Bits7-0: ACC: Accumulator.
This register is the accumulator for arithmetic operations.
0xE0
84 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 8.6. B: B Register

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
B.7 B.6 B.5 B.4 B.3 B.2 B.1 B.0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable)
Bits7-0: B: B Register.
This register serves as a second accumulator for certain arithmetic operations.
0xF0
Rev. 1.5 85
C8051F310/1/2/3/4/5

8.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting a total of 14 interrupt sources with two prior­ity levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt­pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic less of the interrupt's enable/disable state.)
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE1). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic all interrupt sources regardless of the individual interrupt-enable settings.
1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables
1.
1 regard-
-
Note: Any instruction that clears the EA bit should be immediately followed by an instruction that has two or more opcode bytes. For example:
// in 'C': EA = 0; // clear EA bit EA = 0; // ... followed by another 2-byte opcode
; in assembly: CLR EA ; clear EA bit CLR EA ; ... followed by another 2-byte opcode
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is followed by a multi-cycle instruction, the interrupt will not be taken.
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

8.3.1. MCU Interrupt Sources and Vectors

The MCUs support 14 interrupt sources. Software can simulate an interrupt by setting any interrupt-pend­ing flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associ ated vector addresses, priority order and control bits are summarized in Ta bl e 8.4 on page 88. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).
-
-
86 Rev. 1.5
C8051F310/1/2/3/4/5

8.3.2. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensi­tive. The IN0PL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON ( or edge sensitive. The table below lists the possible configurations.
IT0 IN0PL /INT0 Interrupt IT1 IN1PL /INT1 Interrupt
10 11Active high, edge sensitive 11Active high, edge sensitive 00Active low, level sensitive 00Active low, level sensitive 01Active high, level sensitive 01Active high, level sensitive
/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 8.11). Note that /INT0 and /INT0 Port pin assignments are independent of any Crossbar assignments. /INT0 and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see
“13.1. Priority Crossbar Decoder” on page 121 for complete details on configuring the Crossbar).
IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corre sponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inac tive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.
Active low, edge sensitive 10Active low, edge sensitive
Section “17.1. Timer 0 and Timer 1” on page 177) select level
Section
-
-

8.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior­ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in
Tab le 8.4.

8.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18
system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.
clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the
clock cycles to execute the LCALL to the ISR. If the CPU is
Rev. 1.5 87
C8051F310/1/2/3/4/5

Table 8.4. Interrupt Summary

Interrupt Source
Reset 0x0000 To p None N/A N/A
External Interrupt 0 (/INT0) 0x0003 0 IE0 (TCON.1) Y Y EX0 (IE.0) PX0 (IP.0) Timer 0 Overflow 0x000B 1 TF0 (TCON.5) Y Y ET0 (IE.1) PT0 (IP.1) External Interrupt 1 (/INT1) 0x0013 2 IE1 (TCON.3) Y Y EX1 (IE.2) PX1 (IP.2) Timer 1 Overflow 0x001B 3 TF1 (TCON.7) Y Y ET1 (IE.3) PT1 (IP.3)
UART0 0x0023 4
Timer 2 Overflow 0x002B 5
SPI0 0x0033 6
SMB0 0x003B 7 SI (SMB0CN.0) Y N
RESERVED 0x0043 8 N/A N/A N/A N/A N/A
ADC0 Window Compare 0x004B 9
ADC0 Conversion Complete
Programmable Counter Array
Comparator0 0x0063 12
Comparator1 0x006B 13
Timer 3 Overflow 0x0073 14
Interrupt
Vector
0x0053 10
0x005B 11
Priority
Order
Pending Flag
RI0 (SCON0.0) TI0 (SCON0.1)
TF2H (TMR2CN.7) TF2L (TMR2CN.6) SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)
AD0WINT (ADC0CN.3)
AD0INT (ADC0CN.5)
CF (PCA0CN.7) CCFn (PCA0CN.n)
CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5) CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)
TF3H (TMR3CN.7) TF3L (TMR3CN.6)
Enable Flag
Cleared by HW?
Bit addressable?
Always Enabled
Y N ES0 (IE.4) PS0 (IP.4)
Y N ET2 (IE.5) PT2 (IP.5)
Y N
Y N
Y N
Y N
N N
N N
N N
ESPI0 (IE.6)
ESMB0 (EIE1.0)
EWADC0 (EIE1.2)
EADC0 (EIE1.3)
EPCA0 (EIE1.4)
ECP0 (EIE1.5)
ECP1 (EIE1.6)
ET3 (EIE1.7)
Priority Control
Always Highest
PSPI0 (IP.6)
PSMB0 (EIP1.0)
PWADC0 (EIP1.2)
PADC0 (EIP1.3)
PPCA0 (EIP1.4)
PCP0 (EIP1.5)
PCP1 (EIP1.6)
PT3 (EIP1.7)
88 Rev. 1.5
C8051F310/1/2/3/4/5

8.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 8.7. IE: Interrupt Enable

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable)
Bit7: EA: Enable All Interrupts.
This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set­tings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
Bit6: ESPI0: Enable Serial Peripheral Interface (SPI0) Interrupt.
This bit sets the masking of the SPI0 interrupts. 0: Disable all SPI0 interrupts. 1: Enable interrupt requests generated by SPI0.
Bit5: ET2: Enable Timer 2 Interrupt.
This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
Bit4: ES0: Enable UART0 Interrupt.
This bit sets the masking of the UART0 interrupt. 0: Disable UART0 interrupt. 1: Enable UART0 interrupt.
Bit3: ET1: Enable Timer 1 Interrupt.
This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
Bit2: EX1: Enable External Interrupt 1.
This bit sets the masking of External Interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the /INT1 input.
Bit1: ET0: Enable Timer 0 Interrupt.
This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TF0 flag.
Bit0: EX0: Enable External Interrupt 0.
This bit sets the masking of External Interrupt 0. 0: Disable external interrupt 0. 1: Enable interrupt requests generated by the /INT0 input.
0xA8
Rev. 1.5 89
C8051F310/1/2/3/4/5

SFR Definition 8.8. IP: Interrupt Priority

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
- PSPI0 PT2 PS0 PT1 PX1 PT0 PX0 10000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
(bit addressable)
Bit7: UNUSED. Read = 1, Write = don't care. Bit6: PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control.
This bit sets the priority of the SPI0 interrupt. 0: SPI0 interrupt set to low priority level. 1: SPI0 interrupt set to high priority level.
Bit5: PT2: Timer 2 Interrupt Priority Control.
This bit sets the priority of the Timer 2 interrupt. 0: Timer 2 interrupts set to low priority level. 1: Timer 2 interrupts set to high priority level.
Bit4: PS0: UART0 Interrupt Priority Control.
This bit sets the priority of the UART0 interrupt. 0: UART0 interrupts set to low priority level. 1: UART0 interrupts set to high priority level.
Bit3: PT1: Timer 1 Interrupt Priority Control.
This bit sets the priority of the Timer 1 interrupt. 0: Timer 1 interrupts set to low priority level. 1: Timer 1 interrupts set to high priority level.
Bit2: PX1: External Interrupt 1 Priority Control.
This bit sets the priority of the External Interrupt 1 interrupt. 0: External Interrupt 1 set to low priority level. 1: External Interrupt 1 set to high priority level.
Bit1: PT0: Timer 0 Interrupt Priority Control.
This bit sets the priority of the Timer 0 interrupt. 0: Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level.
Bit0: PX0: External Interrupt 0 Priority Control.
This bit sets the priority of the External Interrupt 0 interrupt. 0: External Interrupt 0 set to low priority level. 1: External Interrupt 0 set to high priority level.
0xB8
90 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 8.9. EIE1: Extended Interrupt Enable 1

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
ET3 ECP1 ECP0 EPCA0 EADC0 EWADC0 Reserved ESMB0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bit7: ET3: Enable Timer 3 Interrupt.
This bit sets the masking of the Timer 3 interrupt. 0: Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
Bit6: ECP1: Enable Comparator1 (CP1) Interrupt.
This bit sets the masking of the CP1 interrupt. 0: Disable CP1 interrupts. 1: Enable interrupt requests generated by the CP1RIF or CP1FIF flags.
Bit5: ECP0: Enable Comparator0 (CP0) Interrupt.
This bit sets the masking of the CP0 interrupt. 0: Disable CP0 interrupts. 1: Enable interrupt requests generated by the CP0RIF or CP0FIF flags.
Bit4: EPCA0: Enable Programmable Counter Array (PCA0) Interrupt.
This bit sets the masking of the PCA0 interrupts. 0: Disable all PCA0 interrupts. 1: Enable interrupt requests generated by PCA0.
Bit3: EADC0: Enable ADC0 Conversion Complete Interrupt.
This bit sets the masking of the ADC0 Conversion Complete interrupt. 0: Disable ADC0 Conversion Complete interrupt. 1: Enable interrupt requests generated by the AD0INT flag.
Bit2: EWADC0: Enable Window Comparison ADC0 Interrupt.
This bit sets the masking of ADC0 Window Comparison interrupt. 0: Disable ADC0 Window Comparison interrupt.
1: Enable interrupt requests generated by ADC0 Window Compare flag (AD0WINT). Bit1: RESERVED. Read = 0. Must Write 0. Bit0: ESMB0: Enable SMBus (SMB0) Interrupt.
This bit sets the masking of the SMB0 interrupt.
0: Disable all SMB0 interrupts.
1: Enable interrupt requests generated by SMB0.
0xE6
Rev. 1.5 91
C8051F310/1/2/3/4/5

SFR Definition 8.10. EIP1: Extended Interrupt Priority 1

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
PT3 PCP1 PCP0F PPCA0 PADC0 PWADC0 Reserved PSMB0 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
Bit7: PT3: Timer 3 Interrupt Priority Control.
This bit sets the priority of the Timer 3 interrupt.
0: Timer 3 interrupts set to low priority level.
1: Timer 3 interrupts set to high priority level. Bit6: PCP1: Comparator1 (CP1) Interrupt Priority Control.
This bit sets the priority of the CP1 interrupt.
0: CP1 interrupt set to low priority level.
1: CP1 interrupt set to high priority level. Bit5: PCP0: Comparator0 (CP0) Interrupt Priority Control.
This bit sets the priority of the CP0 interrupt.
0: CP0 interrupt set to low priority level.
1: CP0 interrupt set to high priority level. Bit4: PPCA0: Programmable Counter Array (PCA0) Interrupt Priority Control.
This bit sets the priority of the PCA0 interrupt.
0: PCA0 interrupt set to low priority level.
1: PCA0 interrupt set to high priority level. Bit3: PADC0 ADC0 Conversion Complete Interrupt Priority Control.
This bit sets the priority of the ADC0 Conversion Complete interrupt.
0: ADC0 Conversion Complete interrupt set to low priority level.
1: ADC0 Conversion Complete interrupt set to high priority level. Bit2: PWADC0: ADC0 Window Comparator Interrupt Priority Control.
This bit sets the priority of the ADC0 Window interrupt.
0: ADC0 Window interrupt set to low priority level.
1: ADC0 Window interrupt set to high priority level. Bit1: RESERVED. Read = 0. Must Write 0. Bit0: PSMB0: SMBus (SMB0) Interrupt Priority Control.
This bit sets the priority of the SMB0 interrupt.
0: SMB0 interrupt set to low priority level.
1: SMB0 interrupt set to high priority level.
0xF6
92 Rev. 1.5
C8051F310/1/2/3/4/5

SFR Definition 8.11. IT01CF: INT0/INT1 Configuration

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
IN1PL IN1SL2 IN1SL1 IN1SL0 IN0PL IN0SL2 IN0SL1 IN0SL0 00000001
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
0xE4
Note: Refer to Figure 17.1 for INT0/1 edge- or level-sensitive interrupt selection.
Bit7: IN1PL: /INT1 Polarity
0: /INT1 input is active low.
1: /INT1 input is active high. Bits6-4: IN1SL2-0: /INT1 Port Pin Selection Bits
These bits select which Port pin is assigned to /INT1. Note that this pin assignment is inde-
pendent of the Crossbar; /INT1 will monitor the assigned Port pin without disturbing the
peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not
assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by
setting to ‘1’ the corresponding bit in register P0SKIP).
IN1SL2-0 /INT1 Port Pin
000 P0.0 001 P0.1 010 P0.2
011 P0.3 100 P0.4 101 P0.5
110 P0.6
111 P0.7
Bit3: IN0PL: /INT0 Polarity
0: /INT0 interrupt is active low. 1: /INT0 interrupt is active high.
Bits2-0: INT0SL2-0: /INT0 Port Pin Selection Bits
These bits select which Port pin is assigned to /INT0. Note that this pin assignment is inde­pendent of the Crossbar. /INT0 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by setting to ‘1’ the corresponding bit in register P0SKIP).
IN0SL2-0 /INT0 Port Pin
000 P0.0 001 P0.1 010 P0.2
011 P0.3 100 P0.4 101 P0.5
110 P0.6
111 P0.7
Rev. 1.5 93
C8051F310/1/2/3/4/5

8.4. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all inter rupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not effected). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. tion 8.12 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.
Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscil lators lowers power consumption considerably; however, a reset is required to restart the MCU.

8.4.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.
SFR Defini-
-
-
Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.
If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby termi­nate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This pro vides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefi­nitely, waiting for an external stimulus to wake up the system. Refer to Section “9.6. PCA Watchdog
Timer Reset” on page 100 for more information on the use and configuration of the WDT.
Note: Any instruction that sets the IDLE bit should be immediately followed by an instruction that has 2 or more opcode bytes. For example:
// in 'C': PCON |= 0x01; // set IDLE bit PCON = PCON; // ... followed by a 3-cycle dummy instruction
; in assembly: ORL PCON, #01h ; set IDLE bit MOV PCON, PCON; ... followed by a 3-cycle dummy instruction
-
If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from IDLE mode when a future interrupt occurs.
94 Rev. 1.5
C8051F310/1/2/3/4/5

8.4.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruc­tion that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripher­als are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.
If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value
GF5 GF4 GF3 GF2 GF1 GF0 STOP IDLE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:
µsec.

SFR Definition 8.12. PCON: Power Control

0x87
Bits7-2: GF5-GF0: General Purpose Flags 5-0.
These are general purpose flags for use under software control.
Bit1: STOP: Stop Mode Select.
Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0. 1: CPU goes into Stop mode (internal oscillator stopped).
Bit0: IDLE: Idle Mode Select.
Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0. 1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial Ports, and Analog Peripherals are still active.)
Rev. 1.5 95
C8051F310/1/2/3/4/5
Notes
96 Rev. 1.5
C8051F310/1/2/3/4/5

9. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:
CIP-51 halts program execution
Special Function Registers (SFRs) are initialized to their defined reset values
External Port pins are forced to a known state
Interrupts and timers are disabled.
All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.
The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled dur­ing and after the reset. For VDD Monitor and power-on resets, the RST pin is driven low until the device
exits the reset state.
On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the inter­nal oscillator. Refer to Section “12. Oscillators” on page 111 for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source ( Program execution begins at location 0x0000.
Section “18.3. Watchdog Timer Mode” on page 202 details the use of the Watchdog Timer).
Px.x
Px.x
Comparator 0
+
-
System
Clock
C0RSEF
Missing
Clock
Detector
(one­shot)
EN
MCD
Enable
WDT
CIP-51
Microcontroller
Core
Extended Interrupt
Handler
PCA
EN
WDT
VDD
Enable
Supply Monitor
+
-
System Reset
Enable
(Software Reset)
SWRSF
Power On
Reset
'0'
Errant
FLASH
Operation
(wired-OR)
/RST
Reset Funnel

Figure 9.1. Reset Sources

Rev. 1.5 97
C8051F310/1/2/3/4/5

9.1. Power-On Reset

During power-up, the device is held in a reset state and the RST pin is driven low until VDD settles above V
. An additional delay occurs before the device is released from reset; the delay decreases as the V
RST
ramp time increases (VDD ramp time is defined as how fast VDD ramps from 0 V to V
). Figure 9.2. plots
RST
the power-on and VDD monitor reset timing. For valid ramp times (less than 1 ms), the power-on reset delay (T
PORDelay
) is typically less than 0.3 ms.
Note: The maximum VDD ramp time is 1 ms; slower ramp times may cause the device to be released from reset before V
reaches the V
DD
RST
level.
On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data mem ory should be assumed to be undefined after a power-on reset. The VDD monitor is disabled following a
power-on reset.
DD
-
volts
2.70
2.55
2.0
1.0
Logic HIGH
Logic LOW
/RST
V
RST
D
D
V
T
PORDelay
Power-On
Reset
VDD
Monitor
Reset

Figure 9.2. Power-On and VDD Monitor Reset Timing

VDD
t
98 Rev. 1.5

9.2. Power-Fail Reset / VDD Monitor

C8051F310/1/2/3/4/5
When a power-down transition or power irregularity causes VDD to drop below V monitor will drive the to a level above V
RST pin low and hold the CIP-51 in a reset state (see Figure 9.2). When VDD returns , the CIP-51 will be released from the reset state. Note that even though internal data
RST
memory contents are not altered by the power-fail reset, it is impossible to determine if V the level required for data retention. If the PORSF flag reads ‘1’, the data may no longer be valid. The V
, the power supply
RST
dropped below
DD
DD
monitor is disabled after power-on resets; however its defined state (enabled/disabled) is not altered by any other reset source. For example, if the V
monitor will still be enabled after the reset.
V
DD
monitor is enabled and a software reset is performed, the
DD
Important Note: The VDD monitor must be enabled before it is selected as a reset source. Selecting the V
monitor as a reset source before it is enabled and stabilized may cause a system reset. The proce-
DD
dure for configuring the VDD monitor as a reset source is shown below:
Step 1. Enable the VDD monitor (VDMEN bit in VDM0CN = ‘1’). Step 2. Wait for the V
monitor to stabilize (see Table 9.1 for the VDD Monitor turn-on time).
DD
Note: This delay should be omitted if software contains routines that erase or write Flash memory.
Step 3. Select the V
monitor as a reset source (PORSF bit in RSTSRC = ‘1’).
DD
See Figure 9.2 for VDD monitor timing; note that the reset delay is not incurred after a VDD monitor reset. See Ta bl e 9.1 for complete electrical characteristics of the VDD monitor.

SFR Definition 9.1. VDM0CN: VDD Monitor Control

R/W R R R R R R R Reset Value
VDMEN VDDSTAT Reserved Reserved Reserved Reserved Reserved Reserved Variable
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Bit7: VDMEN: VDD Monitor Enable.
This bit is turns the V
monitor circuit on/off. The VDD Monitor cannot generate system
DD
resets until it is also selected as a reset source in register RSTSRC (Figure 9.2). The V Monitor must be allowed to stabilize before it is selected as a reset source. Selecting the
V
monitor as a reset source before it has stabilized may generate a system reset.
DD
Monitor turn-on time.
DD
Bit6: V
See Table 9.1 for the minimum V 0: V
Monitor Disabled.
DD
Monitor Enabled.
1: V
DD
STAT: VDD Status.
DD
This bit indicates the current power supply status (V
is at or below the VDD monitor threshold.
0: V
DD
1: V
is above the VDD monitor threshold.
DD
Bits5-0: Reserved. Read = Variable. Write = don’t care.
Monitor output).
DD
SFR Address:
0xFF
DD
Rev. 1.5 99
C8051F310/1/2/3/4/5

9.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Assert­ing an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Ta bl e 9.1 for complete RST pin spec­ifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

9.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than 100 MCD reset, the MCDRSF flag (RSTSRC.2) will read ‘1’, signifying the MCD as the reset source; otherwise, this bit reads ‘0’. Writing a ‘1’ to the MCDRSF bit enables the Missing Clock Detector; writing a ‘0’ disables it. The state of the
RST pin is unaffected by this reset.

9.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a ‘1’ to the C0RSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to C0RSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non­inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the C0RSEF flag (RSTSRC.5) will read ‘1’ signifying Comparator0 as the reset source; otherwise, this bit reads ‘0’. The state of the this reset.
µs, the one-shot will time out and generate a reset. After a
RST pin is unaffected by

9.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in
page 202; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction
prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to ‘1’. The state of the
RST pin is unaffected by this reset.
Section “18.3. Watchdog Timer Mode” on

9.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:
A Flash write or erase is attempted above user code space. This occurs when PSWE is set to ‘1’ and a MOVX write operation targets an address above address 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.
A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above address 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.
A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x3DFF for C8051F310/1 or 0x1FFF for C8051F312/3/4/5.
A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section
“10.3. Security Options” on page 105).
The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the RST pin is unaffected by this reset.
100 Rev. 1.5
Loading...