Silicon Laboratories C8051F000, C8051F001, C8051F002, C8051F005, C8051F006 User Manual

...
C8051F000/1/2/5/6/7
ANALOG PERIPHERALS
- SAR ADC
12-Bit (C8051F000/1/2, C8051F005/6/7) 10-bit (C8051F010/1/2, C8051F015/6/7) ±1LSB INL; No Missing Codes Programmable Throughput up to 100ksps Up to 8 External Inputs; Programmable as Single-
- Two 12-bit DACs
- Two Analog Comparators
- Voltage Reference
- Precision VDD Monitor/Brown-out Detector
ON-CHIP JTAG DEBUG & BOUNDRY SCAN
- On-Chip Debug Circuitry Facilitates Full Speed, Non-
- Provides Breakpoints, Single Stepping, Watchpoints, Stack
- Inspect/Modify Memory and Registers
- Superior Performance to Emulation Systems Using ICE-
- IEEE1149.1 Compliant Boundary Scan
- Low Cost Development Kit
Ended or Differential
Programmable Amplifier Gain: 16, 8, 4, 2, 1, 0.5 Data Dependent Windowed Interrupt Generator Built-in Temperature Sensor (± 3°C)
Programmable Hysteresis Values Configurable to Generate Interrupts or Reset
2.4V; 15 ppm/°C Available on External Pin
Intrusive In-System Debug (No Emulator Required!)
Monitor
Chips, Target Pods, and Sockets
Mixed-Signal 32KB ISP FLASH MCU Family
C8051F010/1/2/5/6/7
HIGH SPEED 8051 µµµµC CORE
- Pipelined Instruction Architecture; Executes 70% of Instruction Set in 1 or 2 System Clocks
- Up to 25MIPS Throughput with 25MHz Clock
- 21 Vectored Interrupt Sources
MEMORY
- 256 Bytes Internal Data RAM (F000/01/02/10/11/12)
- 2304 Bytes Internal Data RAM (F005/06/07/15/16/17)
- 32k Bytes FLASH; In-System Programmable in 512 byte
Sectors
DIGITAL PERIPHERALS
- 4 Byte-Wide Port I/O; All are 5V tolerant
- Hardware SMBus
Serial Ports Available Concurrently
- Programmable 16-bit Counter/Timer Array with Five Capture/Compare Modules
- Four General Purpose 16-bit Counter/Timers
- Dedicated Watch-Dog Timer
- Bi-directional Reset
CLOCK SOURCES
- Internal Programmable Oscillator: 2-to-16MHz
- External Oscillator: Crystal, RC,C, or Clock
- Can Switch Between Clock Sources on-the-fly; Useful in
Power Saving Modes
SUPPLY VOLTAGE ........................ 2.7V to 3.6V
- Typical Operating Current: 12.5mA @ 25MHz
- Multiple Power Saving Sleep and Shutdown Modes
64-Pin TQFP, 48-Pin TQFP, 32-Pin LQFP Temperature Range: –40°°°°C to +85°°°°C
TM
(I2CTM Compatible), SPITM, and UART
ANALOG PERIPHERALS
TEMP
SENSOR
PGA
AMUX
VREF
SAR
ADC
12-Bit
DAC
12-Bit
DAC
+
-
COMPARATORS
+
-
VOLTAGE
DIGITAL I/O
PCA
SMBus
SPI Bus
UART
Timer 0
Timer 1
Timer 2
Timer 3
CROSSBAR
Port 0Port 1
Port 2Port 3
HIGH-SPEED CONTROLLER CORE
8051 CPU
(25MIPS)
32KB
ISP FLASH
CLOCK
CIRCUIT
256/2304 B
SRAM
21
INTERRUPTS
DEBUG
CIRCUITRY
SANITY
CONTROL
Page 1 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
TABLE OF CONTENTS
1. SYSTEM OVERVIEW ....................................................................................................... 8
Table 1.1. Product Selection Guide................................................................................................................... 8
Figure 1.1. C8051F000/05/10/15 Block Diagram............................................................................................. 9
Figure 1.2. C8051F001/06/11/16 Block Diagram........................................................................................... 10
Figure 1.3. C8051F002/07/12/17 Block Diagram........................................................................................... 11
1.1. CIP-51TM CPU ...................................................................................................................................... 12
Figure 1.4. Comparison of Peak MCU Execution Speeds............................................................................... 12
Figure 1.5. On-Board Clock and Reset ........................................................................................................... 13
1.2. On-Board Memory................................................................................................................................ 14
Figure 1.6. On-Board Memory Map ............................................................................................................... 14
1.3. JTAG Debug and Boundary Scan ......................................................................................................... 15
Figure 1.7. Debug Environment Diagram ....................................................................................................... 15
1.4. Programmable Digital I/O and Crossbar ............................................................................................... 16
Figure 1.8. Digital Crossbar Diagram ............................................................................................................. 16
1.5. Programmable Counter Array ............................................................................................................... 17
Figure 1.9. PCA Block Diagram..................................................................................................................... 17
1.6. Serial Ports ............................................................................................................................................ 17
1.7. Analog to Digital Converter.................................................................................................................. 18
Figure 1.10. ADC Diagram............................................................................................................................. 18
1.8. Comparators and DACs......................................................................................................................... 19
Figure 1.11. Comparator and DAC Diagram .................................................................................................. 19
2. ABSOLUTE MAXIMUM RATINGS*............................................................................ 20
3. GLOBAL DC ELECTRICAL CHARACTERISTICS .................................................. 20
4. PINOUT AND PACKAGE DEFINITIONS.................................................................... 21
Table 4.1. Pin Definitions ............................................................................................................................... 21
Figure 4.1. TQFP-64 Pinout Diagram............................................................................................................. 23
Figure 4.2. TQFP-64 Package Drawing.......................................................................................................... 24
Figure 4.3. TQFP-48 Pinout Diagram............................................................................................................. 25
Figure 4.4. TQFP-48 Package Drawing.......................................................................................................... 26
Figure 4.5. LQFP-32 Pinout Diagram............................................................................................................. 27
Figure 4.6. LQFP-32 Package Drawing .......................................................................................................... 28
5. ADC (12-Bit, C8051F000/1/2/5/6/7 Only) ........................................................................ 29
Figure 5.1. 12-Bit ADC Functional Block Diagram........................................................................................ 29
5.1. Analog Multiplexer and PGA................................................................................................................ 29
5.2. ADC Modes of Operation ..................................................................................................................... 30
Figure 5.2. 12-Bit ADC Track and Conversion Example Timing................................................................... 30
Figure 5.3. Temperature Sensor Transfer Function......................................................................................... 31
Figure 5.4. AMX0CF: AMUX Configuration Register (C8051F00x) ............................................................ 31
Figure 5.5. AMX0SL: AMUX Channel Select Register (C8051F00x)........................................................... 32
Figure 5.6. ADC0CF: ADC Configuration Register (C8051F00x)................................................................. 33
Figure 5.7. ADC0CN: ADC Control Register (C8051F00x) .......................................................................... 34
Figure 5.8. ADC0H: ADC Data Word MSB Register (C8051F00x) ............................................................. 35
Figure 5.9. ADC0L: ADC Data Word LSB Register (C8051F00x)............................................................... 35
5.3. ADC Programmable Window Detector................................................................................................. 36
Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F00x)................................... 36
Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F00x).................................... 36
Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F00x)........................................ 36
Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F00x)......................................... 36
Figure 5.14. 12-Bit ADC Window Interrupt Examples, Right Justified Data................................................. 37
Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data ................................................... 37
Figure 5.15. 12-Bit ADC Window Interrupt Examples, Left Justified Data ................................................... 38
Page 2 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Table 5.1. 12-Bit ADC Electrical Characteristics ........................................................................................... 38
Table 5.1. 12-Bit ADC Electrical Characteristics ........................................................................................... 39
6. ADC (10-Bit, C8051F010/1/2/5/6/7 Only) ........................................................................ 40
Figure 6.1. 10-Bit ADC Functional Block Diagram........................................................................................ 40
6.1. Analog Multiplexer and PGA................................................................................................................ 40
6.2. ADC Modes of Operation ..................................................................................................................... 41
Figure 6.2. 10-Bit ADC Track and Conversion Example Timing................................................................... 41
Figure 6.3. Temperature Sensor Transfer Function......................................................................................... 42
Figure 6.4. AMX0CF: AMUX Configuration Register (C8051F01x) ............................................................ 42
Figure 6.5. AMX0SL: AMUX Channel Select Register (C8051F01x)........................................................... 43
Figure 6.6. ADC0CF: ADC Configuration Register (C8051F01x)................................................................. 44
Figure 6.7. ADC0CN: ADC Control Register (C8051F01x) .......................................................................... 45
Figure 6.8. ADC0H: ADC Data Word MSB Register (C8051F01x) ............................................................. 46
Figure 6.9. ADC0L: ADC Data Word LSB Register (C8051F01x)............................................................... 46
6.3. ADC Programmable Window Detector................................................................................................. 47
Figure 6.10. ADC0GTH: ADC Greater-Than Data High Byte Register (C8051F01x)................................... 47
Figure 6.11. ADC0GTL: ADC Greater-Than Data Low Byte Register (C8051F01x).................................... 47
Figure 6.12. ADC0LTH: ADC Less-Than Data High Byte Register (C8051F01x)........................................ 47
Figure 6.13. ADC0LTL: ADC Less-Than Data Low Byte Register (C8051F01x)......................................... 47
Figure 6.14. 10-Bit ADC Window Interrupt Examples, Right Justified Data................................................. 48
Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data ................................................... 48
Figure 6.15. 10-Bit ADC Window Interrupt Examples, Left Justified Data ................................................... 49
Table 6.1. 10-Bit ADC Electrical Characteristics ........................................................................................... 49
Table 6.1. 10-Bit ADC Electrical Characteristics ........................................................................................... 50
7. DACs, 12 BIT VOLTAGE MODE................................................................................... 51
Figure 7.1. DAC Functional Block Diagram.................................................................................................... 51
Figure 7.2. DAC0H: DAC0 High Byte Register............................................................................................. 52
Figure 7.3. DAC0L: DAC0 Low Byte Register .............................................................................................. 52
Figure 7.4. DAC0CN: DAC0 Control Register............................................................................................... 52
Figure 7.5. DAC1H: DAC1 High Byte Register............................................................................................. 53
Figure 7.6. DAC1L: DAC1 Low Byte Register .............................................................................................. 53
Figure 7.7. DAC1CN: DAC1 Control Register............................................................................................... 53
Table 7.1. DAC Electrical Characteristics ...................................................................................................... 54
8. COMPARATORS.............................................................................................................. 55
Figure 8.1. Comparator Functional Block Diagram........................................................................................ 55
Figure 8.2. Comparator Hysteresis Plot .......................................................................................................... 56
Figure 8.3. CPT0CN: Comparator 0 Control Register .................................................................................... 57
Figure 8.4. CPT1CN: Comparator 1 Control Register .................................................................................... 58
Table 8.1. Comparator Electrical Characteristics............................................................................................ 59
9. VOLTAGE REFERENCE................................................................................................ 60
Figure 9.1. Voltage Reference Functional Block Diagram ............................................................................. 60
Figure 9.2. REF0CN: Reference Control Register.......................................................................................... 61
Table 9.1. Reference Electrical Characteristics............................................................................................... 61
10. CIP-51 CPU........................................................................................................................ 62
Figure 10.1. CIP-51 Block Diagram ............................................................................................................... 62
10.1. INSTRUCTION SET ........................................................................................................................ 63
Table 10.1. CIP-51 Instruction Set Summary.................................................................................................. 64
10.2. MEMORY ORGANIZATION.......................................................................................................... 67
Figure 10.2. Memory Map .............................................................................................................................. 68
10.3. SPECIAL FUNCTION REGISTERS ............................................................................................... 69
Table 10.2. Special Function Register Memory Map...................................................................................... 69
Table 10.3. Special Function Registers........................................................................................................... 69
Figure 10.3. SP: Stack Pointer ........................................................................................................................ 73
Figure 10.4. DPL: Data Pointer Low Byte...................................................................................................... 73
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 3
C8051F000/1/2/5/6/7
Figure 10.5. DPH: Data Pointer High Byte..................................................................................................... 73
Figure 10.6. PSW: Program Status Word ....................................................................................................... 74
Figure 10.7. ACC: Accumulator ..................................................................................................................... 75
Figure 10.8. B: B Register............................................................................................................................... 75
10.4. INTERRUPT HANDLER................................................................................................................. 76
Table 10.4. Interrupt Summary....................................................................................................................... 77
Figure 10.9. IE: Interrupt Enable .................................................................................................................... 78
Figure 10.10. IP: Interrupt Priority ................................................................................................................. 79
Figure 10.11. EIE1: Extended Interrupt Enable 1........................................................................................... 80
Figure 10.12. EIE2: Extended Interrupt Enable 2........................................................................................... 81
Figure 10.13. EIP1: Extended Interrupt Priority 1.......................................................................................... 82
Figure 10.14. EIP2: Extended Interrupt Priority 2.......................................................................................... 83
10.5. Power Management Modes ............................................................................................................... 84
Figure 10.15. PCON: Power Control Register ................................................................................................ 85
C8051F010/1/2/5/6/7
11. FLASH MEMORY............................................................................................................ 86
11.1. Programming The Flash Memory...................................................................................................... 86
Table 11.1. FLASH Memory Electrical Characteristics.................................................................................. 86
11.2. Non-volatile Data Storage................................................................................................................. 87
11.3. Security Options................................................................................................................................ 87
Figure 11.1. PSCTL: Program Store RW Control........................................................................................... 87
Figure 11.2. Flash Program Memory Security Bytes ....................................................................................... 88
Figure 11.3. FLACL: Flash Access Limit (C8051F005/06/07/15/16/17 only) ............................................... 89
Figure 11.4. FLSCL: Flash Memory Timing Prescaler................................................................................... 90
12. EXTERNAL RAM (C8051F005/06/07/15/16/17) ............................................................ 91
Figure 12.1. EMI0CN: External Memory Interface Control ........................................................................... 91
13. RESET SOURCES ............................................................................................................ 92
Figure 13.1. Reset Sources Diagram............................................................................................................... 92
13.1. Power-on Reset ................................................................................................................................. 93
13.2. Software Forced Reset....................................................................................................................... 93
Figure 13.2. VDD Monitor Timing Diagram .................................................................................................. 93
13.3. Power-fail Reset................................................................................................................................ 93
13.4. External Reset ................................................................................................................................... 94
13.5. Missing Clock Detector Reset ........................................................................................................... 94
13.6. Comparator 0 Reset........................................................................................................................... 94
13.7. External CNVSTR Pin Reset ............................................................................................................ 94
13.8. Watchdog Timer Reset...................................................................................................................... 94
Figure 13.3. WDTCN: Watchdog Timer Control Register ............................................................................. 95
Figure 13.4. RSTSRC: Reset Source Register ................................................................................................ 96
Table 13.1. Reset Electrical Characteristics.................................................................................................... 97
14. OSCILLATOR................................................................................................................... 98
Figure 14.1. Oscillator Diagram...................................................................................................................... 98
Figure 14.2. OSCICN: Internal Oscillator Control Register ........................................................................... 99
Table 14.1. Internal Oscillator Electrical Characteristics................................................................................ 99
Figure 14.3. OSCXCN: External Oscillator Control Register....................................................................... 100
14.1. External Crystal Example................................................................................................................ 101
14.2. External RC Example...................................................................................................................... 101
14.3. External Capacitor Example............................................................................................................ 101
15. PORT INPUT/OUTPUT................................................................................................. 102
15.1. Priority Cross Bar Decoder ............................................................................................................. 102
15.2. Port I/O Initialization ...................................................................................................................... 102
Figure 15.1. Port I/O Functional Block Diagram.......................................................................................... 103
Figure 15.2. Port I/O Cell Block Diagram .................................................................................................... 103
Table 15.1. Crossbar Priority Decode........................................................................................................... 104
Figure 15.3. XBR0: Port I/O CrossBar Register 0........................................................................................ 105
Page 4 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 15.4. XBR1: Port I/O CrossBar Register 1........................................................................................ 106
Figure 15.5. XBR2: Port I/O CrossBar Register 2........................................................................................ 107
15.3. General Purpose Port I/O ................................................................................................................ 108
15.4. Configuring Ports Which are not Pinned Out.................................................................................. 108
Figure 15.6. P0: Port0 Register..................................................................................................................... 108
Figure 15.7. PRT0CF: Port0 Configuration Register.................................................................................... 108
Figure 15.8. P1: Port1 Register..................................................................................................................... 109
Figure 15.9. PRT1CF: Port1 Configuration Register.................................................................................... 109
Figure 15.10. PRT1IF: Port1 Interrupt Flag Register ................................................................................... 109
Figure 15.11. P2: Port2 Register................................................................................................................... 110
Figure 15.12. PRT2CF: Port2 Configuration Register.................................................................................. 110
Figure 15.13. P3: Port3 Register................................................................................................................... 111
Figure 15.14. PRT3CF: Port3 Configuration Register.................................................................................. 111
Table 15.2. Port I/O DC Electrical Characteristics ....................................................................................... 111
16. SMBus / I2C Bus.............................................................................................................. 112
Figure 16.1. SMBus Block Diagram............................................................................................................. 112
Figure 16.2. Typical SMBus Configuration .................................................................................................. 113
16.1. Supporting Documents.................................................................................................................... 113
16.2. Operation......................................................................................................................................... 114
Figure 16.3. SMBus Transaction................................................................................................................... 114
16.3. Arbitration....................................................................................................................................... 115
16.4. Clock Low Extension ...................................................................................................................... 115
16.5. Timeouts.......................................................................................................................................... 115
16.6. SMBus Special Function Registers ................................................................................................. 115
Figure 16.4. SMB0CN: SMBus Control Register .......................................................................................... 117
Figure 16.5. SMB0CR: SMBus Clock Rate Register.................................................................................... 118
Figure 16.6. SMB0DAT: SMBus Data Register ........................................................................................... 119
Figure 16.7. SMB0ADR: SMBus Address Register ..................................................................................... 119
Figure 16.8. SMB0STA: SMBus Status Register.......................................................................................... 120
Table 16.1. SMBus Status Codes.................................................................................................................. 121
17. SERIAL PERIPHERAL INTERFACE BUS................................................................ 122
Figure 17.1. SPI Block Diagram................................................................................................................... 122
Figure 17.2. Typical SPI Interconnection ..................................................................................................... 123
17.1. Signal Descriptions ......................................................................................................................... 123
17.2. Operation......................................................................................................................................... 124
Figure 17.3. Full Duplex Operation .............................................................................................................. 124
17.3. Serial Clock Timing ........................................................................................................................ 125
Figure 17.4. Data/Clock Timing Diagram..................................................................................................... 125
17.4. SPI Special Function Registers ....................................................................................................... 126
Figure 17.5. SPI0CFG: SPI Configuration Register...................................................................................... 126
Figure 17.6. SPI0CN: SPI Control Register.................................................................................................. 127
Figure 17.7. SPI0CKR: SPI Clock Rate Register.......................................................................................... 128
Figure 17.8. SPI0DAT: SPI Data Register.................................................................................................... 128
18. UART ................................................................................................................................ 129
Figure 18.1. UART Block Diagram.............................................................................................................. 129
18.1. UART Operational Modes .............................................................................................................. 130
Table 18.1. UART Modes............................................................................................................................. 130
Figure 18.2. UART Mode 0 Interconnect ..................................................................................................... 130
Figure 18.3. UART Mode 0 Timing Diagram............................................................................................... 130
Figure 18.4. UART Mode 1 Timing Diagram............................................................................................... 131
Figure 18.5. UART Modes 1, 2, and 3 Interconnect Diagram ...................................................................... 132
Figure 18.6. UART Modes 2 and 3 Timing Diagram ................................................................................... 132
18.2. Multiprocessor Communications..................................................................................................... 133
Figure 18.7. UART Multi-Processor Mode Interconnect Diagram............................................................... 133
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 5
C8051F000/1/2/5/6/7
Table 18.2. Oscillator Frequencies for Standard Baud Rates........................................................................ 134
Figure 18.8. SBUF: Serial (UART) Data Buffer Register............................................................................. 134
Figure 18.9. SCON: Serial Port Control Register ......................................................................................... 135
C8051F010/1/2/5/6/7
19. TIMERS............................................................................................................................ 136
19.1. Timer 0 and Timer 1 ....................................................................................................................... 136
Figure 19.1. T0 Mode 0 Block Diagram....................................................................................................... 137
Figure 19.2. T0 Mode 2 Block Diagram....................................................................................................... 138
Figure 19.3. T0 Mode 3 Block Diagram....................................................................................................... 139
Figure 19.4. TCON: Timer Control Register ................................................................................................ 140
Figure 19.5. TMOD: Timer Mode Register .................................................................................................. 141
Figure 19.6. CKCON: Clock Control Register.............................................................................................. 142
Figure 19.7. TL0: Timer 0 Low Byte............................................................................................................ 143
Figure 19.8. TL1: Timer 1 Low Byte............................................................................................................ 143
Figure 19.9. TH0: Timer 0 High Byte........................................................................................................... 143
Figure 19.10. TH1: Timer 1 High Byte......................................................................................................... 143
19.2. Timer 2............................................................................................................................................ 144
Figure 19.11. T2 Mode 0 Block Diagram..................................................................................................... 145
Figure 19.12. T2 Mode 1 Block Diagram..................................................................................................... 146
Figure 19.13. T2 Mode 2 Block Diagram..................................................................................................... 147
Figure 19.14. T2CON: Timer 2 Control Register ......................................................................................... 148
Figure 19.15. RCAP2L: Timer 2 Capture Register Low Byte ...................................................................... 149
Figure 19.16. RCAP2H: Timer 2 Capture Register High Byte ..................................................................... 149
Figure 19.17. TL2: Timer 2 Low Byte.......................................................................................................... 149
Figure 19.18. TH2: Timer 2 High Byte......................................................................................................... 149
19.3. Timer 3............................................................................................................................................ 150
Figure 19.19. Timer 3 Block Diagram.......................................................................................................... 150
Figure 19.20. TMR3CN: Timer 3 Control Register...................................................................................... 150
Figure 19.21. TMR3RLL: Timer 3 Reload Register Low Byte .................................................................... 151
Figure 19.22. TMR3RLH: Timer 3 Reload Register High Byte ................................................................... 151
Figure 19.23. TMR3L: Timer 3 Low Byte.................................................................................................... 151
Figure 19.24. TMR3H: Timer 3 High Byte................................................................................................... 151
20. PROGRAMMABLE COUNTER ARRAY ................................................................... 152
Figure 20.1. PCA Block Diagram................................................................................................................. 152
20.1. Capture/Compare Modules.............................................................................................................. 153
Table 20.1. PCA0CPM Register Settings for PCA Capture/Compare Modules........................................... 153
Figure 20.2. PCA Interrupt Block Diagram .................................................................................................. 153
Figure 20.3. PCA Capture Mode Diagram.................................................................................................... 154
Figure 20.4. PCA Software Timer Mode Diagram........................................................................................ 155
Figure 20.5. PCA High Speed Output Mode Diagram.................................................................................. 155
Figure 20.6. PCA PWM Mode Diagram....................................................................................................... 156
20.2. PCA Counter/Timer ........................................................................................................................ 157
Table 20.2. PCA Timebase Input Options .................................................................................................... 157
Figure 20.7. PCA Counter/Timer Block Diagram......................................................................................... 157
20.3. Register Descriptions for PCA........................................................................................................ 158
Figure 20.8. PCA0CN: PCA Control Register............................................................................................... 158
Figure 20.9. PCA0MD: PCA Mode Register................................................................................................ 159
Figure 20.10. PCA0CPMn: PCA Capture/Compare Registers...................................................................... 160
Figure 20.11. PCA0L: PCA Counter/Timer Low Byte ................................................................................. 161
Figure 20.12. PCA0H: PCA Counter/Timer High Byte................................................................................ 161
Figure 20.13. PCA0CPLn: PCA Capture Module Low Byte ........................................................................ 161
Figure 20.14. PCA0CPHn: PCA Capture Module High Byte....................................................................... 161
21. JTAG (IEEE 1149.1) ....................................................................................................... 162
Figure 21.1. IR: JTAG Instruction Register .................................................................................................. 162
21.1. Boundary Scan ................................................................................................................................ 163
Page 6 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Table 21.1. Boundary Data Register Bit Definitions..................................................................................... 163
Figure 21.2. DEVICEID: JTAG Device ID Register.................................................................................... 164
21.2. Flash Programming Commands....................................................................................................... 165
Figure 21.3. FLASHCON: JTAG Flash Control Register............................................................................. 166
Figure 21.4. FLASHADR: JTAG Flash Address Register............................................................................ 166
Figure 21.5. FLASHDAT: JTAG Flash Data Register.................................................................................. 167
Figure 21.6. FLASHSCL: JTAG Flash Scale Register ................................................................................. 167
21.3. Debug Support ................................................................................................................................ 168
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 7
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
1. SYSTEM OVERVIEW
The C8051F000 family are fully integrated mixed-signal System on a Chip MCUs with a true 12-bit multi-channel ADC (F000/01/02/05/06/07), or a true 10-bit multi-channel ADC (F010/11/12/15/16/17). See the Product Selection Guide in Table 1.1 for a quick reference of each MCUs’ feature set. Each has a programmable gain pre-amplifier, two 12-bit DACs, two voltage comparators (except for the F002/07/12/17, which have one), a voltage reference, and an 8051-compatible microcontroller core with 32kbytes of FLASH memory. There are also I2C/SMBus, UART, and SPI serial interfaces implemented in hardware (not “bit-banged” in user software) as well as a Programmable Counter/Timer Array (PCA) with five capture/compare modules. There are also 4 general-purpose 16-bit timers and 4 byte-wide general-purpose digital Port I/O. The C8051F000/01/02/10/11/12 have 256 bytes of RAM and execute up to 20MIPS, while the C8051F005/06/07/15/16/17 have 2304 bytes of RAM and execute up to 25MIPS.
With an on-board VDD monitor, WDT, and clock oscillator, the MCUs are truly stand-alone System-on-a-Chip solutions. Each MCU effectively configures and manages the analog and digital peripherals. The FLASH memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. Each MCU can also individually shut down any or all of the peripherals to conserve power.
On-board JTAG debug support allows non-intrusive (uses no on-chip resources), full speed, in-circuit debug using the production MCU installed in the final application. This debug system supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional when using JTAG debug.
Each MCU is specified for 2.7V-to-3.6V operation over the industrial temperature range (-45C to +85C). The Port I/Os, /RST, and JTAG pins are tolerant for input signals up to 5V. The C8051F000/05/10/15 are available in the 64­pin TQFP (see block diagram in Figure 1.1). The C8051F001/06/11/16 are available in the 48-pin TQFP (see block diagram in Figure 1.2). The C8051F002/07/12/17 are available in the 32-pin LQFP (see block diagram in Figure
1.3).
Table 1.1. Product Selection Guide
C8051F000 20 32k 256
C8051F001 20 32k 256
C8051F002 20 32k 256
C8051F005 25 32k 2304
C8051F006 25 32k 2304
C8051F007 25 32k 2304
C8051F010 20 32k 256
C8051F011 20 32k 256
C8051F012 20 32k 256
C8051F015 25 32k 2304
C8051F016 25 32k 2304
C8051F017 25 32k 2304
MIPS (Peak)
FLASH Memory
RAM
SMBus/I2C
SPI
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
UART
Timers (16-bit)
Programmable Counter Array
Digital Port I/O’s
ADC Resolution (bits)
ADC Max Speed (ksps)
ADC Inputs
Voltage Reference
Temperature Sensor
DAC Resolution
DAC Outputs
Voltage Comparators
Package
4
4
4
4
4
4
4
4
4
4
4
4
32 12 100 8
16 12 100 8
8 12 100 4
32 12 100 8
16 12 100 8
8 12 100 4
32 10 100 8
16 10 100 8
8 10 100 4
32 10 100 8
16 10 100 8
8 10 100 4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
12 2 2 64TQFP
12 2 2 48TQFP
12 2 1 32LQFP
12 2 2 64TQFP
12 2 2 48TQFP
12 2 1 32LQFP
12 2 2 64TQFP
12 2 2 48TQFP
12 2 1 32LQFP
12 2 2 64TQFP
12 2 2 48TQFP
12 2 1 32LQFP
Page 8 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 1.1. C8051F000/05/10/15 Block Diagram
VDD VDD
VDD DGND DGND DGND
AV+
AV+ AGND AGND
TCK
TMS
TDI
TDO
/RST
XTAL1 XTAL2
VREF
DAC0
DAC1
AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7
CP0+
CP0-
CP1+
CP1-
Digital Power
Analog Power
VREF
A M U X
JTAG Logic
VDD
Monitor
External
Oscillator
Circuit
Internal
Oscillator
DAC0
(12-Bit)
DAC1
(12-Bit)
Boundary Scan
Debug HW
WDT
Prog Gain
ADC
100ksps
Reset
System Clock
8 0 5 1
C o
r
e
32kbyte
FLASH
256 byte
RAM
2048 byte
XRAM
(F005/15 only)
SFR Bus
UART
SMBus
SPI Bus
PCA
Timers
0,1,2
Timer 3
Port 0 Latch
Port 1 Latch
Port 2
Latch
Port 3
Latch
C R O S S B A R
S W
I
T C H
TEMP
CP0
CP1
P 0
D r v
P 1
D r v
P 2
D r v
P 3
D r v
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7
P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 9
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 1.2. C8051F001/06/11/16 Block Diagram
VDD
VDD DGND DGND DGND DGND
AV+
AV+ AGND AGND
TCK
TMS
TDI
TDO
/RST
XTAL1 XTAL2
VREF
DAC0
DAC1
AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7
CP0+
CP0-
CP1+
CP1-
Digital Power
Analog Power
VREF
A M U
X
JTAG Logic
VDD
Monitor
External
Oscillator
Circuit
Internal
Oscillator
DAC0
(12-Bit)
DAC1
(12-Bit)
Prog Gain
Boundary Scan
Debug HW
WDT
ADC
100ksps
Reset
System Clock
8 0 5 1
C
o
r
e
32kbyte
FLASH
256 byte
RAM
2048 byte
XRAM
(F006/16 only)
SFR Bus
UART
SMBus
SPI Bus
PCA
Timers
0,1,2
Timer 3
Port 0 Latch
Port 1 Latch
Port 2 Latch
Port 3 Latch
C R O S S B A R
S W
I T C H
TEMP
CP0
CP1
P 0
D
r
v
P 1
D
r
v
P 2
D
r
v
P 3
D
r
v
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
Page 10 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 1.3. C8051F002/07/12/17 Block Diagram
VDD VDD
DGND DGND
AV+
AV+ AGND AGND
TCK
TMS
TDI
TDO
/RST
XTAL1 XTAL2
VREF
DAC0
DAC1
AIN0 AIN1 AIN2 AIN3
CP0+
CP0-
Digital Po wer
Analog Power
VREF
A M U X
JTAG Logic
VDD
Monitor
External
Oscillator
Circuit
Internal
Oscillator
DAC0
(12-Bit)
DAC1
(12-Bit)
Prog Gain
CP0
CP1
Boundary Scan
Debug HW
WDT
TEMP
ADC
100ksps
Reset
System Clock
8 0 5 1
C o
r
e
32kbyte
FLASH
256 byte
RAM
2048 byte
XRAM
(F007/17 on ly)
SFR Bus
UART
SMBus
SPI Bus
PCA
Timers
0,1,2
Timer 3
Port 0
Latch
Port 1
Latch
Port 2
Latch
Port 3
Latch
C R O S S B A R
S W
I
T C H
P 0
D
r
v
P 1
D
r
v
P 2
D
r
v
P 3
D
r
v
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 11
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
1.1. CIP-51TM CPU
1.1.1. Fully 8051 Compatible
The C8051F000 family utilizes Cygnal’s proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51 The core has all the peripherals included with a standard 8052, including four 16-bit counter/timers, a full-duplex UART, 256 bytes of internal RAM space, 128 byte Special Function Register (SFR) address space, and four byte­wide I/O Ports.
1.1.2. Improved Throughput
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of 12-to-24MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.
The CIP-51 has a total of 109 instructions. The number of instructions versus the system clock cycles to execute them is as follows:
With the CIP-51’s maximum system clock at 25MHz, it has a peak throughput of 25MIPS. Figure 1.4 shows a comparison of peak throughputs of various 8-bit microcontroller cores with their maximum system clocks.
TM
instruction set. Standard 803x/805x assemblers and compilers can be used to develop software.
Instructions
Clocks to Execute
26 50 5 14 7 3 1 2 1
1 2 2/3 3 3/4 4 4/5 5 8
Figure 1.4. Comparison of Peak MCU Execution Speeds
25
20
15
MIPS
10
5
Cygnal CIP-51
(25MHz clk)
Microchip
PIC17C75x
(33MHz clk)
Philips
80C51
(33MHz clk)
ADuC812
8051
(16MHz clk)
Page 12 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
1.1.3. Additional Features
The C8051F000 MCU family has several key enhancements both inside and outside the CIP-51 core to improve its overall performance and ease of use in the end applications.
The extended interrupt handler provides 21 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.
There are up to seven reset sources for the MCU: an on-board VDD monitor, a Watchdog Timer, a missing clock detector, a voltage level detection from Comparator 0, a forced software reset, the CNVSTR pin, and the /RST pin. The /RST pin is bi-directional, accommodating an external reset, or allowing the internally generated POR to be output on the /RST pin. Each reset source except for the VDD monitor and Reset Input Pin may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.
The MCU has an internal, stand alone clock generator which is used by default as the system clock after any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) external crystal source, while periodically switching to the fast (up to 16MHz) internal oscillator as needed.
Figure 1.5. On-Board Clock and Reset
(Port
I/O)
Crossbar
CP0+
CP0-
CNVSTR
(CNVSTR
reset
enable)
Comparator 0
+
-
(CP0 reset
enable)
Missing
Clock
Detector
(one-
Internal
Clock
XTAL1
XTAL2
Generator
OSC
System Clock
Clock Select
VDD
WDT
shot)
EN
MCD
Enable
EN
WDT
Enable
CIP-51
Microcontroller
Core
Supply Monitor
+
-
PRE
WDT
Supply
Reset
Timeout
Strobe
Software Reset
System Reset
(wired-OR)
Reset Funnel
/RST
Extended Interrupt
Handler
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 13
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
1.2. On-Board Memory
The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general-purpose registers, and the next 16 bytes can be byte addressable or bit addressable.
The CIP-51 in the C8051F005/06/07/15/16/17 MCUs additionally has a 2048 byte RAM block in the external data memory address space. This 2048 byte block can be addressed over the entire 64k external data memory address range (see Figure 1.6).
The MCU’s program memory consists of 32k + 128 bytes of FLASH. This memory may be reprogrammed in­system in 512 byte sectors, and requires no special off-chip programming voltage. The 512 bytes from addresses 0x7E00 to 0x7FFF are reserved for factory use. There is also a single 128-byte sector at address 0x8000 to 0x807F, which may be useful as a small table for software constants or as additional program space. See Figure 1.6 for the MCU system memory map.
Figure 1.6. On-Board Memory Map
0x807F
0x8000
0x7FFF
0x7E00
0x7DFF
0x0000
PROGRAM MEMORY
128 Byte ISP FLASH
RESERVED
FLASH
(In-System
Programmable in 512
Byte Sectors)
0xFF
0x80 0x7F
0x30
0x2F
0x20
0x1F
0x00
DATA MEMORY
INTERNAL DATA ADDRESS SPACE
Upper 128 RAM
(Indirect Addressing
Only)
(Direct and Indirect
Addressing)
Bit Addressable
General Purpose
Registers
Special Function
Register's
(Direct Addressing Only)
Lower 128 RAM (Direct and Indirect Addressing)
EXTERNAL DATA ADDRESS SPACE
0xFFFF
0xF800
0x17FF
0x1000
0x0FFF
0x0800
0x07FF
0x0000
(same 2048 byte RAM block )
(same 2048 byte RAM block )
(same 2048 byte RAM block )
RAM - 2048 Bytes
(accessable using MOVX
instruction)
The same 2048 byte RAM block can be addressed on 2k boundaries throughout the 64k External Data Memory space.
Page 14 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

1.3. JTAG Debug and Boundary Scan

The C8051F000 family has on-chip JTAG and debug circuitry that provide non-intrusive, full speed, in-circuit debug using the production part installed in the end application using the four-pin JTAG I/F. The JTAG port is
fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing purposes.
Cygnal’s debug system supports inspection and modification of memory and registers, breakpoints, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them in sync.
The C8051F000DK, C8051F005DK, C8051F010DK, and C8051F015DK are development kits with all the hardware and software necessary to develop application code and perform in-circuit debug with the C8051F000/1/2, F005/6/7, F010/1/2, and F015/6/7 MCUs respectively. The kit includes software with a developer’s studio and debugger, an integrated 8051 assembler, and an RS-232 to JTAG protocol translator module referred to as the EC. It also has a target application board with the associated MCU installed and a large prototyping area, plus the RS-232 and JTAG cables, and wall-mount power supply. The Development Kit requires a Windows 95/98/NT/2000/XP computer with one available RS-232 serial port. As shown in Figure 1.7, the PC is connected via RS-232 to the EC. A six-inch ribbon cable connects the EC to the user’s application board, picking up the four JTAG pins and VDD and GND. The EC takes its power from the application board. It requires roughly 20mA at 2.7-3.6V. For applications where there is not sufficient power available from the target board, the provided power supply can be connected directly to the EC.
This is a vastly superior configuration for developing and debugging embedded applications compared to standard MCU Emulators, which use on-board “ICE Chips” and target cables and require the MCU in the application board to be socketed. Cygnal’s debug environment both increases ease of use and preserves the performance of the precision analog peripherals.
Figure 1.7. Debug Environment Diagram
WINDOWS 95/98/NT/2000/XP
RS-232
JTAG (x4), VDD, GND
CYGNAL Integrated
Development Environment
VDD GND
C8051
F005
EC
TARGET PCB
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 15
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

1.4. Programmable Digital I/O and Crossbar

The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. All four ports are pinned out on the F000/05/10/15. Ports 0 and 1 are pinned out on the F001/06/11/16, and only Port 0 is pinned out on the F002/07/12/17. The Ports not pinned out are still available for software use as general purpose registers. The Port I/O behave like the standard 8051 with a few enhancements.
Each Port I/O pin can be configured as either a push-pull or open-drain output. Also, the “weak pull-ups” which are normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for low power applications.
Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching network that allows mapping of internal digital system resources to Port I/O pins on P0, P1, and P2. (See Figure 1.8.) Unlike microcontrollers with standard multiplexed digital I/O, all combinations of functions are supported.
The on-board counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator outputs, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for his particular application.
Figure 1.8. Digital Crossbar Diagram
Highest Priority
SMBus
SPI
UART
(Internal Digital Signals)
Lowest Priority
PCA
Comptr.
Outputs
T0, T1,
T2
SYSCLK
CNVSTR
2
4
2
6
2
6
XBR0, XBR1,
XBR2 Registers
Priority
Decoder
Digital
Crossbar
PRT0CF, PRT1CF,
PRT2CF Registers
P0
8
I/O
Cells
P1
8
I/O
Cells
External
Pins
P0.0
P0.7
P1.0
P1.7
Highest
Priority
P0
P1
Port
Latches
P2
P3
8
(P0.0-P0.7)
8
(P1.0-P1.7)
8
(P2.0-P2.7)
8
(P3.0-P3.7)
P2
8
I/O
Cells
PRT3CF
Register
P3 I/O
Cells
P2.0
P2.7
P3.0
P3.7
Lowest Priority
Page 16 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

1.5. Programmable Counter Array

The C8051F000 MCU family has an on-board Programmable Counter/Timer Array (PCA) in addition to the four 16­bit general-purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer timebase with 5 programmable capture/compare modules. The timebase gets its clock from one of four sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflow, or an External Clock Input (ECI).
Each capture/compare module can be configured to operate in one of four modes: Edge-Triggered Capture, Software Timer, High Speed Output, or Pulse Width Modulator. The PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/O via the Digital Crossbar.
Figure 1.9. PCA Block Diagram
System
Clock
T0 Overflow
/4
/12
16-Bit Counter/Timer
Capture/Compare
Module 0
Capture/Compare
Module 1
Capture/Compare
Module 2
Capture/Compare
Module 3
Capture/Compare
Module 4
ECI
CEX0
CEX1
CEX2
CEX3
CEX4
Crossbar
Port I/O

1.6. Serial Ports

The C8051F000 MCU Family includes a Full-Duplex UART, SPI Bus, and I2C/SMBus. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51’s interrupts, thus requiring very little intervention by the CPU. The serial buses do not “share” resources such as timers, interrupts, or Port I/O, so any or all of the serial buses may be used together.
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 17
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

1.7. Analog to Digital Converter

The C8051F000/1/2/5/6/7 has an on-chip 12-bit SAR ADC with a 9-channel input multiplexer and programmable gain amplifier. With a maximum throughput of 100ksps, the ADC offers true 12-bit accuracy with an INL of ±1LSB. The ADC in the C8051F010/1/2/5/6/7 is similar, but with 10-bit resolution. Each ADC has a maximum throughput of 100ksps. Each ADC has an INL of ±1LSB, offering true 12-bit accuracy with the C8051F00x, and true 10-bit accuracy with the C8051F01x. There is also an on-board 15ppm voltage reference, or an external reference may be used via the VREF pin.
The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers. One input channel is tied to an internal temperature sensor, while the other eight channels are available externally. Each pair of the eight external input channels can be configured as either two single-ended inputs or a single differential input. The system controller can also put the ADC into shutdown to save power.
A programmable gain amplifier follows the analog multiplexer. The gain can be set in software from 0.5 to 16 in powers of 2. The gain stage can be especially useful when different ADC input channels have widely varied input voltage signals, or when it is necessary to “zoom in” on a signal with a large DC offset (in differential mode, a DAC could be used to provide the DC offset).
Conversions can be started in four ways; a software command, an overflow on Timer 2, an overflow on Timer 3, or an external signal input. This flexibility allows the start of conversion to be triggered by software events, external HW signals, or convert continuously. A completed conversion causes an interrupt, or a status bit can be polled in software to determine the end of conversion. The resulting 10 or 12-bit data word is latched into two SFRs upon completion of a conversion. The data can be right or left justified in these registers under software control.
Compare registers for the ADC data can be configured to interrupt the controller when ADC data is within a specified window. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within the specified window.
Figure 1.10. ADC Diagram
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
(not bonded out on F002, F007, F012, and F017
+
-
+
-
+
-
+
-
9-to-1 AMUX (SE or
DIFF)
SENSOR
TEMP
Programmable
Gain Amp
+
X
-
Control & Data
SFR's
REF
100ksps
SAR
SFR Bus
VREF
ADC
Page 18 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

1.8. Comparators and DACs

The C8051F000 MCU Family has two 12-bit DACs and two comparators on chip (the second comparator, CP1, is not bonded out on the F002, F007, F012, and F017). The MCU data and control interface to each comparator and DAC is via the Special Function Registers. The MCU can place any DAC or comparator in low power shutdown mode.
The comparators have software programmable hysteresis. Each comparator can generate an interrupt on its rising edge, falling edge, or both. The comparators’ output state can also be polled in software. These interrupts are capable of waking up the MCU from idle mode. The comparator outputs can be programmed to appear on the Port I/O pins via the Crossbar.
The DACs are voltage output mode and use the same voltage reference as the ADC. They are especially useful as references for the comparators or offsets for the differential inputs of the ADC.
Figure 1.11. Comparator and DAC Diagram
(Port I/O)
(Port I/O)
CP0
CP1
CROSSBAR
CP0+
CP0-
+
CP0
-
(not bonded out on
F002, F007, F012, and
F017)
CP1+
CP1-
DAC0
+
CP1
-
REF
DAC0
CP0
CP1
SFR's
(Data
and
Cntrl)
CIP-51
and Interrupt Handler
DAC1
REF
DAC1
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 19
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

2. ABSOLUTE MAXIMUM RATINGS*

Ambient temperature under bias .................................................................................................................-55 to 125°C
Storage Temperature...................................................................................................................................-65 to 150°C
Voltage on any Pin (except VDD and Port I/O) with respect to DGND.................................... -0.3V to (VDD + 0.3V)
Voltage on any Port I/O Pin or /RST with respect to DGND.................................................................... -0.3V to 5.8V
Voltage on VDD with respect to DGND................................................................................................... -0.3V to 4.2V
Maximum Total current through VDD, AV+, DGND and AGND ......................................................................800mA
Maximum output current sunk by any Port pin ....................................................................................................100mA
Maximum output current sunk by any other I/O pin ..............................................................................................25mA
Maximum output current sourced by any Port pin ...............................................................................................100mA
Maximum output current sourced by any other I/O pin .........................................................................................25mA
*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

3. GLOBAL DC ELECTRICAL CHARACTERISTICS

-40°C to +85°C unless otherwise specified.
PARAMETER CONDITIONS MIN TYP MAX UNITS
Analog Supply Voltage (Note 1) 2.7 3.0 3.6 V Analog Supply Current Internal REF, ADC, DAC, Comparators
all active Analog Supply Current with analog sub-systems inactive Analog-to-Digital Supply Delta ( | VDD – AV+ | ) Digital Supply Voltage 2.7 3.0 3.6 V Digital Supply Current with CPU active
Digital Supply Current (shutdown) Digital Supply RAM Data Retention Voltage Specified Operating Temperature Range
Note 1: Analog Supply AV+ must be greater than 1V for VDD monitor to operate.
Internal REF, ADC, DAC, Comparators
all disabled, oscillator disabled
0.5 V
VDD = 2.7V, Clock=25MHz
VDD = 2.7V, Clock=1MHz
VDD = 2.7V, Clock=32kHz
Oscillator not running 5
1.5 V
-40 +85
1 2 mA
5 20
12.5
0.5 10
mA
µA
mA
µA µA
°C
Page 20 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

4. PINOUT AND PACKAGE DEFINITIONS

Table 4.1. Pin Definitions
Pin Numbers
F000
F001
Name
VDD
DGND
AV+
AGND
TCK TMS TDI
TDO
XTAL1
XTAL2
/RST
VREF
CP0+ CP0­CP1+ CP1­DAC0
DAC1
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
F005 F010 F015
31, 40,
62 30, 41,
61
16,
17
5, 15 22 18 14 21 17 13 28 20 15
29 21 16
18 14 10
19 15 11
20 16 12
6 3 3
4 2 2 3 1 1 2 45 1 46
64 48 32
63 47 31
7 4 4
8 5 5
9 6 6
10 7 7
11 8
12 9
F006 F011 F016
23,
32
22, 33, 27,
19
13,
43
44,
12
F002 F007 F012 F017
18,
20
17,
21
9,
29
8,
30
Type Description
Digital Voltage Supply.
Digital Ground.
Positive Analog Voltage Supply.
Analog Ground.
DIn DIn DIn
D Out
AIn
A Out
D I/O
A I/O
AIn AIn AIn AIn A Out
A Out
AIn
AIn
AIn
AIn
AIn
AIn
JTAG Test Clock with internal pull-up. JTAG Test-Mode Select with internal pull-up. JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of
TCK. JTAG Test Data Output with internal pull-up. Data is shifted out on TDO on the falling edge of TCK. TDO output is a tri-state driver. Crystal Input. This pin is the return for the internal oscillator circuit for a crystal or ceramic resonator. For a precision internal clock, connect a crystal or ceramic resonator from XTAL1 to XTAL2. If overdriven by an external CMOS clock, this becomes the system clock. Crystal Output. This pin is the excitation driver for a crystal or ceramic resonator. Chip Reset. Open-drain output of internal Voltage Supply monitor. Is driven low when VDD is < 2.7V. An external source can force a system reset by driving this pin low. Voltage Reference. When configured as an input, this pin is the voltage reference for the MCU. Otherwise, the internal reference drives this pin. Comparator 0 Non-Inverting Input.
Comparator 0 Inverting Input. Comparator 1 Non-Inverting Input. Comparator 1 Inverting Input. Digital to Analog Converter Output 0. The DAC0 voltage output. (See
Section 7 DAC Specification for complete description). Digital to Analog Converter Output 1. The DAC1 voltage output. (See Section 7 DAC Specification for complete description). Analog Mux Channel Input 0. (See ADC Specification for complete description). Analog Mux Channel Input 1. (See ADC Specification for complete description). Analog Mux Channel Input 2. (See ADC Specification for complete description). Analog Mux Channel Input 3. (See ADC Specification for complete description). Analog Mux Channel Input 4. (See ADC Specification for complete description). Analog Mux Channel Input 5. (See ADC Specification for complete description).
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 21
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Pin Numbers
F000
F001
Name
AIN6
AIN7
P0.0 P0.1 P0.2 P0.3 P0.4 P0.5 P0.6 P0.7 P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 P2.0 P2.1 P2.2 P2.3 P2.4 P2.5 P2.6 P2.7 P3.0 P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7
F005 F010 F015
13 10
14 11
39 31 19 42 34 22 47 35 23 48 36 24 49 37 25 50 38 26 55 39 27 56 40 28 38 30 37 29 36 28 35 26 34 25 32 24 60 42 59 41 33 27 54 53 52 51 44 43 26 25 24 23 58 57 46 45
F006 F011 F016
F002 F007 F012 F017
Type Description
AIn
AIn
D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O D I/O
Analog Mux Channel Input 6. (See ADC Specification for complete description). Analog Mux Channel Input 7. (See ADC Specification for complete description). Port0 Bit0. (See the Port I/O Sub-System section for complete description).
Port0 Bit1. (See the Port I/O Sub-System section for complete description). Port0 Bit2. (See the Port I/O Sub-System section for complete description). Port0 Bit3. (See the Port I/O Sub-System section for complete description). Port0 Bit4. (See the Port I/O Sub-System section for complete description). Port0 Bit5. (See the Port I/O Sub-System section for complete description). Port0 Bit6. (See the Port I/O Sub-System section for complete description). Port0 Bit7. (See the Port I/O Sub-System section for complete description). Port1 Bit0. (See the Port I/O Sub-System section for complete description). Port1 Bit1. (See the Port I/O Sub-System section for complete description). Port1 Bit2. (See the Port I/O Sub-System section for complete description). Port1 Bit3. (See the Port I/O Sub-System section for complete description). Port1 Bit4. (See the Port I/O Sub-System section for complete description). Port1 Bit5. (See the Port I/O Sub-System section for complete description). Port1 Bit6. (See the Port I/O Sub-System section for complete description). Port1 Bit7. (See the Port I/O Sub-System section for complete description). Port2 Bit0. (See the Port I/O Sub-System section for complete description). Port2 Bit1. (See the Port I/O Sub-System section for complete description). Port2 Bit2. (See the Port I/O Sub-System section for complete description). Port2 Bit3. (See the Port I/O Sub-System section for complete description). Port2 Bit4. (See the Port I/O Sub-System section for complete description). Port2 Bit5. (See the Port I/O Sub-System section for complete description). Port2 Bit6. (See the Port I/O Sub-System section for complete description). Port2 Bit7. (See the Port I/O Sub-System section for complete description). Port3 Bit0. (See the Port I/O Sub-System section for complete description). Port3 Bit1. (See the Port I/O Sub-System section for complete description). Port3 Bit2. (See the Port I/O Sub-System section for complete description). Port3 Bit3. (See the Port I/O Sub-System section for complete description). Port3 Bit4. (See the Port I/O Sub-System section for complete description). Port3 Bit5. (See the Port I/O Sub-System section for complete description). Port3 Bit6. (See the Port I/O Sub-System section for complete description). Port3 Bit7. (See the Port I/O Sub-System section for complete description).
Page 22 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 4.1. TQFP-64 Pinout Diagram
CP1-
CP1+
CP0-
CP0+
AGND
VREF
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
AGND
AV+
10
11
15
16
12
13
14
P1.6
DAC0
DAC1
64
63
1
2
3
4
5
6
7
8
9
VDD
62
DGND
61
P1.7
60
59
58
C8051F000 C8051F005
P3.4
57
P3.5
P0.7
56
55
54
P2.2
P2.3
53
P0.6
C8051F010 C8051F015
17
18
19
20
21
22
23
24
25
26
27
AV+
XTAL1
/RST
XTAL2
TCK
TMS
P3.2
P3.3
P3.0
P3.1
P2.1
28
P2.5
P0.5
30
50
31
VDD
P0.4
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
P1.5
P2.4
52
51
29
TDI
TDO
DGND
P0.3
P0.2 P3.6
P3.7
P2.6
P2.7
P0.1
DGND
VDD
P0.0
P1.0
P1.1
P1.2
P1.3
P1.4
P2.0
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 23
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 4.2. TQFP-64 Package Drawing
64
PIN 1
DESIGNATOR
1
A2
D
D1
MIN
NOM
MAX
(mm)
(mm)
(mm)
A
-
-
1.20
A1
0.05
E1
E
e
A
b
A1
A2
b
D
D1
e
E
E1
0.95
0.17
-
0.15
-
1.05
0.22
0.27
-
12.00
-
10.00
-
0.50
-
12.00
-
10.00
-
-
-
-
-
Page 24 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 4.3. TQFP-48 Pinout Diagram
AGND
CP0-
CP0+
VREF
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
1
2
3
4
5
6
7
8
9
10
11
12
DAC0
48
13
AV+
DAC1
47
14
XTAL1
CP1-
46
CP1+
45
AGND
44
AV+
43
P1.6
42
C8051F001 C8051F006 C8051F011 C8051F016
15
16
17
18
19
TCK
TMS
/RST
XTAL2
DGND
41
20
P1.7
TDI
40
21
P0.7
TDO
P0.6
39
38
22
23
DGND
P0.5
VDD
P0.4
37
36
35
34
33
32
31
30
29
28
27
26
25
24
P1.5
P0.3
P0.2
P0.1
DGND
VDD
P0.0
P1.0
P1.1
P1.2
DGND
P1.3
P1.4
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 25
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 4.4. TQFP-48 Package Drawing
48
PIN 1
IDENTIFIER
A2
1
D
D1
E1
E
e
A
A1
b
A
A1
A2
b
D
D1
e
E
E1
MIN
(mm)
-
0.05
0.95
0.17
-
-
-
-
-
NOM
(mm)
-
-
1.00
0.22
9.00
7.00
0.50
9.00
7.00
MAX
(mm)
1.20
0.15
1.05
0.27
-
-
-
-
-
Page 26 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 4.5. LQFP-32 Pinout Diagram
AGND
CP0-
CP0+
VREF
AIN0
AIN1
AIN2
AIN3
DAC0
32
DAC1
31
AGND
30
AV+
29
P0.7
28
1
2
3
4
5
6
C8051F002 C8051F007 C8051F012 C8051F017
7
8
9
10
11
12
13
AV+
XTAL1
XTAL2
/RST
TMS
P0.6
27
14
TCK
P0.5
26
15
TDI
P0.4
25
16
TDO
24
23
22
21
20
19
18
17
P0.3
P0.2
P0.1
DGND
VDD
P0.0
VDD
DGND
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 27
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7
Figure 4.6. LQFP-32 Package Drawing
IDENTIFIER
32
PIN 1
1
A2
D
D1
A1
eb
MIN
NOM
(mm)
A
A1
0.05
E1
E
A2
b
1.35
0.30
D
D1
e
A
E
E1
(mm)
-
1.40
0.37
-
9.00
-
7.00
-
0.80
-
9.00
-
7.00
MAX
(mm)
-
-
1.60
0.15
1.45
0.45
-
-
-
-
-
Page 28 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
C8051F000/1/2/5/6/7 C8051F010/1/2/5/6/7

5. ADC (12-Bit, C8051F000/1/2/5/6/7 Only)

The ADC subsystem for the C8051F000/1/2/5/6/7 consists of a 9-channel, configurable analog multiplexer (AMUX), a programmable gain amplifier (PGA), and a 100ksps, 12-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see block diagram in Figure 5.1). The AMUX, PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special Function Register’s shown in Figure 5.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only when the ADCEN bit in the ADC Control register (ADC0CN, Figure 5.7) is set to 1. The ADC subsystem is in low power shutdown when this bit is 0. The Bias Enable bit (BIASE) in the REF0CN register (see Figure 9.2) must be set to 1 in order to supply bias to the ADC.
Figure 5.1. 12-Bit ADC Functional Block Diagram
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
+
-
+
-
+
-
+
-
9-to-1 AMUX (SE or
DIFF)
X
+
-
ADCEN
AV+
AGND
12-Bit
SAR
ADC0LTLADC0LTHADC0GTLADC0GTH
AV+
ADC
SYSCLK
REF
12
ADC0LADC0H
Conversion Start
24
COMB LOGIC
12
ADWINT
TEMP
SENSOR
AGND
V
O
R
3
M
T
V
T
2
O
R
T
C
N
S
V
B
S
A
D
U
Y
)
(
w
ADCEN
AMX0CF
AIN67IC
AIN45IC
AIN23IC
AIN01IC
AMXAD3
AMX0SL
AMXAD1
AMXAD2
AMXAD0
ADCSC0
ADCSC1
ADCSC2
ADC0CF
AMPGN1
AMPGN2
AMPGN0
ADCTM
ADCINT
ADSTM1
ADBUSY
ADC0CN
ADLJST
ADWINT
ADSTM0

5.1. Analog Multiplexer and PGA

Eight of the AMUX channels are available for external measurements while the ninth channel is internally connected to an on-board temperature sensor (temperature transfer function is shown in Figure 5.3). Note that the PGA gain is applied to the temperature sensor reading. AMUX input pairs can be programmed to operate in either the differential or single-ended mode. This allows the user to select the best measurement technique for each input channel, and even accommodates mode changes “on-the-fly”. The AMUX defaults to all single-ended inputs upon reset. There are two registers associated with the AMUX: the Channel Selection register AMX0SL (Figure 5.5), and the Configuration register AMX0CF (Figure 5.4). The table in Figure 5.5 shows AMUX functionality by channel for each possible configuration. The PGA amplifies the AMUX output signal by an amount determined by the AMPGN2-0 bits in the ADC Configuration register, ADC0CF (Figure 5.6). The PGA can be software-programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to unity gain on reset.
4.2002; Rev. 1.4 CYGNAL Integrated Products, Inc. 2002 Page 29
C8051F000/1/2/5/6/7
A
e
C8051F010/1/2/5/6/7

5.2. ADC Modes of Operation

The ADC uses VREF to determine its full-scale voltage, thus the reference must be properly configured before performing a conversion (see Section 9). The ADC has a maximum conversion speed of 100ksps. The ADC conversion clock is derived from the system clock. Conversion clock speed can be reduced by a factor of 2, 4, 8 or 16 via the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate different system clock speeds.
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC Start of Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:
1. Writing a 1 to the ADBUSY bit of ADC0CN;
2. A Timer 3 overflow (i.e. timed continuous conversions);
3. A rising edge detected on the external ADC convert start signal, CNVSTR;
4. A Timer 2 overflow (i.e. timed continuous conversions).
Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed “on-demand”. During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of ADBUSY triggers an interrupt (when enabled) and sets the interrupt flag in ADC0CN. Converted data is available in the ADC data word MSB and LSB registers, ADC0H, ADC0L. Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in Figure 5.9) depending on the programmed state of the ADLJST bit in the ADC0CN register.
The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of four different low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):
1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;
2. Tracking starts with an overflow of Timer 3 and lasts for 3 SAR clocks;
3. Tracking is active only when the CNVSTR input is low;
4. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.
Modes 1, 2 and 4 (above) are useful when the start of conversion is triggered with a software command or when the ADC is operated continuously. Mode 3 is used when the start of conversion is triggered by external hardware. In this case, the track-and-hold is in its low power mode at times when the CNVSTR input is high. Tracking can also be disabled (shutdown) when the entire chip is in low power standby or sleep modes.
Figure 5.2. 12-Bit ADC Track and Conversion Example Timing
CNVSTR
(ADSTM[1:0]=10)
SAR Clocks
ADCTM=1
ADCTM=0
Timer2, Timer3 Overflow;
Write 1 to ADBUSY
(ADSTM[1:0]=00, 01, 11)
SAR Clocks
ADCTM=1
Page 30 CYGNAL Integrated Products, Inc. 2002 4.2002; Rev. 1.4
SAR Clocks
ADCTM=0
. ADC Timing for External Trigger Sourc
12345678910111213141516
Low Power or
Convert
Track Convert Low Power Mode
Track Or Convert
Convert Track
B. ADC Timing for Internal Trigger Sources
1234567891011121314151617 18 19
Low Power or
Convert
Track or Convert
Track Convert Low Power Mode
12345678910111213141516
Convert Track
Loading...
+ 140 hidden pages