Siemens IL205AT, IL207AT, IL208AT, IL206AT Datasheet

IL205AT/206AT/207AT/
208AT
PHOTOTRANSISTOR
FEATURES
High Current Transfer Ratio, I
V
=5 V
CE
IL205AT, 40 – 80% IL206AT, 63 –125% IL207AT, 100 – 200% IL208AT, 160 – 320%
High BV
CEO
, 70 V
Isolation Voltage, 2500 VAC
=10mA,
F
RMS
Industry Standard SOIC-8 Surface
Mountable Package
Standard Lead Spacing, .05"
Available in Tape and Reel (suffix T)
(Conforms to EIA Standard RS481A)
Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
Underwriters Lab File #E52744
(Code Letter P)
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
.120±.005
.240
(6.10)
(3.05±.13)
Pin One ID
.004 (.10) .008 (.20)
.192±.005 (4.88±.13)
.050 (1.27)
.021 (.53)
.154±.005
C
L
(3.91±.13)
.016 (.41)
typ.
TOLERANCE: ±.005 (unless otherwise noted)
SMALL OUTLINE
Anode
1
Cathode
2
NC
3
NC
4
.015±.002
(.38±.05)
.008 (.20)
.020±.004
(.15±.10)
2 plcs.
40°
5° max.
R.010 (.25) max.
(1.49±.13)
8
NC
7
Base
6
Collector
5
Emitter
7°
.058±.005
.125±.005 (3.18±.13)
Lead Coplanarity ±.0015 (.04) max.
DESCRIPTION
The IL205AT/206AT/207AT/208AT are optically coupled pairs with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The IL205/6/7/8 come in a standard SOIC-8 small outline package for surface mounting which makes them ideally suited for high density applications with limited space. In addition to eliminating through-holes requirements, this package conforms to standards for surface mounted devices.
A specified minimum and maximum CTR allows a narrow tolerance in the electrical design of the adjacent circuits. The high BV a higher safety margin compared to the industry
of 70 volts gives
CEO
standard 30 volts.
Maximum Ratings Emitter
Peak Reverse Voltage .......................................6.0 V
Continuous Forward Current .......................... 60 mA
Power Dissipation at 25°C .............................90 mW
Derate Linearly from 25°C .......................1.2 mW/°C
Detector
Collector-Emitter Breakdown Voltage ................70 V
Emitter-Collector Breakdown Voltage ..................7 V
Collector-Base Breakdown Voltage ...................70 V
Power Dissipation ........................................150 mW
Derate Linearly from 25°C .......................2.0 mW/°C
Package
Total Package Dissipation at 25°C Ambient
(LED + Detector) ...................................... 240 mW
Derate Linearly from 25°C .......................3.3 mW/°C
Storage Temperature .....................–55°C to +150°C
Operating Temperature .................–55°C to +100°C
Soldering Time at 260°C............................... 10 sec.
Semiconductor Group 4–1
Characteristics (T
Forward Voltage V Reverse Current I Capacitance C
Detector
Breakdown Voltage
Collector-Emitter BV Emitter-Collector BV
Collector-Emitter V
Dark Current I
Collector-Emitter
Capacitance C
Package
DC Current Transfer CTR
IL205AT 40 80 IL206AT 63 125 IL207AT 100 200 IL208AT 160 320
DC Current Transfer CTR
IL205AT 13 25 IL206AT 22 40 IL207AT 34 60 IL208AT 56 95
Collector-Emitter I
Saturation Voltage V Isolation Test Voltage V Equivalent DC
Isolation Voltage 3535 VDC Capacitance,
Input to Output C Resistance,
Input to Output R Switching Time t
Specifications subject to change.
=25°C)
A
Symbol Min. Typ. Max. Unit Condition
F
R
O
CEO ECO
CEOdark
CE
DC
DC
CE sat IO
IO
IO
, t
ON
OFF
1.3 1.5 V IF=10 mA
0.1 100 µAVR=6.0 V 25 pF VR=0
70 V IC=100 µA 710 V IE=100 µA
550nA IF=0 10 pF VCE=0
%I
%I
0.4 IF=10 mA
2500 VAC
0.5 pF 100 G
3.0 µsIC=2 mA,
RMS
=10 V,
CE
=10 mA,
F
V
=5 V
CE
=1 mA,
F
V
=5 V
CE
=2.0 mA,
C
=100 Ω,
R
E
=10 V
V
CE
10.95
V
Figure 1. Forward voltage versus forward current
C
C
C
V
V
C
1.4
1.3
1.2
1.1
1.0
0.9
0.8
VF - Forward Voltage - V
0.7
IF - Forward Current - mA
Ta = -55°C
Ta = 25°C
Ta = 85°C
Figure 2. Normalized non-saturated and saturated CTRce versus LED current
1.5 Normalized to:
Vce = 10 V IF = 10 mA
1.0
Ta = 25°C
0.5
100101.1
0.0
NCTRce - Normalized CTRce
.1 1 10 100
IF - LED Current - mA
Vce = 5
Vce = 0.4 V
Figure 3. Collector-emitter current versus LED current
150
Ta = 25°
100
50
Current - mA
Ice - Collector-emitter
0
.1 1 10 100
Figure 5. Normalized collector-base photocurrent versus LED current
10
IF - LED Current - mA
Normalized to:
Vce = 10
Vce = 0.4 V
Vcb = 9.3 V IF = 10 mA
1
Ta = 25 °C
.1
NIcb - Normalized Icb
.01
.1 1 10 100
IF - LED Current - mA
Figure 4. Normalized collector-base photocurrent versus LED current
100
Normalized to: Vcb = 9.3 V IF = 1 mA
10
Ta = 25 °C
1
NIcb - Normalized Icb
.1
.1 1 10 100
IF - LED Current - mA
Figure 6. Collector-base photocurrent versus LED current
1000
Current - µA
Icb - Collector-base
Ta = 25°C Vcb = 9.3 V
100
10
1
.1
.1110100
IF - LED Current - mA
Figure 7. Collector-emitter leakage current versus temperature
5
10
4
10
3
10
2
10
1
10
0
10
-1
10
Iceo - Collector-Emitter - nA
-2
10
Ta - Ambient Temperature - °C
Vce = 10V
TYPICAL
100806040200-20
Figure 8. Normalized saturated HFE versus base current and temperature
2.0
1.5
1.0
0.5
Saturated HFE
NHFE(sat) - Normalized
0.0 1 10 100 1000
70°
25°
Vce = 0.4 V
50°
Ib - Base Current - µA
Normalized to:
Ib = 20µA Vce = 10 Ta = 25 °C
Semiconductor Group 4–2
Loading...
+ 1 hidden pages