Siemens Cerberus DLO1191 User Manual

Cerberus® DLO1191 Linear smoke detector
Technical description Planning Installation Commissioning
Siemens Building Technologies
Manual DS11
Section 3
Cerberus Security for People and Assets
Data and design subject to change without notice. / Supply subject to availability
.
E Copyright by Siemens Building Technologies AG
We reserve all rights in this document and in the subject thereof. By acceptance of the document the recipient acknowledges these rights and undertakes not to publish the document nor the subject thereof in full or in part, nor to make them available to any third party without our prior express written authorization, nor to use it for any purpose other than for which it was delivered to him.
09.2000
I
Siemens Building Technologies Cerberus Division
1 Overview 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Characteristics 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Design 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Operating principle 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Technical data 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Collective mode 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Interactive Mode 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 General data 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Design and principle of operation 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Detector 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Structure of the infrared beam 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Alignment possibilities 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Reflectors 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Compatibility 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Description of block diagram 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Functions in operation with interactive system 10. . . . . . . . . . . . . . . . . . . . . . . . .
3.7.1 Emergency operation 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2 Line isolation function 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.3 Diagnostic facilities 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.4 Self-test / functional state 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 General detector functions 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.1 Alarm algorithms 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.2 Fuzzy Logic 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.3 Possible diagnosis results 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Planning 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 General project engineering principles 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Operating conditions 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Fields of application 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Examples of suitable fields of application 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Examples of unsuitable fields of application 18. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Monitoring areas with flat ceilings 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Monitoring areas with sloping ceilings 19. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Additional DLO1191’s on the slope of the ceiling 19. . . . . . . . . . . . . . . . . . . . . . .
4.6 Monitoring areas with joist constructions 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 Layout underneath joist construction 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.2 Layout within the joist area 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3 Detection of smouldering fire in high rooms 22. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Guideline for distances between DLO1191 and reflector 22. . . . . . . . . . . . . . . . .
4.8 Panes of glass 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.1 Penetration of panes of glass 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.2 Application example 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.3 Reflectors mounted on glass walls 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9 Minimum distances between two pairs of detectors 25. . . . . . . . . . . . . . . . . . . . .
4.10 Beam spacing from the ceiling 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11 Maximum monitoring width 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12 Measures for dividing long distances 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.13 Measures against condensation 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14 Installation locations 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15 Accessibility 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Installation 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Mounting 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Wiring 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 Special filter 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.2 Detector heater 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Interactive mode 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Collective mode 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II
Siemens Building Technologies Cerberus Division
09.2000
5.5 Connection 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Commissioning 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Settings 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Mechanical adjustment 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Electronic alignment 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4 Initialization 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Addressing in the interactive system 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Faults / overhaul 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Fault 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1 Interruption to beam 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Reflection 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Checklist for trouble-shooting 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 Functional check / overhaul 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Terminology 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
e1276e
1
Siemens Building Technologies Cerberus Division
09.2000
1 Overview
1.1 Characteristics
Directly connectible to the Cerberus interactive system AlgoRex
Switchable to collective systems Microprocessor-controlled signal processing Suitable for surveillance ranges from 5 to 100m Operates according to the principle of light-attenuation by smoke Response behavior selectable in 3 sensitivity stages Transmission of 4 danger levels per sensitivity setting Transmission of four function states:
normal, information, impairment, fault
Automatic digital compensation of ambient influences High immunity to extraneous light Transmitter and receiver installed in the same housing Easy installation, adjustment and commissioning Two-wire installation Comprehensive accessories New diagnostic capabilities with fuzzy logic Efficient signal processing algorithms with application-specific characteristics Comprehensive EMC concept based on the latest technologies
enables the detector to be installed in difficult environments
Integrated multi-coincidence circuit
suppresses extreme electrical and optical noise signals
Automatic and comprehensive self-test
e1276e
2
Siemens Building Technologies Cerberus Division
09.2000
1.2 Design
The BeamRex DLO1191 comprises:
Base DLB1191A consisting of:
Terminal support with terminals
The base is required already at the time of installation. The base housing features six PG16 tapped cable inlets.
Detector module DLA1191A consisting of:
Transmitter Receiver Lens
Electronics The plug-in detector module is inserted just prior to commissioning. The lens can be optimally aligned to the reflector by means of the adjustment set.
Reflectors
Different reflectors are available for different distances:
5 to 30m Reflector foil DLR1193 (10 x 10cm) 1 pc. 30 to 50m Reflector foil DLR1192 (20 x 20cm) 1 pc. 50 to 65m Reflector foil DLR1192 (20 x 20cm) 4 pcs. 20 to 100m Prism made of glass DLR1191 (cat’s eye) 1 pc.
with built-in heating against condensation
Short distance filter
For shorter distances between 5 and 10 m an additional short distance filter is required:
5 to 8m DLF1191-AB 7 to 10 m DLF1191-AA Filter against external light influences DLF1191-AC
The detector is rarely influenced by external light. If, however, powerful external light causes interference, the filter DLF1191-AC can be used to eliminate this.
Accessories:
Detector heater DLH1191 for DLO1191, against condensation of the lens
Auxiliary tools:
Detector adjustment set DZL1191 consisting of:
Adjustment device
Test filter
Aiming device
e1276e
3
Siemens Building Technologies Cerberus Division
09.2000
1.3 Operating principle
The linear smoke detector operates on the basis of the extinction principle, i.e. the reduc­tion in light intensity due to smoke is measured. The transmitter (IRED) emits a strongly focused infrared light bundle along the optical measuring section. Without smoke a large part of the beams attains the reflector and is sent back in the same direction toward the receiver. The arriving light produces an electrical signal on the photodiode of the receiver.
Receiver
Transmitter
Measuring section
ReflectorDetector
Fig. 1 Linear smoke detector without smoke If smoke penetrates the measuring section, part of the light beams is absorbed by the smoke
particles while another part is scattered by the smoke particles, i.e. the light beams merely change direction. The remaining light reaches the reflector. The remaining light is then reflec­ted and once again passes t hrough the m easuring section a nd is f urther attenuated. T hus only a small portion of the beam reaches the receiver and the signal (S
smoke
) becomes smaller.
Smoke particles
Scattering
Scattering
Scattering
Light beam Residual light
Absorption
Fig. 2 Measuring principle of the linear smoke detector with smoke
Extinction = Absorption + Scattering
e1276e
4
Siemens Building Technologies Cerberus Division
09.2000
2 Technical data
Normal ambient conditions, if nothing else is specified: Temperature T
a
=20°C (293K)
Air pressure: p = 1000hPa (750 Torr)
2.1 Collective mode
Value
Parameters Symbol Unit min. typ. max. Conditions
Operating voltage (quiescent)
U
b
V 18 28
Maximum permissible voltage U
max
V 30
Switch-on current I
e
mA 2.8
Operating current (quiescent condition)
I
b
mA 1.5 2.8
Alarm voltage at IA = 1 ... 10mA U
A
V 5 11
Alarm current at Ub = 24V I
A
mA 40 75
Reset voltage U
R
V 2 6
Reset current I
R
µA 5 500
Reset time (UR = 2V) t
R
s 2
Response indicator Voltage Current
Flashing frequency
U
ie
I
ie
V
mA
Hz
3
1
6
60
100
permanent pulsed f ≥0.5Hz, Duty Cycle 50% depending on line module
Connection factor KMK 25 maximum 1 detector per
detection line
2.2 Interactive Mode
Value
Parameters Symbol Unit min. typ. max. Conditions
Operating voltage (quiescent)
U
b
V 21.2 33.3 modulated
Operating current (quiescent condition)
I
b
mA 1.5
Baud rate kBd 4.8 Response indicator
Flashing intervals: light
dark
Response indicator current
ms
s
mA
20
1.5 15
depending on control unit
Connection factor IMK 10 Isolator factor = 1
e1276e
5
Siemens Building Technologies Cerberus Division
09.2000
2.3 General data
Value
Parameters Symbol Unit min. typ. max. Conditions
Distance between detector and reflector
Additional area (without approval)
L m 8
5
1008<10m filter DLF1191-AA
Filter DLF1191-AB
Response sensitivity reduced standard increased
D
1
% % %
65 50 30
Attenuation of the beam (forward and return path)
Compensation (if beam is attenuated)
Compensation speed
%
%/h
50
4 Self-test interval min. 15 Alarm integration s 6 16 Dependent on diagnosis Fault activation % >90 Attenuation of the beam IR transmitter
Wavelength Pulse frequency Pulse length
nm
Hz µs
880
6
25
Attenuation of the beam
Elektromagnetic compatibility V/m 50 1MHz...1GHz Operating temperature T
a
°C 25 +60
Humidity 30°C
>30°C
95% rel.
29g/m
3
Storage temperature T
l
°C 30 +75
Colour: pure white ~RAL9010
Detector heater DLR1191 / DLH1191
Supply voltage U
H
VDC 20 30
Operating current I
H
mA 33 50
Resistance R 600
Classification
Standards BS 5839: Part 5
CE conformity marking Application category IEC 721-3: 3K6 Test category IEC 68-1: 25/060/42 Protection category EN60529 / IEC529: IP65
Compatibility
To AlgoRex interactive fire detection system with AlgoLogic S11 To Cerberus control units with collective detector evaluation
Environmental compatibility:
Easy to overhaul Easy to uninstall and disassemble Plastic material identifiable through embossed code
e1276e
6
Siemens Building Technologies Cerberus Division
09.2000
3 Design and principle of operation
3.1 Detector
Special filter
Connector adjustment device
Programming switch Detector heater terminal
Locking screw
Knurled screw
for vertical adjustment
Knurled screw for horizontal adjustment
Locking screw
Reed contact (initialization) Response indicator
Receiver lens
Transmitter lens
Sighting device Sighting device (foresight)
(mirror with backsight)
Fig. 3 Detector
3.2 Structure of the infrared beam
The infrared beam emitted by the transmitter to the reflector is not a strictly parallel bundle of rays. It exhibits a certain degree of scattering which makes it conical in shape. The radi­ation energy decreases towards the outside, so that the beam can be divided into the three effective, core and scattered regions. The reflector possesses the characteristic to retransmit the received light.
Effective region Core region Scattered region
DLO DLR
Fig. 4 Structure of the infrared beam
e1276e
7
Siemens Building Technologies Cerberus Division
09.2000
The effective region corresponds to the ribbon connecting transmitter, reflector and re ­ceiver.
The core region contains sufficient radiation energy to operate the system. The energy in the scattered region is not sufficient to ensure reliable operation of the
system.
100m
DLO
DLR
ø1,5m
0,43°
Opening angle
0,43°
Diameter of the core region
Infrared beam
Fig. 5 Diameter of the core region
3.3 Alignment possibilities
The infrared beam can be adjusted by each 10° in horizontal direction and each 5° in vertical direction from the centre axis. When selecting the optimum mounting location bear in mind that this adjustment range can be fully used. Experience has shown that the detector and reflector should be arranged as parallel as possible especially with distances of >50m, as this makes adjustment simpler.
Diameter of the core region
100m
16m16m
DLR
10°
10°
DLR
DLO
Fig. 6 Horizontal adjustment range of the optical system max. 10° each side of the axis
Diameter of the core region
5° 5°
100m
8m
8m
DLR DLR
DLO
Fig. 7 Vertical adjustment range of the optical system max. 5° above and below the
axis
One rotation of the knurled screw moves the beam at 100m approx. 1.15m.
e1276e
8
Siemens Building Technologies Cerberus Division
09.2000
3.4 Reflectors
Retroreflectors reflect the received light beam in parallel to the latter. For this reason the reflector does not have to be installed thereby mandatory right–angled to the infrared beam. Also vibrations and distortions of the reflector mounting wall do not cause any problems. Another advantage is that any extraneous light is also reflected in its own di­rection and consequently does not reach the receiver.
Reflector
Reflector
Reflector
max. ±20°
max. ±20°
Fig. 8 The reflector and reflector foil can be mounted inclined max. ±20° in all
directions
DLR1191 prism
The retroreflecting prism has the shape of a pyramid whose lateral faces are formed by isosceles orthogonal triangles. Light beams entering through the base are completely re­flected twice on the lateral faces and reflected back through the base.
The prism is installed in a housing that is identical to the one used for the detector base. The reflector is equipped with a reflector heater at the factory. If dew condensation is pos­sible the heater should be connected to a 24V supply.
Light beam
Fig. 9 DLR1191 reflector and reflection principle
DLR1192, DLR1193 reflector foil
This foil consists of microprismatic elements that are formed by transparent, synthetic resin sealed to a plastic substrate. In principle, the reflector foil has the same effect (func­tion) as the prism.
3.5 Compatibility
Interactive Collective
Fire detection system S11 S11, MS9 Control unit CS1140 CS11.., CZ10
e1276e
9
Siemens Building Technologies Cerberus Division
09.2000
3.6 Description of block diagram
The transmitter 1 transmits the light pulses to the reflector 2. This transmits the light pulses back to the receiver
3
. The light pulses are proportional to the signal current,
which is amplified in the preamplifier
4
and fed to the customer-specific integrated circuit
(ASIC)
5
. The microprocessor (µP) 6 synchronizes the receiver pulses with the trans-
mitter pulses so that no external pulse is evaluated. The sensor-specific functions are contained in the ASIC. It is used to filter signals, pro-
cess signals using fuzzy algorithms, amplify signals and for the entire sequence control which is synchronized with the µP.
The µP communicates with the control unit via the line interface
7
via terminals 8 and the two-wire bus line. The detector receives commands which activate the type of opera­ting mode, diagnostic stages etc. via the data interface which is integrated in the line inter­face. The detector transmits response signals, the results of diagnostic polling and status signals back to the control unit.
With the help of the isolation function, sections which malfunction are isolated, so that in the event of a short circuit, the entire bus line does not break down. Upon short circuit, two electronic switches (FET) open automatically and isolate the line in the area where the malfunction has occurred until the short circuit has been eliminated.
The internal response indicator (AI)
9
and the external response indicator 10 provide in-
dication of alarm and are activated by the control unit. The 6 DIP switches
11
allow parameterization of the detector (see section 6.1).
The REED contact
12
serves to initialize the detector during commissioning (see section
6.4). A detector heating device, which prevents condensation of the lenses, can be connected
to detector heating terminal
13
.
The DZL1191 adjustment device can be connected via connector
14
. The purpose and
function of the adjustment device is explained in section 6.3 (electronic alignment)
11 12
9
1
13
4
3
8
10
1 2 3 4
Transmitter
2
Receiver
Reflector
5 6 7
ASIC µP
Pream-
plifier
Line
interface
4 5 6
+
_
YXWV
+
_
ZMB
+
+
24V
+
Reed internal AI
external AI
DIP switches
Adjustment
14
Detector heating
Test point for production Reserve
contact
device
device
Fig. 10 Block diagram
e1276e
10
Siemens Building Technologies Cerberus Division
09.2000
3.7 Functions in operation with interactive system
3.7.1 Emergency operation
If the DLO1191 can no longer be polled by the control unit, for example, due to a µP fail­ure, it switches automatically to emergency operation. In the event of a fire this detector is still able to trigger a collective alarm.
3.7.2 Line isolation function
If a short circuit occurs on the detector bus line, detectors with separator prevent failure of the entire bus line because only the defective portion of a line is isolated. The DLO1191 features such a isolation function. Before and after the detector an electronic switch (FET) is installed in the bus line. This switch opens automatically in the event of a short circuit and the defective portion of the detector line is disconnected.
3.7.3 Diagnostic facilities
A detector can transmit four events to the control unit:
Danger level 0 (quiescent value) Danger level 1 (possible danger) Danger level 2 (probable danger) Danger level 3 (highly probable danger)
Danger level 1 For early warning where installation locations are critical, the number of times the thresh-
old to danger level 1 is exceeded is counted by the control unit. When the counter reaches a preset value an information «application warning» is displayed. This information is reg­istered in the event memory of the basic parameterization of the control unit.
Danger level 2 The occurence of danger level 2 causes the actuation of an information «Warning» in the
basic parameterization of the control unit. This information is also actuated in the event memory of the basic parameterization of the control unit.
Danger level 3 As a rule, this is a precondition for direct alarm actuation. Dual or multiple cross-zoning is
possible through corresponding programming of the control unit.
Response threshold 1...3 corresponds to danger levels (G1 ... G3) for standard sensitivity
Time
Signal [%]
0
10
20
30
40
50
60
70
80
90
100
110
0% compensation value
100% response threshold 3 (G3)
85% response threshold 2 (G2)
70% response threshold 1 (G1)
Signal
NF = Compensation
max. NF
Loading...
+ 30 hidden pages