Datasheet GP1A33R Datasheet (Sharp)

GP1A33R
OPIC Photointerruper with Encoder Function
Features
1. 2-phase (A, B) digital output
2. Capable of using plastic disk
3. Sensing accuracy (Disk slit pitch: 1.14mm
)
4. TTL compatible
5. Compact and light
Applications
1. Electronic typewriters, printers
2. Numerical control machines
15.0
4 GND 5 V 6 V
8.0
6.0 GP1A33R
± 0.15
20.0
(
Unit: mm
6 5
4 3
OPIC
CC OA
4- R1.3
Outline Dimensions
0.1
0.8
4.0
9.9
MIN.
10.5 (
±
2- φ 2.0
±
±
7.25
2
)
2.54
(
1
0.15
0.15
0.15
±
6.4
)
7.5
2.0
12.0
OPIC
±
0.15
±
0.1
(
1.27
34
5
6
4.4
MIN.
8.0
)
)
1.27
(
3 -
1 Anode 2 Cathode 3 V
4 - R2.5
Internal connection
diagram 1
2
OB
0.15
±
1.4
0.15
±
2.5
* Tolerance0.3mm * ( ): Reference dimensions
*“ OPIC” (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
6.4
)
11.4
± 0.15
Absolute Maximum Ratings
(
Ta= 25˚C
)
Parameter Symbol Rating Unit
Forward current I
*1
Input
Peak forward current I Reverse Voltage V Power dissipation Supply voltage
Output
Low level output current
Power dissipation P Operating temperature T Storage temperature T
*2
Soldering temperature T
F
FM
R
P 100 mW
V
CC
I
OL
O
opr
stg
sol
*1 Pulse width<=100 µs, Duty ratio= 0.01 *2 For 5 seconds
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
65 mA
1A 6V
7V
20 mA
250 mW
0 to + 70 ˚C
- 40 to + 80 ˚C 260 ˚C
Electro-optical Characteristics
Parameter
Input
Forward voltage Reverse current Operating supply voltage
Output
High level output voltage Low level output voltage Supply current
Transfer charac­teristics
*3 Measured under the condition shown in Measurement Condition. *4 In the condition that output A and B are low level.
t
=
*5 D
A
t
Duty ratio Response frequency
AH
100, D x 100
x
AP
B
t
BH
=
t
BP
Symbol MIN. TYP. MAX. Unit
V
F
I
R
V
CC
V
OH
V
OL
I
CC
*5
D
A
*5
D
B
f
MAX.
Output Waveforms
Output A
)
(V
OA
Output B (V
OB
)
t
AH
t
AP
t
t
BH
AB1
t
BP
(
Unless otherwise specified, Ta= 0 to + 70˚C
Conditions Ta= 25˚C, IF= 30mA Ta= 25˚C, V
*3
= 5V, IF= 30mA
CC
V
*3
IOL= 8mA, VCC= 5V, IF= 30mA
*3*4
IF= 30mA, VCC=5V
V
CC
*3
f=2.5kHz
*3
VCC= 5V, IF= 30mA
=3V
R
= 5V, IF= 30mA,
)
- 1.2 1.5 V
--10µA
4.5 5.0 5.5 V
2.4 4.9 - V
- 0.1 0.4 V
- 5 20 mA 20 20
50 50
- - kHz
80 80
% %
5
Rotational direction : Counterclockwise when seen
from OPIC light detector
Fig. 1 Forward Current vs. Ambient
Temperature
100
90 80
)
70
mA
65
(
F
60 50 40 30
Forward current I
20 10
0
0
25 50
Ambient temperature Ta (˚C
75
70
)
100
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
300
250
) mW
(
O
200
150
100
50
Output power dissipation P
0
0
Ambient temperature T
70
)
(˚C
a
100755025
Fig. 3 Duty Ratio vs. Frequency
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1 110
25
Frequency f (kHz
1.0
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
t
AH
(
Output A
t
AP
t
BH
(
Output B
t
BP
0.3
0.2
0.1 0
0
25
50 75 100
Ambient temperature T
)
)
)
a
VCC=5V
= 30mA
I
F
T
= 25˚C
a
t
AH
(
Output A
t
AP
t
BH
(
Output B
t
BP
VCC=5V
= 30mA
I
F
f = 2.5kHz
)
(˚C
)
)
20
Fig. 7 Duty Ratio vs. Distance (X direction
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1
- 1.0
t
AH
(
Output A
t
AP
t
BH
(
Output B
t
BP
- 0.5
Distance X (mm) (Shifting encoder
VCC=5V
= 30mA
I
F
f= 2.5kHz
Ta= 25˚C T
)
)
0.5
1.00
)
Fig. 4 Phase Difference vs. Frequency
Temperature
)
(
130
120
110
deg.
ABI
100
= x 360˚
θ
ABI
t
ABI
t
AP
V
CC
I
= 30mA
F
= 25˚C
T
a
=5V
90
80
70
Phase difference θ
60
50
1
25
Frequncy f (kHz
10 20
)
Fig. 6 Phase Difference vs. AmbientFig. 5 Duty Ratio vs. Ambient Temperature
Temperature
140 130
)
(
deg.
AB1
120 110
100
t
=x 360˚
θ
AB1
AB1
t
AP
90 80 70
Phase difference θ
60 50 40
0
25
Ambient temperature Ta (˚C
)
Fig. 8 Phase Difference vs.
Distance (X direction
130
120
)
110
deg.
(
AB1
100
θ
= x 360˚
AB1
t
AB1
t
AP
90
80
Phase difference θ
70
60
50
- 1.0 - 0.5
0 0.5 1.0
Distance X (mm) (Shifting encoder
VCC=5V
= 30mA
I
F
f= 2.5kHz
)
)
V
CC
= 30mA
I
F
f= 2.5kHz
= 25˚C
a
Reference position
(+)(-)
GP1A33R
)
1007550
=5V
Disk
Fig. 9 Duty Ratio vs. Distance (Y direction
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1
- 1.0 - 0.5
t
AH
(
Output A
t
AP
t
BH
(
Output B
t
BP
0 0.5 1.0
Distance Y (mm) (Shifting encoder
=5V
V
CC
= 30mA
I
F
f= 2.5kHz
Ta= 25˚C Ta= 25˚C
)
)
)
Fig.11 Duty Ratio vs. Distance (Z direction
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1 0
t
AH
t
AP
t
BH
t
BP
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Distance Z (mm) (Shifting encoder
V
=5V
CC
= 30mA
I
F
f = 2.5kHz
Ta= 25˚C Ta= 25˚C
(
)
Output A
(
)
Output B
)
)
Fig.10 Phase Difference vs.
Distance (Y direction
130
120
)
110
deg.
(
100
AB1
t
= x 360˚
θ
AB1
AB1
t
AP
)
=5V
V
CC
= 30mA
I
F
f= 2.5kHz
90
80
70
Phase difference θ
60
50
- 1.0 - 0.5 Distance Y (mm) (Shifting encoder
)
Fig.12 Phase Difference vs.
Distance (Z direction
130
120
)
110
deg.
(
AB1
100
θ
= x 360˚
AB1
GP1A33R
0 0.5 1.0
)
VCC=5V IF= 30mA
f= 2.5kHz
t
AB1
t
AP
(+)
(-)
Disk
)
position
Reference
90
80
(
Detecting side
70
Phase difference θ
Z
OPIC
)
Disk
60
(
50
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Emitting side
Distance Z (mm) (Shifting encoder
)
)
Measurement Conditions
3
R10.89
Disk center
f 26.48, 0.1t
Disk
60 slits
8
(
9.125
S (
15.825
0.5
20.8
S
1
A
GP1A33R
2
11.4
A
)
<Basic Design>
RO (distance between the disk center and half point of a slit), P (slit pitch), S1 and S2 (installing position of photoint-
4-R1.3
15
1.4
6.4
)
4
9.9
errupter) will be provided by the following equations.
O
)
(mm)
Slit pitch : P (slit center
R
20
S
1=RO
P=
N
= x 10.89 (mm) N: number of slits
O
60
2x p x R
N
- 1.765(mm), S2=S1+ 6.7(mm
Note) When the number of slits is changed, values in
parenthesis are also changed according to the number.
(
2
r
1
r
2
Ex. ) In the case of
Enlarged drawing
12
of A portion
7.5 Slit pitch : P
Disk center
P
r1= r
)
N= 100P/R
100
R
= x 10.89 (mm
O
60
= 18.15mm
2x p x 18.15
P=
100
= 1.14mm
= 18.15- 1.765
S
1
= 16.385mm
= 16.385+ 6.7
S
2
= 23.085mm
)
Precautions for Use
(1) This module is designed to be operated at IF= 30mA TYP. (2) Fixing torque : MAX. 0.6N • m (3) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01µF
between Vcc and GND near the device.
(4) As for other general cautions, refer to the chapter “ Precautions for Use .”
Loading...