Datasheet GP1A30R Datasheet (Sharp)

GP1A30R
GP1A30R
OPIC Photointerrupter with Encoder Function
Features
1. 2-phase (A, B) digital output
2. Possible to use plastic disk
3. High sensing accuracy (Disk slit pitch : 0.7mm
)
4. TTL compatible output
5. Compact and light
Applications
1. Electronic typewriters, printers
2. Numerical control machines
Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage V Power dissipation P 100 mW Supply voltage V
Output
Low level output current
Power dissipation P Operating temperature T Storage temperature T
*2
Soldering temperature T
*1 Pulse width <= 100µs, Duty ratio= 0.01
Symbol
I
I
I
F
FM
R
CC
OL
O
opr
stg
sol
(
Ta= 25˚C
Rating Unit
65 mA
1A 6V
7V
20 mA
250 mW
0 to + 70
- 40 to + 80 260 ˚C
*2 For 5 seconds
Outline Dimensions
0.1
±
2.0 2- φ
±
0.15
4
9.9
MIN.
10.5
2
1
±
) (
0.15
0.15
±
(
7.25
2.54
2.0
12.0
7.5
6.4
)
0.8
)
OPIC
±
0.15
±
0.1
(
34
56
1.27
Internal connection diagram
1 2
1 Anode 2 Cathode 3 V
OB
4 - R2.5
0.15
±
1.4
4.4
0.15
MIN.
±
8.0
2.5
)
)
1.27
(
3 -
15.0
* Tolerance0.3mm * ( ): Reference dimensions
8.0
6.0 GP1A30R
±
0.15
20.0
(
Unit : mm
6 5
4 3
OPIC
4 GND 5 V
CC
6 V
OA
4 - R1.3
6.4
11.4
±
)
0.15
*“ OPIC” (Optical IC) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signal­ processing circuit integrated onto a single chip.
˚C ˚C
Electro-optical Characteristics
(
Unless otherwise specified, Ta =0 to + 70˚C
Parameter Symbol Conditions MIN. TYP. MAX. Unit
Input
Forward voltage V Reverse current I Operating supply voltage V
Output
High level output voltage V Low level output voltage V Supply current I
Transfer
charac-
teristics
Duty ratio Response frequency f
*3 Measured under the condition shown in Measurement Conditions. *4 In the condition that output A and B are low level.
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.
*5
*5
MAX.
Ta= 25˚C, IF= 30mA - 1.2 1.5 V
F
Ta= 25˚C, VR=3V - - 10 µA
R
CC
*3
VCC= 5V, IF= 30mA
OH
IOL= 8mA, VCC= 5V, IF= 30mA*3- 0.1 0.4 V
OL
*3*4
I
CC
D D
= 30mA, VCC=5V
F
V
= 5V, IF= 30mA,
CC
A
*3
f= 2.5kHz
B
*3
VCC= 5V, IF= 30mA
*5
t
AH
D
= x100, D
AB
t
AP
4.5 5.0 5.5 V
2.4 4.9 - V
- 5 20 mA 20 20
50 50
- - 5 kHz
t
x 100
=
t
BP
80 80
)
% %
Output Waveforms
Output A
)
(V
OA
Output B
)
(V
OB
Rotational direction: Counterclockwise when seen
t
t
AB1
from OPIC light detector
GP1A30R
t
AP
t
t
BP
Fig. 1 Forward Current vs. Ambient Fig. 2 Output Power Dissipation vs.
100
90 80
)
70 mA
(
65
F
60
50
40
30 Forward current I
20
10
0
0
25 50 75 100
Ambient temperature Ta (˚C
70
)
Ambient Temperature Temperature
300
)
250
mW
(
o
200
150
100
Output power dissipation P
50
0
0
Ambient temperature Ta (˚C
70
)
Fig. 3 Duty Ratio vs. Frequency Fig. 4 Phase Difference vs. Frequency
0.9
0.8
0.7
0.6
t
AH
t
AP
V
=5V
CC
= 30mA
I
F
Ta= 25˚C
(
Output A
)
0.5
Duty ratio
0.4
0.3
t t
(
Output B
)
0.2
0.1 110
25
Frequency f (kHz
)
20
) deg.
(
AB1
Phase difference θ
130
120
110
100
V
CC
I
= 30mA
F
Ta= 25˚C
t
ABI
=x 360˚
θ
AB1
t
AP
90
80
70
60
50
1
25
Frequency f (kHz
10 20
)
100755025
=5V
GP1A30R
Fig. 5 Duty Ratio vs. Ambient Temperature Fig. 6 Phase Difference vs. Ambient
1.0
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
t
AH
(
Output A
t
AP
t
(
Output B
t
BP
=5V
V
CC
= 30mA
I
F
f= 2.5kHz
)
)
0.3
0.2
0.1 0
0
25
50 75 100
Ambient temperature Ta (˚C
)
Fig. 7 Duty Ratio vs. Distance (X direction
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1
- 1.0
t
AH
(
Output A
t
AP
t
(
Output B
t
BP
- 0.5
Distance X (mm) (Shifting encoder
)
)
VCC=5V
= 30mA
I
F
f= 2.5kHz
Ta= 25˚C
0.5 )
1.00
Fig. 9 Duty Ratio vs. Distance (Y direction
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1
- 1.0 - 0.5
t
AH
(
Output A
t
AP
t
(
Output B
t
BP
0 0.5 1.0
Distance Y (mm) (Shifting encoder
VCC=5V
= 30mA
I
F
f= 2.5kHz
T
= 25˚C Ta= 25˚C
a
)
)
)
)
)
Temperature
140 130
)
120
deg.
110
(
AB1
100
= x 360˚
θ
AB1
90 80 70
Phase difference θ
60 50 40
0
25
Ambient temperature T
Fig. 8 Phase Difference vs.
Distance (X direction
130
120
)
110
deg.
(
AB1
100
90
t
θ
= x 360˚
AB1
ABI
t
AP
Reference position
80
70
Phase difference θ
60
50
- 1.0 - 0.5
0 0.5 1.0
Distance X (mm) (Shifting encoder
Fig.10 Phase Difference vs.
Distance (Y direction
130
V
=5V
CC
= 30mA
I
F
120
f= 2.5kHz
)
110 deg.
(
100
AB1
90
80
Phase difference θ
70
60
50
- 1.0 - 0.5 Distance Y (mm) (Shifting encoder
θ
GP1A30R
0 0.5 1.0
VCC=5V I
t
AB1
t
AP
(˚C
a
)
V I
f= 2.5kHz Ta= 25˚C
)
t
AB1
= x 360˚
AB1
t
AP
F
f= 2.5kHz
)
F
(+)(-)
= 30mA
=5V
CC
= 30mA
GP1A30R
Disk
)
(+)
Reference
position
(-)
Disk
)
1007550
GP1A30R
Fig.11 Duty Ratio vs. Distance (Z direction
0.9
0.8
0.7
0.6
0.5
Duty ratio
0.4
0.3
0.2
0.1 0
t
AH
t
AP
t
t
BP
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Distance Z (mm) (Shifting encoder
(
Output A
(
Output B
V
CC
= 30mA
I
F
f= 2.5kHz
Ta= 25˚C
)
)
Measurement Conditions
A
3
8
R13.45
Disk center
S
2
18.385
(
GP1A30R
6.4
)
=5V
)
1.4
4-R1.3
)
Fig.12 Phase Difference vs.
Distance (Z direction
130
V
=5V
CC
= 30mA
I
F
120
f= 2.5kHz
)
Ta= 25˚C
110
deg.
(
100
AB1
90
80
70
Phase difference θ
60
50
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Distance Z (mm) (Shifting encoder
θ
= x 360˚
AB1
Z
)
t
AB1
t
AP
(
Detecting side
OPIC
(
Emitting side
)
Disk
)
)
<Basic Design>
RO (distance between the disk center and half point of a slit), P (slit pitch), S rupter) will be provided by the following equations. Slit pitch: P (slit center
RO= x 13.45 (mm)N: number of slits
15
20
120
2x p x R
P= S
1=RO
Note) When the number of slits is changed, values in parenthesis
are also changed according to the number.
and S2 (installing position of photointer-
1
)
N
O
(mm)
N
- 1.765(mm), S2=S1+ 6.7(mm
)
Disk
φ 31.6, 0.1t 120 slits
S
0.3
20.8
1
(
11.685
11.4
A
9.9
)
Precautions for Use
(1) This module is designed to be operated
at I
= 30mA TYP.
F
(2) Fixing torque: MAX. 0.6Nm 6kgf • cm
(
)
3
In order to stabilize power supply line,
connect a by-pass capacitor of more than 0.01µF between Vcc and GND near the device.
(4) As for other general cautions, refer to
the chapter “Precautions for Use” .
()
P
(Ex.) In the case of
N= 200P/R
200
= x 13.45 (mm
R
O
120
= 22.42mm
2
2 x p x 22.42
r
P=
200
= 0.704mm
1
r
= 22.42- 1.765
S
1
)
(mm)
Enlarged drawing of A portion
12
7.5
4
Slit pitch : P
= 20.655mm
= 20.655+ 6.7
r1= r
2
S
2
= 27.355mm
Disk center
Loading...