4. Calculating Illuminance and Luminous Intensity6
5. Calculating Simple Harmonic Oscillation8
6. Electric Power Consumed on an AC Circuit10
7. Angle of Vector*12
8. Linear Transformation*14
9. Moving Average16
10. Creating a Graph of Experimental Data18
11. Ordinary Differ ential Equations20
12. Analysing with One-way Layout Method22
13. Calculating Parabolic Motion25
*only for EL-9650/9600c
Contents
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
1. Entering and Editing a Programme:
Programmes can be entered and edited either by pressing the calculator keys or by downloading from a PC.
To download programmes from a PC, you will need the CE-LK1P PC link software (sold separately).
A. Using calculator keys
●
Creating a new programme:
1. Press
to display the programme menu.
2. Press
to select the new programme menu. (See right)
3. Enter the programme title, then press
.
4. Enter the programme.
5. Press
to finish programming.
●
Editing a programme:
1. Press
to display the programme menu.
2. Press
and choose the number of the programme you wish to edit.
3. Press
to finish editing.
B. Downloading from PC
●
Creating a new programme:
1. Using the CE-LK1P, select the M odel Type from the Tools menu
and click on the same model as your calculator.
2. Select New from the File menu.
3. Enter a programme name in Title:.
4. Enter a programme. (For details on entering a programme, refer to
the operation manual.)
●
Programmes can also be downloaded from Sharp’s website at
This handbook was produced for practical application of the SHARP EL-9650/9600c and EL-9450/9400
Graphing Calculator. Both calculators include a highly convenient programming function, which enables
automatic processing of both simple and complex calculations any number of times.
Note: Certain problems can not be solved with the EL-9450/9400 as indicated in contents.
(See right)
ENTER
ENTER
PRGM
2nd F
2nd F
QUIT
PRGM
2nd F
2nd F
QUIT
C
B
(See right)
2. Executing a programme:
1. Press to display the execute menu.
2. Press
and choose the number of the programme you wish to
execute.
3. Follow the instructions.
●
Sending programmes from a PC:
1. Using the CE-LK1P, select the Communication Port from
the Link menu and click on the port to be used.
2. Turn off the EL-9650/9600c/9450/9400 and connect it to the PC.
3. Turn on the EL-9650/9600c/9450/9400
4. Select Send… from the Link menu of the CE-LK1P (See right)
5. Specify the kind of drive, folder, and file, then select the file
to be sent from the file list, and click on the Select button.
6. Click on the OK button.
Note : For further details refer to the manual.
ENTER
PRGM
2nd F
3. Deleting a programme:
Press and then choose to select the programme to
be deleted.
Note: Do not try to erase a programme by resetting all memories to the initial condition as
programme data to be stored will also be deleted. Also, it is advised to use the CELK1P PC link software to back up any programmes not to be erased.
C
5
OPTION
2nd F
4. Using the keys:
Press to use secondary functions (in yellow).
To select “sin
-1
”:➔ Displayed as follows:
Press to use the alphabet keys (in blue).
To select A:
➔ Displayed as follows:
Press to continue input of blue letters.
To input ABC:
or
(To return to the normal function, press again.)
2nd F
A
2nd F
2nd Fsin
sin
-1
ALPHA
ALPHA
sin
ALPHA
2nd F
A-LOCK
ALPHA
ALPHAALPHA
ALPHA
A
B
CA
BC
2nd F
A-LOCK
sin
-1
A
(See right)
A
5. Troubleshooting:
Following is a list of error codes and error messages.
When errors occur, refer to pages 12, 254, or 27 of the manual.
01SyntaxSyntax error in equation or programme
02CalculateExecution of a division using 0, calculation beyond calculation range, etc.
03NestingReservation of 14 or more numerical values or 32 or more functions during execution.
04InvalidMatrix definition error
05DimensionInconsistency in the dimension of matrix during arithmetic of a matrix or dimension of list for
STAT calculation.
07Invalid DIMSize of list and matrix input for calculation exceeds calculation range.
08ArgumentInconsistency in argument of the structured function
09Data TypeInvalid data type used in calculation
11No defineUndefined list or matrix
12DomainArgument definition outside of domain
13IncrementIncrement error
17Stat MedMed-Med law (statistic) error
20No ArgumentNo argument entered
21Not pair ∫ dxEquation definition (∫ and dx as a pair) for integral calculus does not follow syntax.
22Not pair [ ]Not paired with specified “[ ]”
23Not pair ( )Not paired with specified “( )”
24Not pair { }Not paired with specified “{ }”
32No dataData does not exist
33Graph TypeError in graph type setting
37No titleNo title entered
38Too many objMore than 30 objects selected
40Lbl duplicateSame label name is used more than once within a programme
41Lbl undefinedLabel is not defined for Goto or Gosub
42Lbl overMore than 50 labels are used within a programme
43Gosub stackNesting of more than 10 subroutine stacks
44Line too longOne line of programme exceeds more than 160 characters
45Can’t returnUse of return command without jumping from subroutine
46Strage fullAttempt to create a file exceeding 99 (delete unnecessary files)
47Coord typeInvalid coordinate system for command
90Memory overOver memory capacity
99System errorUser memory space cannot be secured
Error content
Error
code
Error message
EL-9650/9600c Graphing Calculator
3
DisplayStepKey Operation
1
2
Specify the program mode.Select the title INVOLUTE.
(Display of angle of obliquity)
Exercise
(1) Find the angle of obliquity when the involute value is 0.0050912 and the initial
value is 10.
(2) Find the involute value when the angle of obliquity is 14.1.
Set up condition: angle unit in Deg Mode and decimal point in Float Pt Mode.
****
4
(Display of involute value)
5
*
Select involute calculation.
Select inverse involute
calculation.
Enter the initial value and theinvolute value.
Enter the value of the angel
of obliquity.
5
CL
1B
SET UP
2nd F
1C
2nd F
PRGM
A
ENTER
0005091•
ENTER
1
ENTER
01
ENTER
2
ENTER
ENTER
14 1•
EL-9650/9600c Graphing Calculator
Involute
(Inverse Involute)
Use the involute function for calculating gears etc. to find the angle of obliquity from
the initial value and involute value.
Conversely, calculate the involute value from the angle of obliquity.
Calculation
Involute function : inv θ = tan θ - θ[rad]
Use Newton's method to find the inverse involute:
FLOWCHART
PARAMETERS
PROGRAM LIST
(REAL MODE)
Selection of type
Entry of initial
value and
involute value
Calculation of
angle of obliquity
Display of angle of obliquity
Start
End
start
Y
ANGLE
INVO
CALPRESS
Y
Y
N
N
N
Calculation of involute
value (display)
Entry of angle
of obliquity
Enter 1 or 2.
To calculation of involute.
Calculation of involute.
Enter initial value and
involute value.
Angle of obliquity
calculated.
Judgment on repetition
of calculation of angle
of obliquity.
Calculation of inverse
involute. Enter angle
of obliquity.
Involute value calculated.
Involute value displayed.
To inverse involute calculation
Returns to START if entry
neither 1 nor 2.
θ
i +1
= θi -= qi -
f(θ
i
)
f'(θ)
tan2 θ
i
tanθi - θi -a
f (θ) = a - invq SP : involute curve
S : involute starting point
θ : angle of obliquity of point P
Name of parameter
D, R, T, J
S
Z
Content
working variable for calculating
selecting calculation type
(S=1: involute calculation)
(S=2: inverse involute calculation)
initial value, angle of obliquity
Name of parameter
θ
I
A
B
Content
angle of obliquity
involute value
input and output of angle
input of initial value
S = 2
int(10
8
D) 0
S = 1
0
q
Rg
P
S
a
θ
θ
Label START
ClrT
Print "SELECT 1/2
Input S
If S=1 Goto ANGLE
If S=2 Goto INVO
Goto START
Label ANGLE
Print "Input BEGIN
Input B
B Z
Print "Input INVO
Input I
I J
Label CALPRESS
tan Z T
π
Z/180.0 R
(T-R-J)/T
2
D
180.0 (R-D)/π Z
If int (
10
8 D)≠0 Goto CALPRESS
Z A
Print "ANGLE
Print A
End
Label INVO
Print "Input ANGLE
Input A
A θ
tanθ -πθ/180 I
Print "INVOLUTE
Print I
End
Title : INVOLUTE
4
6. Page Layout
Note: This handbook is only an example of how to use programming function of the EL-9650/9600c. The layout may v ary with each screen.
2
Introduction
Brief explanation and
purpose of the section
Exercise
Example of problem to be
solved in the section
Set Up Condition
Important set up condition
before starting the exercise
in order to obtain correct
answers
Step
A step-by-step guide to solving the problems
and an explanation of the display
Key Operation
Illustration of the keys to be
operated
Display
Illustration of the calculator
screen as it should appear
if each step is carried out
correctly
Calculation
The formula to be used
in calculation and
definition of terms
Flowchart
Summary of steps from
start to end
Programme List
Procedure of data to
be entered
Parameters
Definition of the
parameters used in the
programme
When the mark
✽
appears on the key:
●
Same series of key strokes can be done
with screen touch.
●
Key operations may also be carried out
with the cursor (not shown).
(When using EL-9650/9600c)
EL-9650/9600c/9450/9400 Graphing Calculator
Heron's Formula
Use Heron's formula to find the area of a triangle when the sides (A,B,C) of the
triangle are known.
Calculation
S = D (D - A) (D - B) (D - C)
(A + B + C)
D =
2
FLOWCHART
Start
Entry of sides
Calculation of D
Calculation of area
Display of area
End
Name of parameter
A
B
C
Content
value of side A
value of side B
value of side C
Enter sides A, B and C.
Value of D calculated.
Area S calculated.
Area of triangle
displayed.
PARAMETERS
Name of parameter
D
S
A
C
B
PROGRAMME LIST
Title : HERON
Print "Input LENGTH
Input A
Input B
Input C
(A+B+C)/2 D
(D (D-A) (D-B) (D-C) ) S
Print "S =
Print S
End
Content
value of D
area
(REAL MODE)
Exercise
Find the area of a triangle when sides A, B and C are 20, 35 and 40cm respectiv ely.
Specify the programme
1
mode.
Select the title HERON.
Enter the values A, B and C.
Key OperationStep
2nd F
PRGM
A
*
2
ENTER
035
Display
(When using EL-9650/9600c)
2
(Display of area)
The area is approximately
350cm
2
.
3
ENTERENTER
40
1
EL-9650/9600c/9450/9400 Graphing Calculator
Calculating Tension
Use the law of sines to find the tension when a pole of weight W is suspended with
two strings, and the strings are balanced with the angles from the vertical line A and B.
Calculation
T
vertical line
W
B
S
G
T
sin B
T = W
S = W
T, S : tension W : weight
A, B : angles (6 sexagesimal numbers)
=
sin A
sin (A+B)
S
=
sin (A+B)
sin B
sin (A+B)
sin A
W
A
B
S
W
A
T
FLOWCHART
Start
Entry
Calculation of denominator
Calculation of tensions
Display of tensions
Name of parameter
A
B
C
Content
angle A
angle B
sin(A+B)
Enter angles and weight
A, B and W.
Denominator in law of sines
calculated. C= sin (A + B)
Tensions T and S calculated.
T = W sin B/C
T = W sin A/C
Tensions T and S displayed.
PARAMETERS
Name of parameter
S
T
W
PROGRAMME LIST
Title : TENSION
Print "Input ANGLE
Input A
Input B
Print "Input WEIGHT
Input W
sin (A+B) C
W sin B/C T
W sin A/C S
Print "TENSION
Print "T=
Print T
Print "S=
Print S
End
Content
tension S
tension T
weight
(REAL MODE)
2
EL-9650/9600c/9450/9400 Graphing Calculator
Exercise
Calculate the tension assuming weight=40kg, angle A=30˚ 15' 20", and angle
B=27˚ 45' 40". Enter the angles with sexagesimal numbers.
Set up condition: decimal point digit number in TAB 3 Mode, decimal
point in Fix Mode, and angle unit in Deg Mode.
* * * * * *
SET UP
2nd F
Specify the programme mode.
1
Select the title TENSION.
Enter the values of angles
2
A and B.
Enter the value of weight.
3
3D1B
Key Operation
2nd F
3
ENTER
274540
ENTER
40
CL2C
PRGM
A
*
01520
•
•
ENTER
moto
motomotomotomoto
DisplayStep
(When using EL-9650/9600c)
Tension T is 21.840kg and
4
S is 23.795kg.
3
EL-9650/9600c/9450/9400 Graphing Calculator
Involute
(Inverse Involute)
Use the involute function for calculating gears etc. to find the angle of obliquity
from the initial value and involute value.
Conversely, calculate the involute value from the angle of obliquity.
Calculation
Involute function : inv θ = tan θ - θ[rad]
Use Newton's method to find the inverse involute:
θ
i +1
f (θ) = a - inv
f'(θ)
= θi -=
f(θi)
θ
Start
Selection of type
S = 1
N
N
S = 2
Y
CALPRESS
angle of obliquity
INVO
Display of angle of obliquity
Entry of angle
of obliquity
Calculation of involute
value (display)
End
FLOWCHART
Entry of initial
value and
involute value
Calculation of
int(10
start
Y
tanθ
i
θi
-
- θi -a
tan2 θ
i
SP: involute curve
S : involute starting point
θ : angle of obliquity of point P
Enter 1 or 2.
To calculation of involute.
To inverse involute calculation
Returns to START if entry
neither 1 nor 2.
Calculation of involute.
Enter initial value and
involute value.
Angle of obliquity
calculated.
Judgment on repetition
of calculation of angle
of obliquity.
Calculation of inverse
involute. Enter angle
of obliquity.
Involute value calculated.
Involute value displayed.
8
D) 0
N
ANGLE
Y
PROGRAMME LIST
Title : INVOLUTE
Label START
ClrT
Print "SELECT 1/2
Input S
If S=1 Goto ANGLE
If S=2 Goto INVO
Goto START
Label ANGLE
Print "Input BEGIN
Input B
B Z
Print "Input INVO
Input I
I J
Label CALPRESS
tan Z T
π Z/180.0 R
(T-R-J)/T
180.0 (R-D)/π Z
If int (108 D)≠0 Goto CALPRESS
Z A
Print "ANGLE
Print A
End
Label INVO
Print "Input ANGLE
Input A
A θ
tanθ -πθ/180 I
Print "INVOLUTE
Print I
End
2
θ
P
S
a
q
θ
Rg
0
(REAL MODE)
D
Name of parameter
D, R, T, J
S
Z
Content
working variable for calculating
selecting calculation type
(S=1: involute calculation)
(S=2: inverse involute calculation)
initial value, angle of obliquity
4
PARAMETERS
Name of parameter
θ
I
A
B
Content
angle of obliquity
involute value
input and output of angle
input of initial value
EL-9650/9600c/9450/9400 Graphing Calculator
Exercise
(1) Find the angle of obliquity when the involute value is 0.0050912 and the initial
value is 10.
(2) Find the involute value when the angle of obliquity is 14.1.
Set up condition: angle unit in Deg Mode and decimal point in
Float Pt Mode.
Enter the luminous intensity of the luminous source, the distance, and the angle between
the perpendicular line and light ray, to find the illuminance of the illuminated side.
Conversely, find the luminous intensity of the source from the illuminance of the
illuminated side.
Calculation
i =
l cos θ
2
r
l =
2
r
i
cos θ
l : luminous intensity [candela]i : illuminance [lux]
r : distance [m]θ: angle [˚ ]
FLOWCHART
Start
A
Selection of type
Y
CANDELA
To subroutineTo subroutine
Entry of
illuminance
Calculation of
luminous intensity
Display of
luminous intensity
Subroutine
Entry of distance and angle
Return
start
S = 1
N
S = 2
A
Entry of
luminous intensity
Calculation of
illuminance
Display of
illuminance
End
DISTANCE
LUX
Enter 1 or 2.
To calculation of
luminous intensity.
To calculation of
illuminance.
Jumps to subroutine
DISTANCE.
Enter illuminance or
luminous intensity.
Illuminance or luminous
intensity calculated.
Illuminance or luminous
intensity displayed.
Subroutine for entry of
distance and angle.
Entry.
Returns to calling program.
Luminous Intensity l
θ
r
Illuminance i
PROGRAMME LIST
(REAL MODE)
Title : CAND LUX
Label START
ClrT
Print "CANDELA=1 LUX=2
Print "SELECT 1/2
Input S
If S=1 Goto CANDELA
If S=2 Goto LUX
Goto START
Label CANDELA
Gosub DISTANCE
Print "Input LUX
Input L
L I
2
R
I/cos θ C
Print "CANDELA
Print C
End
Label LUX
Gosub DISTANCE
Print "Input CANDELA
Input C
C K
K cos θ /R
2
L
Print "LUX
Print L
End
Label DISTANCE
Print "Input DISTANCE
Input D
D R
Print "Input ANGLE
Input A
A θ
Return
Name of parameter
I
K
R
S
6
PARAMETERS
Content
illuminance of illuminated side
luminous intensity of luminous source
distance
selecting calculation type
(S=1:
calculation of luminous intensity
(S=2: calculation of illuminance)
)
Name of parameter
θ
A
L
D
C
Content
angle
input of angle
input and calculating luminous intensity
input of distance
input and calculating illuminance
EL-9650/9600c/9450/9400 Graphing Calculator
Exercise
(1) Find the luminous intensity of the luminous source of distance 10m, angle 60˚
and illuminance 20 lux.
(2) Find the illuminance of the illuminated side of distance 10m, angle 60˚ and
luminous intensity 4000 candela.
Set up condition: angle unit in Deg Mode and decimal point in
Float Pt Mode.
2nd F
SET UP
1B
* * * *
CL
1C
Specify the programme mode.
1
Select the title CAND LUX.
Select calculation of luminous
2
intensity.
Enter the values of distance,
3
angle, and illuminance.
(Display of luminous intensity)
Select calculation of illuminance.
4
Enter the values of distance,
angle, and luminous intensity.
Key Operation
2nd F
PRGM
A
*
ENTER
1
10
20
ENTERENTER
10
ENTERENTER
ENTER
2
ENTER
DisplayStep
(When using EL-9650/9600c)
60
(Display of illuminance)
60
4000
ENTER
ENTER
7
EL-9650/9600c/9450/9400 Graphing Calculator
Calculating Simple Harmonic Oscillation
Enter period, amplitude and time to calculate displacement at specified time,
acceleration, angular velocity, and velocity. Also, display the changes during the
entered time period on a graph.
Calculation
angular velocity : ω =
acceleration : a = -ω
A : amplitude
t : time [sec]
T : period [sec]
ω : angular velocity [rad/sec]
2π
T
2
xvelocity : v = A ω cos (ω t)
+
displacement : x = A sin (ω t)
0
+
Ax
2π
ωt
+
+
A
ωt
0
v
v
ax
FLOWCHART
Start
Entry of period
and amplitude
CALC
Entry of time
Calculation of
angular velocity, etc.
Display of
calculation result.
Calculation of
range and scale
Graph display
Display clear
Angular velocity, displacement,
acceleration and velocity
calculated.
W = angular velocity
H = displacement
B = acceleration,
V = velocity
Calculation result of angular
velocity, displacement,
acceleration and velocity
displayed.
Range set and graph displayed.
Function: Y = D sin (W X)
X is time increase.
...
Xmin
0, Xmax
...
Ymin
-D, Ymax
Text and graph display cleared.
...
E, Xscl
...
D, Yscl
...
E/10
...
D/5
PROGRAMME LIST
Title : OSCILLAT
Print "Input PERIOD
Input P
P F
Print "Input AMPLITUDE
Input A
A D
Label CALC
Print "Input TIME
Input T
T E
2 π/F W
D sin (W E) H
2
-(W
) H B
D W cos (W E) V
Print "ANGULAR VELOCITY
Print W
Print "MAGNITUDE
Print H
Print "ACCELERATION
Print B
Print "VELOCITY
Print V
Wait
E/10 X scl
D/5 Y scl
0 Xmin:E Xmax
-D Ymin:D Ymax
Draw D sin (W X)
Wait
ClrT
ClrG
Goto CALC
(REAL MODE)
8
Name of parameter
B
E
V
W
H
Xscl
Yscl
Exercise
Content
acceleration
time
velocity
angle of velocity (ω)
displacement
x-axis scale
y-axis scale
EL-9650/9600c/9450/9400 Graphing Calculator
PARAMETERS
Name of parameter
A
P
T
D
F
X
Content
input of amplitude
input of period
input of time
amplitude
period
time increase
Calculate angular velocity, etc., using period
ππ
π, amplitude 1 and time 3 seconds and
ππ
display the changes on a graph.
Set up condition: angle unit in Rad Mode and decimal point in
Float Pt Mode.
2nd F
SET UP
Specify the programme mode.
1
Select the title OSCILLAT.
Enter the values of period,
2
amplitude, and time.
3
(Display of angular velocity)
(Display of displacement)
(Display of acceleration)
(Display of velocity)
2B
* * * *
1C
CL
Key Operation
2nd F
PRGM
A
*
2nd F
ENTER
π
ENTER
1
ENTER
3
DisplayStep
(When using EL-9650/9600c)
4
(Display of graph of simple
harmonic oscillation)
5
ENTER
ENTER
9
EL-9650/9600c/9450/9400 Graphing Calculator
Electric Power Consumed on an AC Circuit
Enter the voltage effective value, frequency and resistance value to find the power
value of the circuit with resistance R. Draw a graph of the changes in power over a
period of time.
Calculation
P : power consumption I : effective value of current
V : effective value of voltage
R
•
•
I0 = N
sin ω
t V0 = M
•
sin ω
•
t P0 = l0
•
V0
P0 : change in amount of power with time
I0 : change in amount of current with time
0: change in amount of voltage with time
V
N: maximum value of current M: maximum value of voltage
ω: angular velocity (2 π S) t : time S : frequency
V
I
FLOWCHART
Start
Data entry
Calculation of power
Calculation of range
Display of power
Display of graph
End
Enter data (resistance, voltage and
frequency).
Power calculated.
W = angular velocity
M = maximum voltage
N = maximum current
I = effective value of current
Z = power
Range for graph calculated.
Xmax, Xscl, Ymax, Yscl
Power displayed. (value of Z)
Function: Y = N M (sin (W X))
2
PROGRAMME LIST
Title : AC POWER
Print "Input RESISTANCE
Input R
Print "Input VOLTAGE
Input V
Print "Input FREQUENCY
Input F
R T
V D
F S
2 π S W
D √2 M
M/T N
N/√2 I
D I Z
1/S Xmax
Xmax/10 Xscl
N M Ymax
Ymax/10 Yscl
Print "WATT=
Print Z
Wait
0 Xmin
0 Ymin
Draw N M (sin (W X))
End
2
(REAL MODE)
Name of parameter
S
I
T
D
W
N
M
Xmax
Content
frequency
effective value of current
resistance value
effective value of voltage
angular velocity
maximum value of current
maximum value of voltage
maximum value of x-axis
10
PARAMETERS
Name of parameter
Xscl
Ymax
Yscl
V
R
F
Z
Content
scale of x-axis
maximum value of y-axis
scale of y-axis
input of voltage
input of resistance value
input of frequency
value of power
EL-9650/9600c/9450/9400 Graphing Calculator
Exercise
Find the power value of an A C cir cuit with r esistance value 150 Ω, voltage effective
value 100V and frequency 50Hz and display on a graph the changes in power o ver
a period of time.
Set up condition: angle unit in Rad Mode and decimal point in
Float Pt Mode.
2nd F
SET UP
* * * *
CL2B
1C
Specify the programme mode.
1
Select the title AC POWER.
Enter the resistance value,
2
voltage effective value, and
frequency.
(Display of value power)
3
(Display of graph)
Key Operation
2nd F
PRGM
15
10
5
ENTER
0
0
0
ENTER
A
*
ENTER
ENTER
DisplayStep
(When using EL-9650/9600c)
11
A
EL-9650/9600c Graphing Calculator
ngle of Vector
Use the matrix operation feature to find the angle θ which forms the standard vector
and vector. The angle can be calculated at one time against the multiple vectors.
Calculation
←
Calculating vector inner product a• b = | a | | b | cos θ
Use the above expression to derive the following expression
←←
a• b
θ = cos
-1
←←
| a | | b |
←←←
END
End
FLOWCHART
Start
Entry of number
of vectors
Definition of arrays
K = K + 1
Vector data entry
Y
CALC
K < M
N
Entry of standard
vector data
Calculation of
component of
standard vector
Calculation of
inner product
I = I + 1
Y
component of vector
Calculation of angle
and display of angle
I > M
N
Calculation of
DATA
PROGRAMME LIST
Title : VECTOR
0 I
Enter no. of vectors for which
angles are calculated.
Arrays defined.
matA, matB, matC.
Counter for data entry.
Enter x component and Y
component of each vector.
Entry repeated by no. of vectors.
Enter x component and Y component
of standard vector.
Length component of standard
vector (scalar) calculated.
Product of matrices A and B
calculated.
Counter for calculation of angle.
Calculation repeated by no.
of vectors.
Length component of vector
(scalar) calculated.
Angle calculated and displayed.
0 K
Print " Input NUMBER
Input N
N M
{M,2} dim (mat A)
{2,1} dim (mat B)
{M,1} dim (mat C)
Label DATA
K + 1 K
Print " Input VECTOR
Print K
Input X
X mat A(K,1)
Input Y
Y mat A(K,2)
If K<M Goto DATA
Print "Input FUNDAMENTAL VECTOR
Input X
X mat B(1,1)
Input Y
Y mat B(2,1)
√ (mat B(1,1)
mat A mat B mat C
Label CALC
Ι + 1 Ι
If I>M Goto END
√ (mat A(I,1)
cos
Print "ANGLE OF VECTOR
Print I
Print "θ=
Print θ
Wait
Goto CALC
Label END
End
2
+mat B(2,1)2) B
2
-1
(mat C(I,1) / (A B)) θ
+mat A(I,2)2) A
(MATRIX MODE)
12
EL-9650/9600c Graphing Calculator
PARAMETERS
Name of parameter
A
B
I
K
M
X
Y
Content
vector scalar quantity
standard vector scalar quantity
calculating counter
input counter
number of vectors
input of x component
input of y component
Name of parameter
θ
K
N
mat A
mat B
mat C
Content
vector angle
display
input of number of vectors
vector components
standard vector components
vector inner product
Exercise
Calculate the angle formed by the following 3 vectors and standard vector (2,3).
vector 1 (5, 8)
vector 2 (7, 4)
vector 3 (9, 2)
Set up condition: angle unit in Deg mode, and decimal point in Float Pt
mode.
2nd F
SET UP
Specify the programme mode.
1
Select the title VECTOR.
1B
* * * *
CL
1C
Key Operation
2nd F
PRGM
A
*
DisplayStep
Enter the number of vectors.
2
Enter the values of vector 1.
3
Enter the values of vectors
4
2 and 3.
Enter the value of standard
5
vector.
(Display of angle of vector 1)
6
(Display of angle of vector 2)
3
ENTER
5
ENTER
7
ENTER
9
ENTER
2
ENTER
ENTER
8
4
2
3
ENTER
ENTER
ENTER
ENTER
(Display of angle of vector 3)
ENTER
13
EL-9650/9600c Graphing Calculator
Linear Transformation
Use the matrix to find four types of the linear transformation of x-axis symmetric
transformation, y-axis symmetric transformation, similar transformation and
revolution around the origin.
Calculation
1. Symmetric transformation to
x-axis (Case 1)
X'
()()
Y'
1 0
=
()()
0 -1
X
Y
2. Symmetric transformation to
y-axis (Case 2)
X'
()()()
Y'
Start
Array declaration
Entry of coordinates (X,Y)
Entry of type
s = 1
s = 2
s = 3
s = 4
Label XSYMMETRY
Transformation data set
Label SIMRATIO
Entry of ratio of similitude
Data set of transformation
Display of coordinates after transformation
-1 0
=
01
Y
N
Y
N
Y
N
Y
N
Coordinate transformation
X
Y
FLOWCHART
TYPE
To label XSYMMETRY
To label YSYMMETRY
To label SYMRATIO
To label ROTATE
Label YSYMMETRY
Transformation data set
Label ROTATE
Entry of angle
Data set of transformation
End
3. Similar transformation with ratio of
similitude K around origin (Case 3)
X'
Y'
=
K0
0 K
X
()()
Y
4. Transformation revolving around
only angle B at the origin (Case 4)
X'
(())()
Y'
Declare array size, etc.
matH(2,2), matD(2,1), matA(2,1)
Enter coordinates before transformation.
Type of transformation specified
with no from 1 to 4.
Jumps to destination corresponding
to entered number.
XSYMMETRY
Data set of x-axis symmetric transformation
matH(1,1) = 1, matH(1,2) = 0,
matH(2,1) = 0, matH(2,2) = -1
YSYMMETRY
Data set of y-axis symmetric transformation
matH(1,1) = -1, matH(1,2) = 0,
matH(2,1) = 0, matH(2,2) = 1
SIMRATIO
Data set of similar transformation
Entry of ratio of similitude (R)
matH(1,1) = K, matH(1,2) = 0,
matH(2,1) = 0, matH(2,2) = θ
Data set of transformation by revolving
Entry of angle (A)
matH(1,1) = cos B, matH(2,1) = sin B,
matH(1,2) = -sin B, matH(2,2) = cos B,
Matrix H multiplied by matrix D.
Coordinates displayed.
cos B-sin B
=
sin Bcos B
X
Y
PROGRAMME LIST
(MATRIX MODE)
Title : LINE TRNS
{2, 2} dim(mat H)
{2, 1} dim(mat D)
{2, 1} dim(mat A)
Print "Input POINT
Input X
Input Y
X mat D(1, 1)
Y mat D(2, 1)
Label TYPE
Print "SELECT 1/2/3/4
Input S
ClrT
If S=1 Goto XSYMMETRY
If S=2 Goto YSYMMETRY
If S=3 Goto SIMRATIO
If S=4 Goto ROTATE
GotoTYPE
Label XSYMMETRY
1 mat H(1, 1)
0 mat H(2, 1)
0 mat H(1, 2)
-1 mat H(2, 2)
Goto TRANS
Label YSYMMETRY
-1 mat H(1, 1)
0 mat H(2, 1)
0 mat H(1, 2)
1 mat H(2, 2)
Goto TRANS
Label SIMRATIO
Print "Input
Input R
R K
K mat H(1, 1)
0 mat H(2, 1)
0 mat H(1, 2)
θ mat H(2, 2)
Goto TRANS
Label ROTATE
Print "Input ANGLE
Input A
A B
cos B mat H(1, 1)
sin B mat H(2, 1)
-sin B mat H(1, 2)
cos B mat H(2, 2)
Label TRANS
mat H mat D mat A
Print "mat A(1, 1)
Print mat A(1, 1)
Print "mat A(2, 1)
Print mat A(2, 1)
End
SIMILITUDE RATIO
14
EL-9650/9600c Graphing Calculator
PARAMETERS
Name of parameter
B
K
S
X
Content
angle
ratio of similitude
selecting type
(S=1: case 1, S=2: case 2,
S=3: case 3, S=4: case 4)
x-coordinate
Name of parameter
Y
A
R
mat A
mat H
mat D
Content
y-coordinate
input of angle
input of ratio of similitude
coordinate after transformation
transformation data
x,y-coordinate
Exercise
1. Transform symmetrically the point (3, 5) to the x-axis.
2. Rotate the point (2, 6) at 45˚ around the origin.
Set up condition: angle unit in Deg Mode and decimal point in
Float Pt Mode.
Plot a moving average graph which helps to understand how the results change over a
specified period. The progress of sales and amounts of consumption and production can
also be seen.
Calculation
X
i-(M-1) / 2
Hi =
( I = 1 +
+ ... + Xi + ... X
M
M-1
222
, 2 +
M-1
i+(M-1) / 2
, ... , n +
M-1
Hi: moving average
M : number of divisions
X
i
)
: data
n : number of data
FLOWCHART
Start
MAIN
Entry of number of divisions
Y
Setting of calculation range
Gosub MOVINGSUM
Y
Gosub MOVINGSUM
Y
Y
M>=n
N
Calculation
Gosub count
M>=J
N
Gosub AVERAGE
Substitution
Gosub COUNT
(I+M)>J
N
Gosub AVERAGE
Display of line
K≠
(n-int(M/2))
N
End
LOOP1
LOOP2
LOOP3
Enter unit for calculating average.
Returns to entry of no. of divisions if the number
of divisions more than no. of data.
Range for graph set.
I = 0, K = int (M/2)
First calculation. Jumps to subroutine.
Jumps to subroutine.
Number of calculation times of moving sum judged.
Repeated until calculation of no. of divisions performed.
Subroutine
Setting of counter
Subroutine
Calculation of
moving sum
Subroutine
Calculation of
average
X = K, Y = H
Jumps to
subroutine.
Jumps to
subroutine.
Jumps to
subroutine.
Line displayed.
Judgment of end.
COUNT
I = I + 1, J = I, S = 0
Return
MOVINGSUM
Calculation of moving sum
Return
AVERAGE
Calculation of moving average
Return
PROGRAMME LIST
(STAT MODE)
Title : MVIN AVG
Label MAIN
Print "Input DIVISION
Input D
D M
1_Stats L1
If M≥n Goto MAIN
Rem RANGE
(xmax-xmin)/10 Yscl
0 Xmin
n Xmax
1 Xscl
xmin Ymin
xmax Ymax
0 I
int (M/2) K
Gosub COUNT
Label LOOP1
Gosub MOVINGSUM
If M≥J Goto LOOP1
Gosub AVERAGE
Label LOOP2
K X
H Y
Gosub COUNT
Label LOOP3
Gosub MOVINGSUM
If (I+M)>J Goto LOOP3
Gosub AVERAGE
Line (X, Y, K, H)
If K≠(n-int (M/2))
Wait
End
Label COUNT
I+1 I
I J
0 S
Return
Label MOVINGSUM
S+L1(J) S
J+1 J
Return
Label AVERAGE
S/M H
K+1 K
Return
Goto LOOP2
16
EL-9650/9600c/9450/9400 Graphing Calculator
Parameters
name of parameter
H
I
J
K
M
content
moving average
counter
counter
counter
number of divisions
name of parameter
S
X
Y
Yscl
B
content
moving sum
starting point (x)
starting point (y)
scale of y-axis
input of number of divisions
Exercise
Find the moving average every three months (number of divisions: 3) from the follo wing
table of monthly sales.
Month
Sales[$]
Jan.
300
Feb.
326
Mar.
323
Apr.
344
May.
300
Jun.
401
Jul.
398
On the graph, Xmax = 8, Ymin = 300, and Ymax = 450.
Set up condition: decimal point in Float Pt Mode.
Enter statistical data into L1.
1
2nd F
SET UP
* *
CL1C
Key Operation
STAT
ENTER
A
*
(When using EL-9650/9600c)
Aug.
450
DisplayStep
Specify the programme mode.
2
Select the title MVIN AVG.
Enter the number of divisions(3).
3
0
03623
ENTER
43
ENTER
93
ENTER
2nd F
ENTER
3
ENTER
23
4
ENTER
04
8
ENTER
PRGM
A
*
3
1
ENTER
003
ENTER
054
17
EL-9650/9600c/9450/9400 Graphing Calculator
Creating a Graph of Experimental Data
Graph the results of an experiment and examine the trends.
(Example: examined data relating to water vapour pressure and temperature.)
Start
Graph plot
I = I + 1
Setting of
coordinates
of line
Display of line
Y
(I + 1) < n
End
FLOWCHART
Enter statistical data using
statistics feature before
executing program.
Graph plotted using
DRAWLOOP
N
automatic scaling.
Counter
Data as coordinates
(starting point and
finishing point).
Line drawn between
set coordinates.
Whether or not lines of no.
of data drawn judged.
Repeated until lines drawn
by the no. of data.
PROGRAMME LIST
Title : XY GRAPH
ClrG
Rem DRAWING SD
2 -Stats L1,L2
Rem RANGE
xmin Xmin
xmax Xmax
ymin Ymin
ymax Ymax
(Xmax-Xmin) / 10 Xscl
(Ymax-Ymin) / 10 Yscl
Rem BROKEN LINE
0 I
Label DRAWLOOP
I+1 I
L1(I) X
L2(I) Y
L1(I+1) Z
L2(I+1) W
Line(X,Y,Z,W)
If (I+1) <n Goto DRAWLOOP
Wait
End
(STAT MODE)
Name of parameter
I
X
Z
Content
counter
x of line starting point
x of line finishing point
PARAMETERS
Name of parameter
Y
W
Content
y of line starting point
y of line finishing point
*n = number of statistical data
18
EL-9650/9600c/9450/9400 Graphing Calculator
Exercise
The following table shows examined water vapour pressure. Draw a graph
of this data.
Temperature [˚C]
Pressure [mmHg]04.581109.2052017.5323031.8264055.3395092.55860149.4770223.7980355.2990525.90
Set up condition: decimal point in Float Pt Mode.
*
Enter statistical data into
1
L1 and L2.
2
2nd F
SET UP
CL1C
*
Key Operation
A
*
ENTER
0
01
ENTER
01
ENTER
STAT
…
0
(Other numbers not shown)
100
760.00
DisplayStep
(When using EL-9650/9600c)
3
Specify the programme mode.
4
Select the title XY GRAPH.
(Drawing of graph)
•
4
…
2nd F
67
PRGM
85
0
A
1
ENTER
*
ENTER
19
EL-9650/9600c/9450/9400 Graphing Calculator
Ordinary Differential Equations
Enter the initial conditions (X, Y) with the step H and interval T. Use Runge Kutta Gill method
to solve the ordinary differential equation of first order.
Calculation
Use the following four steps of Runge Kutta Gill method to find the
equation X
starting point X
1. K0 = Hf (Xn , Yn), R1 = (1/2) (K0-2Q0), Y
2. Q1 = Q0 + 3R1- (1/2)K
K1 = Hf (Xn + H/2, Y
3. Q2 = Q1 + 3R2 - (1 - 1/2) K
K2 = Hf (Xn + H/2, Y
n + 1 and Yn - 1 from Xn and Yn. Input Qo = 0 at the
0.
(1)
= Yn +R
1
0
(1)
), R2 = (1 - 1/2) (K1-Q1), Y
(2)
), R3 = (1 + 1/2) (K2 -Q2),Y
(3)
n+1
, Y
), R4 = (1/6) (K3-2Q3), Y
3
1
2
n+1
= Y
(2)=Y(1)
(3)
(3)
+ R
= Y
+ R
2
(2)
+ R
3
4
Y
Y
3
Y
2
Y
1
0
h
h
X1X2X
X
3
Start
Entry of data
Initial setting
MAIN
Gosub
Calculation of step 1.
Gosub
Calculation of step 2.
Gosub
Calculation of step 3.
Gosub
Calculation of step 4.
Z <= I
Y
S = I
O = J
Z ≠ I
Y
Processing
in case of
inequality
SUB1
Display of result
Processing for
next calculation
Enter Data.
Initial coordinates (X, Y), step
of x (H), and interval of solutions (T)
Data for calculation set.
Calculation executed.
Jumps to subroutine.
Jumps to subroutine.
Jumps to subroutine.
Jumps to subroutine.
Judgment of calculation end
N
If calculation result of I smaller
than value of increase of I,
calculation repeated again.
N
SUB2
Prior processing for next calculation
Z = Z + T, S = X, O = J
FLOWCHART
Following calculation
performed when calculation
result of x not equal to the
value of increase of X.
(Z - S) (J - O)
P =
H
+ O,
M = Z
N = P
Subroutine
FORMULA
Subroutine for
calculating
built-in function
Return
PROGRAMME LIST
Title : RUNGE
Rem INITIAL
Print " Input X0
Input X
Print " Input Y0
Input Y
X I
Y J
Print " Input H
Input H
Print " Input T
Input T
-1
1+√(2
) A
-1
1- √(2
) B
I+T Z
O Q
I S
Label MAIN
Rem 1
Gosub
FORMULA
H F K
(K-2 Q) /2 R
J+R J
Q+3 R-K/2 Q
I+H/2 I
Rem 2
Gosub
H F K
B (K-Q) R
J+R J
Q+3 R-B K Q
Rem 3
Gosub
H F K
A (K-Q) R
J+R J
Q+3 R - A K Q
I+H/2 I
Rem 4
Gosub
H F K
(K - 2 Q) /6 R
J+R J
Q+3 R - K/2 Q
If Z≤I Goto
I S
J O
Subroutine for calculating
built-in function
f = -I J
(Another equation can be used.)
(REAL MODE)
Goto MAIN
Label NEXT
FORMULA
If Z≠I Goto
I M
J N
Label SUB1
ClrT
Print "XN=
FORMULA
Print M
Print "YN=
Print N
Wait
Z+T Z
I S
J O
FORMULA
Goto MAIN
Label SUB2
(Z-S) (J-O) /H+O
Z M
P N
NEXT
Goto SUB1
Label
-I J F
Return
SUB2
P
FORMULA
20
EL-9650/9600c/9450/9400 Graphing Calculator
PARAMETERS
Name of parameter
A
B
F
H
K
O
P
Q
R
Content
value of 1+ (1/2)
value of 1- (1/2)
f (I,J)
step
calculating working area
value of Yn-1
increase of J
value of Qn
value of Rn
Name of parameter
S
T
I
J
Z
X
Y
M
N
Content
value of Xn-1
interval
Xn
Yn
value of increase of X
input of X
input of Y
indicates Xn
indicates Yn
0
0
Exercise
Initial settings: Y = 10 when X = 0. F ind J when H = 0.01, T = 0.03 and I = 0.03, 0.06
(The built-in differential equation is F = -I J.)
Set up condition: angle unit in Rad Mode and decimal point in
Float Pt Mode.
Specify the programme mode.
1
Select the title RUNGE.
2nd F
SET UP
* * * *
1C
CL2B
Key Operation
2nd F
PRGM
(When using EL-9650/9600c)
A
*
...
.
DisplayStep
Enter the values of X0, Y0,
2
H and T.
3
(Display of X1)
(Display of Y1)
4
(Display of X2)
(Display of Y2)
5
(Display of X3)
(Display of Y3)
Similar operation is performed
hereafter.
ENTER
00•
00•
ENTER
ENTER
ENTER
0
10
1
3
ENTER
ENTER
ENTER
21
A
EL-9650/9600c/9450/9400 Graphing Calculator
nalysing with One-way Layout Method
Use the one-way layout method to verify whether there is a relation to the results
achieved based on one condition. Analysis of variance is carried out with this method.
Calculation
Analysis of variance chart of one-way layout method
A : number of levels
N: repeated frequency
X: number of data
FLOWCHARTPROGRAMME LIST
Start
LOOP2
Entry of number of levels
and repeat frequency
Declaration of one
variable statistic
Entry of data
Accumulation of data
Accumulation of
square of data
K = K + 1
Y
(N+1)>K
Display of ΣX
(sum of levels)
Accumulation
of (ΣX)
S = S + 1
Y
(A+1)>S
Calculation of X,Y and Z
Calculation and display
of sum of squares
Calculation and display
of degree of freedom
Calculation and display
of variance
LOOP1
Judgment of repeated frequency.
N
2
Repeated frequency corresponding
to no. of levels judged.
N
Title : VARIANCE
Rem INPUT
Enter no. of levels and repeated
frequency.
One variable statistic
(Stat X) declared.
Data and square of data
accumulated.
ΣX (sum of levels) displayed.
ΣX obtained with
statistics feature.
Square of ΣX accumulated.
X, Y and Z calculated.
Sum of squares (E, M, P)
calculated and displayed.
Sum of degree of freedom
(Q, R, D) calculated and
displayed.
Print "Input LEVEL
Input L
L A
Print "Input TIMES
Input T
T N
0 W
0 B
0 C
1 S
Label LOOP2
N dim(L1)
1 K
Label LOOP1
ClrT
S L
K T
Print "Input DATA
Print "LEVEL
Print L
Print "TIME
Print T
Input I
I L1(K)
B+I B
2
C+I
K+1 K
If (N+1)>K Goto LOOP1
1_Stats L1
Σx J
Print "Σx=
Print J
Wait
W+(Σx)
S+1 S
If (A+1)>S Goto LOOP2
Rem CALCULATE
2
B
/A/N X
Variance (V, U) calculated and displayed.
C
2
W
(STAT MODE)
W/N Y
C Z
Rem SUM OF SQUARES
Y-X E
Z-Y M
Z-X P
Print "SUM OF SQUARES
Print E
Print "ERROR SUM OF SQUARES
Print M
Wait
Print "TOTAL SUM OF SQUARES
Print P
Wait
Rem DEGREES OF FREEDOM
A-1 Q
A (N-1) R
A N-1 D
Print "DEGREES OF FREEDOM
Print Q
Print "
DEGREES OF FREEDOM
Print R
Wait
Print "
SUM OF DEGREES OF FREEDOM
Print D
Wait
Rem VARIANCE
E/Q V
M/R U
Print "VARIANCE
Print V
Print "VARIANCE OF ERRORS
Print U
Wait
Rem VARIANCE RATIO
V/U F
Print "VARIANCE RATIO
Print F
End
ABOUT ERRORS
Calculation and display
of variance ratio
End
22
Variance ratio (F) calculated and displayed.
EL-9650/9600c/9450/9400 Graphing Calculator
PARAMETERS
Name of parameter
A
I
K
J
N
S
X
Z
F
E
M
P
Content
number of levels
input of data
loop 1 counter
indicating Σx
repeated frequency
loop 2 counter
2
/ a/ n
(ΣΣ xi)
2
Σi Σj (xij)
variance ratio factor
sum of squares factor
sum of squares error
sum of squares total
Name of parameter
V
U
Y
Q
R
D
T
L
W
B
C
Exercise
When a mouse is given a dosage of hormone, the relationship between dosage amount
and increase of mouse weight is as shown in the following table. Find the analysis of
variance. If the value of the variance ratio is larger than the value of the F- distribution
table at the 5% level of significance, the relationship between the hormone amount
and the increase of mouse weight is a causal relation.
Content
variance factor
variance error
2
Σi (Σ jxij)
degree of freedom factor
degree of freedom error
degree of freedom total
input and indicating frequency
input and indicating number of levels
total sum of squares of each level
total sum (all data)
total sum of squares (all data)
/ n
Increase mouse weight (grams/day)
Hormone
(grams/mouse)
10
20
30
10
882
923
933
20
891
915
939
30
864
923
925
40
888
912
940
The number of levels (number of columns in the table) is A = 3
The repeated frequency (number of rows in the table ) is N = 5
Set up condition: decimal point in Float Pt Mode.
*
Specify the programme mode.
1
Select the title VARIANCE.
Enter the number of levels and
2
the repeated frequency.
2nd F
SET UP
CL1C
*
Key Operation
(When using EL-9650/9600c)
2nd F
PRGM
A
*
ENTER
53
50
885
930
932
DisplayStep
3
ENTER
23
EL-9650/9600c/9450/9400 Graphing Calculator
Enter the statistical data
4
in level 1.
(Display of total of hormone 10 g)
Enter the statistical data
5
in level 2.
(Display of total of hormone 20 g)
Enter the statistical data
6
in level 3.
(Display of total of hormone 30 g)
7
(Display of sum of squares)
(Display of error sum of squares)
Key Operation
2
88
ENTER
88
ENTER
ENTER
19
ENTER
39
ENTER
39
ENTER
39
ENTER
ENTER
68
4
8
ENTER
5
0
9
2
29
ENTER
19
ENTER
39
ENTER
49
ENTER
3
2
3
0
ENTER
ENTER
ENTER
ENTER
ENTER
DisplayStep
(When using EL-9650/9600c)
198
588
329
529
8
9
10
11
12
ENTER
(Display of sum of squares)
ENTER
(Display of degrees of freedom)
(Display of degrees of freedom about errors)
ENTER
(Display of sum of degrees of freedom)
ENTER
(Display of variance)
(Display of variance of errors)
ENTER
(Display of variance ratio)
The F-distribution chart shows that the value of F of upper probability P = 5% is 3.89. Since f > 3.98 in this
example, the relationship between the hormone amount and the increase of mouse weight is a causal
relation with 5% level of significance.
24
EL-9650/9600c/9450/9400 Graphing Calculator
Calculating Parabolic Motion
Display on a graph the altitude change and the horizontal distance over a period of time
0
when an object is thrown at initial velocity V
distance and altitude after t seconds. Specify the angle in Deg.
and angle θ, and find the horizontal
Calculation
•
•
X = V0
cos θ
Initial velocityV0 [m/s]
Angleθ [˚ ]
Gravitational acceleration g = 9.8 [m/s
Time T [s]
Entry of initial velocity
Calculation and
display from
released angle 45ß
Entry of released angle
Y
θ≤ 0 or θ> 90
Calculation and
display of values
for entered angle
Range setting
LOOP1
Calculation and
plotting of graph
D = (D + T/100)
Y
D ≤ T
Entry of time
T Y = V
FLOWCHARTPROGRAMME LIST(REAL MODE)
Start
THETA
N
TX
N
•
•
2
]
T - 1 gT
0
sin θ
Enter velocity when thrown.
Highest altitude, throwing
distance (horizontal distance),
and time (duration of flight) in
case of released angle 45˚
calculated and displayed.
Angle for throwing entered.
Entered angle less than or equal
to 0˚ or larger than 90˚?
Highest altitude, throwing distance
(horizontal distance), and time
(duration of flight) for entered angle
calculated and displayed.
Range of graph set based on
values for released angle 45˚.
Graph (parabola) calculated
and plotted.
Elapsed time counted.
Calculation and plotting repeated
until D (time elapsed) reaches
T (duration of flight).
2
2
y
0
V
θ
Title : PARABOLA
Print "V0 (M/S),θ,T(S)
Print "Input V0
Input V
2 V sin 45/9.8 A
2
/9.8 B
V
2
/19.6 C
V
Print "HMAX=
Print C
Print "LMAX=
Print B
Print "TMAX=
Print A
Wait
Label THETA
Input θ
If θ≤ 0 Goto THETA
If θ> 90 Goto THETA
2
(sin θ)2/19.6 H
V
2
sin (2θ)/9.8 L
V
2 V sin θ/9.8 T
Print "H=
Print H
Print "L=
Print L
Print "T=
Print T
Wait
C/10 Yscl
B/10 Xscl
x
0 Xmin
0 Ymin
B Xmax
C Ymax
0 D
Label LOOP1
V cos θ D X
V sin θ D-(0.5 9.8 D
Pnt0N(X,Y)
D+(T/100) D
If D≤T Goto LOOP1
Wait
Label TX
Print "Input TX
Input Z
If Z≤0 Goto THETA
If Z>T Goto THETA
V cos θ Z X
V sin θ Z-(0.5 9.8 Z
Print "X=
Print X
Print "Y=
Print Y
Wait
Line(0,Y,X,Y)
Line(X,0,X,Y)
Wait
Goto TX
0000
2
) Y
2
) Y
Z ≤ 0 or Z > T
N
Calculation and
display of distance
and altitude after time Z.
Display of graph
Entered time less than or equal
Y
to 0 or more than T?
Altitude and distance after entered
time elapses from throwing
calculated and displayed.
Returns to entry of time.
25
EL-9650/9600c/9450/9400 Graphing Calculator
PARAMETERS
Name of parameter
H
L
T
X
Y
D
Yscl
Exercise
Find the horizontal distance and altitude three seconds after an object is thrown, when
the initial velocity is 25m/sec and the angle is 52˚.
Set up condition: angle unit in Deg mode, and decimal point in Float Pt
mode.
* * * *
2nd F
Content
highest altitude
horizontal distance
time
distance (after time Z)
altitude (after time Z)
time elapsed
scale of y-coordinate
SET UP
B
Name of parameter
Xscl
Z
V
θ
C
B
A
1C
CL1
Content
scale of x-coordinate
input of time period
initial velocity (V
angle (released angle)
highest altitude when released at 90˚
horizontal distance when released at 45˚
time period when released at 45˚
0
)
Specify the programme mode.
1
Select the title PARABOLA.
Enter the value of the initial velocity.
2
3
Enter the angle value.
4
(Display of highest altitude)
(Display of horizontal distance)
(Display of time until dropping of object)
5
(Display of graph of parabola)
Key Operation
2nd F
PRGM
5
ENTER
ENTER
2
ENTER
52
ENTER
DisplayStep
(When using EL-9650/9600c)
A
*
6
Enter the value of time period Z.
7
(Display of distance after Z seconds)
(Display of altitude after Z seconds)
8
26
(Altitude and distance after Z seconds are
displayed on the parabola graph.)
ENTER
ENTER
3
ENTER
Key pad for the SHARP EL-9650/9600c Calculator
Graphing keys
Power supply ON/OFF key
Alphabet specification key
Secondary function specification key
Display screen
Cursor movement keys
Clear/Quit key
Variable enter key
Calculation execute key
Communication port for peripheral devices
Key pad for the SHARP EL-9450/9400 Calculator
Graphing keys
Power supply ON/OFF key
Alphabet specification key
Secondary function specification key
Display screen
Cursor movement keys
Clear/Quit key
Variable enter key
Calculation execute key
Communication port for peripheral devices
Use this form to send us your contribution
Dear Sir/Madam
We would like to take this opportunity to invite you to create a mathematical problem which can be solved
with the SHARP EL-9650/9600c and 9450/9400 graphing calculator, including the necessary procedures
and definitions as outlined in the form below.
For this purpose, we would be grateful if you could complete the form and return it to us by fax or mail,
specifying whether you have created the problem for the EL-9650/9600c or the EL-9450/9400. If your
contribution is chosen, your name will be included in the next edition of The EL-9650/9600c/9450/9400
Graphing Calculator Handbook or on our homepage. We regret that we are unable to return contributions.
Also, please note that the problems you send us might be opened to the public at Sharp’s home page.
We thank you for your cooperation in this project.
Name: ( Mr. Ms.
)
School/College/Univ.:
Address:
Post Code: Country:
Phone:Fax:
E-mail:
* You are making this sheet for the ( EL-9650/9600c, EL-9450/9400).
SUBJECT: Write either a title or about the subject matter.
Include an example of a problem which can be solved with the
formula. Write a step-by-step guide to solving the problem with
an explanation. Detail any important conditions to be set up
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
before solving the problem.
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
SHARP CORPORATION Osaka, Japan
Fax:
SHARP Graphing Calculator
SHARP CORPORATION OSAKA, JAPAN
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.