SGS Thomson Microelectronics VNV35N07, VNP35N07FI, VNB35N07 Datasheet

VNP35N07FI
FULLY AUTOPROTECTED POWER MOSFET
TYPE V
VNP35N07FI VNB35N07 VNV35N07
LINEAR CURRENT LIMITATION
THERMALSHUTDOWN
SHORT CIRCUIT PROTECTION
INTEGRATEDCLAMP
LOW CURRENT DRAWN FROM INPUT PIN
DIAGNOSTICFEEDBACKTHROUGH INPUT
clamp
70 V 70 V 70 V
PIN
ESD PROTECTION
DIRECT ACCESS TO THE GATE OF THE
POWERMOSFET(ANALOGDRIVING)
COMPATIBLEWITHSTANDARD POWER
MOSFET
DESCRIPTION
The VNP35N07FI, VNB35N07 and VNV35N07 are monolithic devices made using STMicroelectronics VIPower M0 Technology, intended for replacement of standard power MOSFETS in DC to 50 KHz applications. Built-in thermal shut-down, linear current limitation and overvoltage clamp protect the chip in harsh
DS(on)
0.028
0.028
0.028
I
lim
35 A 35 A 35 A
VNB35N07/VNV35N07
”OMNIFET”:
ISOWATT220
3
1
D2PAK TO-263
enviroments. Faultfeedback can be detected by monitoring the
voltageat the input pin.
3
2
1
10
1
PowerSO-10
BLOCK DIAGRAM ()
() PowerSO-10 PinConfiguration : INPUT = 6,7,8,9,10; SOURCE = 1,2,4,5; DRAIN = TAB
June 1998
1/13
VNP35N07FI-VNB35N07-VNV35N07
ABSOLUTEMAXIMUMRATING
Symbol Parameter Value Unit
V
V
V
P
T
Drain-source Voltage (Vin= 0 ) Int er nall y Clamped V
DS
Input Voltage 18 V
in
I
Drain Current Internally Limited A
D
I
Reverse DC Output Current -50 A
R
Elect r o st at ic Disc harge (C= 100 pF , R=1 . 5 K) 2000 V
esd
Tot al Dissipat ion at Tc=25oC 125 40 W
tot
T
Oper at i ng Junct ion Temper at ure Internally Limited
j
T
Case Operating Temperature Internally Limited
c
St orage Temperature -55 t o 150
stg
THERMAL DATA
R
thj-case
R
thj-amb
Ther mal Resist an ce Juncti on-c ase Max Ther mal Resist an ce Juncti on-am b ient Max
Po w erSO-10
D2PAK
IS O WATT220 PowerSO -10 D2PA K
3.12
62.5
ISOWATT220
1
50
1
62.5
o o
o
C
o
C
o
C
C/W C/W
ELECTRICAL CHARACTERISTICS (T
=25oC unlessotherwise specified)
case
OFF
Symbol Parameter Test Condition s Min. Typ. Max. Unit
V
CLAMP
Drain-source Clamp
ID= 200 mA Vin= 0 60 70 80 V
Volt age
V
CLTH
Drain-source Clamp
ID=2mA Vin=0 55 V
Thr eshold Vol ta ge
V
INCL
Input-Source Reverse
Iin=-1mA -1 -0.3 V
Clamp Voltage
I
I
DSS
ISS
Zer o I npu t V olt ag e Drain Current (V
in
Supply Current from
V
=13V Vin=0
=0)
DS
=25V Vin=0
V
DS
VDS=0V Vin= 10 V 250 5 00 µA
50
200
Input Pin
ON ()
Symbol Parameter Test Condition s Min. Typ. Max. Unit
V
IN(th)
Input Thres hold
VDS=VinID+Iin=1mA 0.8 3 V
Volt age
R
DS(on)
St at ic D r ain-source On Resistance
Vin=10V ID=18A
=5V ID=18A
V
in
0.028
0.035ΩΩ
DYNAMIC
µA µA
Symbol Parameter Test Condition s Min. Typ. Max. Unit
g
()Forward
fs
VDS=13V ID=18A 20 25 S
Tr ansc on ductance
C
Out put Capacit anc e VDS=13V f=1MHz Vin= 0 980 1400 pF
oss
2/13
VNP35N07FI-VNB35N07-VNV35N07
ELECTRICAL CHARACTERISTICS (continued) SWITCHING(∗∗)
Symbol Parameter Test Condition s Min. Typ. Max. Unit
t
d(on)
t
d(off)
t
d(on)
t
d(off)
(di/dt)
Q
Turn-on Delay Time
t
Rise Time
r
Turn-off Delay Time
t
Fall T ime
f
Turn-on Delay Time Rise Time
t
r
Turn-off Delay Time
t
Fall T ime
f
Tur n-on Current Slope VDD=28V ID=18A
on
Total Input Charge VDD=12V ID=18A Vin= 10 V 100 nC
i
VDD=28V Id=18A
=10V R
V
gen
gen
=10
(see figure 3)
VDD=28V Id=18A V
=10V R
gen
= 1000
gen
(see figure 3)
=10V R
V
in
gen
=10
SOURCE DRAIN DIODE
Symbol Parameter Test Condition s Min. Typ. Max. Unit
V
()ForwardOnVoltage ISD=18A Vin=0 1.6 V
SD
Q
I
RRM
t
(∗∗)
rr
Reverse Re covery Time Reverse Re covery
(∗∗)
rr
Charge
(∗∗)
Reverse Re covery Current
I
= 18 A di/ dt = 10 0 A/µs
SD
V
=30V Tj=25oC
DD
(see test cir cuit, figure 5)
100 350 650 200
500
2.7 10
4.3
200 600
1000
350 800
4.2 16
6.5
60 A/µs
250
1 8
ns ns ns ns
ns
µs µs µs
ns
µC
A
PROTECTION
Symbol Parameter Test Condition s Min. Typ. Max. Unit
t
T
I
dlim
jsh
Drain Current Limit Vin=10V VDS=13V
lim
(∗∗) S tep Respon se
Current Lim it
=5V VDS=13V
V
in
Vin=10V
=5V
V
in
(∗∗) Overtemperatu re
Shut dow n
(∗∗) Ov ert emperatu r e Reset 135
T
jrs
I
(∗∗) Fault Sink Current Vin=10V VDS=13V
gf
E
(∗∗) S i ngle Pulse
as
Avalanche Energy
() Pulsed: Pulse duration = 300 µs, duty cycle 1.5 % (∗∗) Parameters guaranteed by design/characterization
=5V VDS=13V
V
in
starting Tj=25oCVDD=20V
=10V R
V
in
=1KΩ L=10mH
gen
25 25
35 35
35 70
45 45
60
140
150
50 20
2.5 J
A A
µs µs
o
C
o
C
mA mA
3/13
VNP35N07FI-VNB35N07-VNV35N07
PROTECTION FEATURES
During normal operation, the Input pin is electrically connected to the gate of the internal power MOSFET. The device then behaves like a standard power MOSFET and can be used as a switch from DC to 50 KHz. The only difference from the user’s standpoint is that a small DC current (I
) flows into the Input pin in order to
iss
supplythe internalcircuitry. The device integrates:
- OVERVOLTAGE CLAMP PROTECTION:
internally set at 70V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductiveloads.
- LINEAR CURRENT LIMITER CIRCUIT: limits
the drain current Id to Ilim whatever the Input pin voltage. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capabilityof the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the overtemperaturethreshold T
jsh
.
- OVERTEMPERATURE AND SHORT CIRCUIT
PROTECTION: these are based on sensing the chip temperatureand are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Overtemperaturecutout occurs at minimum 150 restarted when the chip temperature falls below135
o
C. The device is automatically
o
C.
- STATUS FEEDBACK: In the case of an
overtemperature fault condition, a Status Feedback is provided through the Input pin. The internal protection circuit disconnects the input from the gate and connects it instead to ground via an equivalent resistance of 100 . The failure can be detected by monitoring the voltage at the Input pin, which will be close to ground potential.
Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL Logic circuit (witha small increasein R
DS(on)
).
4/13
Loading...
+ 9 hidden pages