SGS Thomson Microelectronics TSH95ID, TSH95IDT Datasheet

1/9
2 SEPARATE STANDBY : REDUCED
CONSUMPTION AND HIGH IMPEDANCE OUTPUTS
LOW SUPPLY CURRENT : 4.5mA
HIGH SPEED : 150M Hz - 110V/µs
UNITY GAIN STABILITY
LOW OFFSET VOLTAGE : 4mV
LOW COST
SPECIFIE D FOR 600 AND 150 LOADS
HIGH VIDEO PERFORMANCES :
Differential Gain : 0.03%
Differential Ph ase : 0.07° Gain Flatness : 6MHz, 0.1dB max. @ 10dB gain
HIGH AUDIO PERFORMANCES
ESD TOLERANCE : 2 kV
DESCRIPTION
The TSH95 is a quad low power high frequency op-amp, designated for high quality video pro­cessing. The device offers an excellent speed consumption ratio with 4.5mA per amplifier for 150MHz bandwidth.
High slew rate and low noise make it also suitable for high quality audio applications.
The TSH95 offers 2 separate complementary
STANDBY pins :
STANDBY 1 acting on both n° 1 & 2
operators
STANDBY 2 acting on both n° 3 & 4
operators They reduce the consumption of the correspond­ing operatorS and put the output i n a high imped­ance state.
ORDER CODE
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
PIN CONNECTIONS (top view)
Part Number Temperature Range
Package
D
TSH95I -40°C, +125°C
D
SO16
(Plastic Micropackage)
Non-inverting Input 2
Non-inverting Input 1
-
CC
V
1
2
3
4
5
6
7
12
13
14
15
16
CC
V
+
Output 3
Output 4
Non-inverting Input 4
Inverting Input 4
Non-inverting Input 3
Inverting Input 3
-
+
-
+
-
+
-
+
Inverting Input 1
Output 2
9
8
Standby 1
11
10
Standby 2
Output 1
Inverting Input 2
TSH95
HIGH SPEED LOW POWER QUAD OPERATIONAL
AMPLIFIER WITH DUAL STANDBY POSITION
November 2000
TSH95
2/9
SCHEMATIC DIAGRAM
MAXIMUM RATINGS
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
CC
Supply Voltage
1)
1. All voltages values, except differential voltage are with respect to network ground terminal
14 V
V
id
Differential Input Voltage
2)
2. Dif ferential voltages are th e non-inverting input ter m i nal with respec t to t he i nverting input terminal
±5 V
V
i Input Voltage
3)
3. The magnitude of input and output voltage s m ust never exc eed V
CC
+
+0.3V
-0.3 to 12 V
T
oper
Operating Free-Air Temperature range -40 to +125 °C
T
stg
Storage Temperature Range -65 to +150 °C
non inverting
input
inverting
input
V
CC
+
C
c
output
V
CC
-
V
Internal
ref
stdby
stdby
stdby
stdby
Symbol Parameter Value Unit
V
CC
Supply Voltage 7 to 12 V
V
ic
Common Mode Input Voltage Range
V
CC
-
+2 to V
CC
+
-1
V
TSH95
3/9
ELECTRICAL CHARACTERISTICS
V
CC
+
= 5V, V
CC
-
= -5V, pin 8 connected to 0V, pin 9 connected to V
CC
+
, T
amb
= 25°C
(unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
V
io
Input Offset Voltage Vic = Vo = 0V
T
min
. ≤ T
amb
≤ T
max.
4 6
mV
I
io
Input Offset Current
T
min
. ≤ T
amb
≤ T
max.
12
5
µ
A
I
ib
Input Bias Current
.
T
min
. ≤ T
amb
≤ T
max.
515
20
µ
A
I
CC
Supply Current (per amplifier, no load)
T
min
. ≤ T
amb
≤ T
max.
4.5 6 8
mA
CMR
Common-mode Rejection Ratio V
ic
= -3V to +4V, Vo = 0V
T
min
. ≤ T
amb
≤ T
max.
80 70
100
dB
SVR
Supply Voltage Rejection Ratio V
CC
= ±5V to ±3V
T
min
. ≤ T
amb
≤ T
max
60 50
75
dB
Avd
Large Signal Voltage Gain R
L
= 10k
Ω,
Vo = ±2.5V
T
min
. ≤ T
amb
≤ T
max.
57 54
70
dB
V
OH
High Level Output Voltage Vid = 1V
R
L
= 600
R
L
= 150
T
min
. ≤ T
amb
≤ T
max.
RL = 150Ω
3
2.5
2.4
3.5
3
V
V
OL
Low Level Output Voltage Vid = 11V
R
L
= 600
R
L
= 150
T
min
. ≤ T
amb
≤ T
max.
RL = 150Ω
-3.5
-2.8
-3
-2.5
-2.4
V
I
o
Output Short Circuit Current Vid = ±1V
Source Sink
T
min
. ≤ T
amb
≤ T
max.
Source Sink
20 20 15 15
36 40 mA
GBP
Gain Bandwidth Product
A
VCL
= 100, RL = 600Ω, CL = 15pF, f = 7.5MHz
90 150
MHz
f
T
Transition Frequency 90 MHz
SR
Slew Rate
V
in
= -2 to +2V, A
VCL
= +1, RL = 600
Ω,
CL = 15pF
62 110
V/µs
e
n
Equivalent Input Voltage Noise Rs = 50Ω, f = 1kHz
4.2 nV/√Hz
φ
m
Phase Margin A
VM
= +1
35 Degrees
V
O1/VO2
Channel Seperation f = 1MHz to 10MHz 65 dB
Gf
Gain Flatness f = DC to 6MHz, A
VCL
= 10dB
0.1 dB
THD
Total Harmonic Distortion f = 1kHz, V
o
= ±2.5V, RL = 600
0.01 %
G
Differential Gain f = 3.58MHz, A
VCL
= +2, RL = 150
0.03 %
∆ϕ
Differential Phase f = 3.58MHz, A
VCL
= +2, RL = 150
0.07 Degree
TSH95
4/9
STANDBY MODE V
CC
+
= 5V, V
CC
-
= -5V, T
amb
= 25°C (unless otherwise specified)
STANDBY POSITION
APPLICATIONS SIGNAL MULTIPLEXING
STANDBY MODE
To put the device in standby, just apply a logic level on the standby MOS input. As ground is a vir­tual level for the device, threshold voltage has been refered to V
CC
+
at V
CC
+
- 1.6V typ.
In standby m ode, the output goes in hi gh imped­ance in 200ns. Be aware that all maximum rating must still be followed in this mode. It leads to swing limitation while using the device in signal multiplexing configuration with followers, differen­tial input voltage mu st not exceed ±5V limit ing in­put swing to 2.5Vpp.
SAM PLE AND H O L D
Symbol Parameter Min. Typ. Max. Unit
V
SBY
Pin 8/9 Threshold Voltage for STANDBY Mode
V
CC
+
-2.2 V
CC
+
-1.6 V
CC
+
-1.0
V
I
CC SBY
Total Consumption
Pin 8 (Standby 1) = 0, Pin 9 (Standby 2
) = 0
Pin 8 (Standby 1) = 0, Pin 9 (Standby 2
) = 1
Pin 8 (Standby 1) = 0, Pin 9 (Standby 2
) = 0
9.4
9.4
0.8
mA
I
sol
Input/Output Isolation (f = 1MHz to 10MHz) 70 dB
t
ON
Time from Standby Mode to Active Mode 200 ns
t
OFF
Time from Active Mode to Standby Mode 200 ns
I
D
Standby Driving Current 2 pA
I
OL
Output Leakage Current 20 pA
I
IL
Input Leakage Current 20 pA
LOGIC INPUT STATUS
Standby 1 Standby 2 Op-Omp 1 & 2 Op-Amp 2 & 3
0 0 Enable Standby 0 1 Enable Enable 1 0 Standby Standby 1 1 Standby Enable
V
CC
V
CC
standby
TSH95
5/9
PRINTED CIRCUIT LAYOUT
As for any high frequency device, a few rules must be observed when designing the PCB to get the best performances from this high speed op amp.
From the most to the least important points :
Each power supply lead has to be
by-passed to ground with a 10nF ceramic capacitor very close to the device and 10µF capacitor.
To provide low inductance and low resist-
ance common return, us e a ground plane or common point return for power and sig­nal.
All leads must be wide and as short as pos-
sible especially for op amp inputs. This is in order to decrease parasitic capacitance and inductance.
Use small resistor values to decrease time
constant with parasitic capacitance.
Choose component sizes as smal l as pos -
sible (SMD).
On output, decrease capacitor load so as
to avoid circuit stability being degraded which may cause oscillation. You can also add a serial resistor in order to minimise its influence.
INPUT OFFSET VOLTAGE DRIFT VERSUS TEMPERATURE
LARGE SIGNAL FOLLOWER RESPONSE
STATIC OPEN LOOP VOLTAGE GAIN
SMALL SIGNAL FOLLOWER RESPO N SE
TSH95
6/9
CLOSE LOOP FREQUENCY RESPONSE AND PHASE SHIFT
AUDIO BANDWIDTH FREQUENCY RESPONSE AND PHASE SHIFT (TSH94 vs Standard 15MHz Audio Op-Amp)
CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE)
CLOSE LOOP FREQUENCY RESPONSE
GAIN FLATNESS AND PHASE SHIF T VERSUS FREQUENCY
CROSS TALK ISOLATION VERSUS FREQUENCY (SO16 PACKAGE)
TSH95
7/9
INPUT/OUTPUT ISOLATION IN STA NDBY MODE (SO16 PACKAGE)
SIGNAL MULTIPLEXING (cf p. 5/10)
COMMON INPUT IMPEDANCE VERSUS FREQUENCY
STANDBY SWITCHING
DIFFERENTIAL INPUT IMPEDANCE VERSUS FREQUENCY
1k 10k 100k 1M 10M 100M
Frequency (Hz)
Zin-com (M
W
)
120
100
80
60
40
20
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
1k 10k 100k 1M 10M 100M
Frequency (Hz)
Zin-diff (k
W
)
TSH95
8/9
MACROMODEL Applies to: TSH95I
** Standard Linear Ic s M acromodel s, 1996. ** CONNECT IONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * 6 STANDBY .SUBCKT TSH95 1 3 2 4 5 6 (analo g) ******************************************************** **************** switch ******************* .SUBCKT SWITCH 20 10 IN OUT COM .MODEL DIDEAL D N=0.1 IS=1E-08 DP IN 1 DIDEAL 400E-12 DN OUT 2 DIDE AL 40 0E-12 EP 1 OUT COM 10 2 EN 2 IN COM 10 2 RFUIT1 I N 1 1E+09 RFUIT2 OU T 2 1E +09 RCOM COM 0 1E+12 .ENDS SWITCH **************** inverter ***************** .SUBCKT INV 20 10 IN OUT .MODEL DIDEAL D N=0.1 IS=1E-08 RP1 20 15 1E +09 RN1 15 10 1E +09 RIN IN 10 1E+12 RIP IN 20 1E+12 DPINV OUT 20 DIDEAL 400E-12 DNINV 10 OUT DIDEAL 400E-12 GINV 0 OUT IN 15 -6.7E-7 CINV 0 OU T 210f .ENDS INV ************** *** AO P ********************** .MODEL MDTH D IS= 1E-8 KF=1.809064E-15 CJO=10F * INP UT STAGE CIP 2 5 1.00 0000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-0 1 RIN 15 16 2.600000E -01 RIS 11 15 3.645298E-0 1 DIP 11 12 MDTH 400E-1 2 DIN 15 14 M DT H 400E-12 VOFP 12 13 DC 0.00000 0E +00 VOFN 13 14DC 0 FPOL 13 5 VS T B 1E+03 CPS 11 15 2 .986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000 E+00 FCN 5 4 VOFN 3.500000E+00 ISTB0 4 5 13 0UA FIBP 2 5 VOF P 1.000000 E- 02 FIBN 5 1 VOFN 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 2. 530000E+0 2 FIN 5 19 VOF N 2.530000E +0 2 RG1 19 120 3.160721E+ 03 XCOM1 4 0 120 5 COM SWITCH RG2 19 121 3.160721E+ 03 XCOM2 4 0 4 121 COM SWITCH CC 19 5 2.00000E-09 DOPM 19 22 M DT H 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.5040 00E+03 VIPM 28 4 5.000000E+0 1 HONM 21 27 VOUT 1.400000E+03 VINM 5 27 5.000000E+01 *********** ZP ********** RZP1 5 80 1E +06 RZP2 4 80 1E +06 GZP 5 82 19 80 2. 5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3. 535e-02 ************** ******* ***** EOUT2 6 2382 51 VOUT 23 5 0 ROUT 26 10 3 35 COUT 103 5 3 0. 000000E-12 XCOM 4 0 10 3 3 COM SWITCH DOP 19 25 M DT H 400E-12 VOP 4 25 2. 361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 ********** STAND BY ******** RMI1 4 111 1E+7 RMI2 0 111 2E+7 RONOFF 6 60 1K CONOGG 60 0 10p RSTBIN 60 0 1E+12 ESTBIN 106 0 6 0 1 ESTBR EF 106 107 111 0 1 DSTB1 107 108 MDTH 400E-12 VSTB 108 109 0 ISTB 109 0 1U RSTB 109 110 1 DSTB2 0 110 MDTH 400E-12 XINV 4 0 6 CO M IN V .ENDS
ELECTRICAL CHARACTERISTICS
V
CC
= ±5V, T
amb
= 25°C (unless otherwise specificed)
Symbol Conditions Value Unit
V
io
0mV
A
vd
RL = 600
3.2 V/mV
I
CC
No load / Ampli 5.2 mA
V
icm
-3 to 4 V
V
OH
RL = 600
+3.6 V
V
OL
RL = 600
-3.6 V
I
sink
Vo = 0V
40 mA
I
sourceVo
= 0V
40 mA
GBP
R
L
= 600Ω, CL = 15pF
147 MHz
SR
R
L
= 600Ω, CL = 15pF
110 V/µs
φ
m
R
L
= 600Ω, CL = 15pF
42 Degrees
TSH95
9/9
Information furnished is beli eved to be accurate and reliable. However, STMicroe lectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licens e is granted by imp lication or otherwise under a ny patent or patent rig hts of STMicroelectronics. Specificat ions mentioned in this publication ar e subject to change without notice. This publication supersedes and replaces all information previously supplied. S TMicroelectronics products are not authorized for use as critica l components in life suppo rt devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2000 STM i cr o electron ics - Printed in Italy - All Rights Res er ved
STMicr oelectronics GROUP OF COMPANIES
Australi a - Brazil - Chi na - Finland - F rance - Germany - Hong Kon g - India - Italy - Japan - Mal aysia - Malta - Mo rocco
Singapo re - Spain - Sweden - Switzerland - Un i ted Kingdom
© http://www.st.com
PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO)
Dim.
Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 1.75 0.069 a1 0.1 0.2 0.004 0.008 a2 1.6 0.063
b 0.35 0.46 0.014 0.018 b1 0.19 0.25 0.007 0.010
C 0.5 0.020 c1 45° (typ.)
D 9.8 10 0.386 0.394
E 5.8 6.2 0.228 0.244
e 1.27 0.050 e3 8.89 0.350
F 3.8 4.0 0.150 0.157
G 4.6 5.3 0.181 0.209
L 0.5 1.27 0.020 0.050
M 0.62 0.024
S 8° (max.)
Loading...