SGS Thomson Microelectronics TS616IDWT, TS616IDW, TS616 Datasheet

TS616
DUAL WIDE BAND OPERATIONAL AMPLIFIER
WITH HIGH OUTPUT CURRENT
LOW NOISE : 2.5nV/Hz
HIGH OUTPUT CURRENT : 420mA
VERY LOW HARMONIC AND INTERMODU-
LATION D I S TORTIO N
HIGH SLEW RA TE : 420V/µs
-3dB BANDWIDTH : 40MHz@gain=12dB on
25load single ended.
on 50load, 12V power supply
CURRENT FEEDBACK STRUCTURE
5V to 12V POWER SUPPLY
SPECIFIED FOR 20 and 50
DIFFERENTIAL LOAD
DESCRIPTION
The TS616 is a dual operational am plifier featur­ing a high output current o f 410m A. T he drivers can be configured differentially for driving signals in telecommunication systems using multiple car­riers. The TS616 is ideally suited for xDSL (High Speed Asymmetrical Digital Subscriber Line) ap­plications. This circuit is c apable of driving a 10 or 25 load at ±2.5V, 5V, ±6V or +12V power supply. The TS616 is able to reach a -3dB band­width of 40MHz on 25 load with a 12dB gain. This device is designed for high slew rates sup­porting low harmonic distortion and intermodula­tion.
DW
SO8 Exposed-Pad
(Plastic Micro package)
ORDER CODE
Part Number Temperature Range Package
TS616IDW -40, +85°C DW TS616IDWT -40, +85°C DW
DW = Small Outline Package with Exposed-Pad, T = Tape & Real
PIN CONNECTIONS (top view)
Output1
Output1
1
1 2
VCC -
VCC -
2
-
-
+
+
3
3 4
4
Inverting Input1 Output2
Inverting Input1 Output2
Non Inverting Input1
Non Inverting Input1
VCC +
VCC +
8
8 7
7
Inverting Input2
Inverting Input2
6
6
-
-
+
+
Non Inverting Input2
Non Inverting Input2
5
5
APPLICATION
Line driver for xDSL
Multiple Video Line Driver
December 2002
Cross Section View Showing Exposed-Pad
Cross Section View Showing Exposed-Pad
This pad can be connected to a (-Vcc) copper area on the PCB
This pad can be connected to a (-Vcc) copper area on the PCB
1/27
TS616
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
V
T
T
R R P
ESD
only pins 1, 4, 7, 8
ESD
only pins 2, 3, 5, 6
Supply voltage
CC
V
Differential Input Voltage
id
V
Input Voltage Range
in
Operating Free Air Temperature Range -40 to + 85 °C
oper
Storage Temperature -65 to +150 °C
std
T
Maximum Junction Temperature 150 °C
j
Thermal Resistance Junction to Case 16 °C/W
thjc
Thermal Resistance Junction to Ambient Area 60 °C/W
thja
Maximum Power Dissipation (@Ta=25°C) for Tj=150°C 2 W
max.
CDM : Charged Device Model HBM : Human Body Model MM : Machine Model
CDM : Charged Device Model HBM : Human Body Model MM : Machine Model Output Short Circuit
1. All voltage values, except differential voltage are with respect to network terminal.
2. Differential voltage are non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltage must never exceed V
4. An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers.
1)
2)
3)
±7 V ±2 V ±6 V
1.5 2
200
1.5 2
100
4)
+0.3V.
CC
kV kV
V
kV kV
V
OPERATING CONDITIONS
Symbol Parameter Value Unit
V
V
Power Supply Voltage ±2.5 to ±6 V
CC
+1.5V to +VCC-1.5V
Common Mode Input Voltage
icm
-V
CC
TYPICAL APPLICATION:
Differential Line Driver for xDSL Applications
8
8
3
3
2
2
Vi
Vi
Vi
Vi
R1
R1
R4
R4
Vi Vo
Vi Vo
Vi Vo
Vi Vo
4
4
5
5
+
+
+
+
1/2TS615
1/2TS616
1/2TS615
1/2TS616
_
_
_
_
R2
R2
GND
GND
R3
R3
_
_
_
_
1/2TS615
1/2TS616
1/2TS615
1/2TS616
+
+
+
+
4
4
+Vcc
+Vcc
+Vcc
+Vcc
-Vcc
-Vcc
-Vcc
-Vcc
12.5
12.5
12.5
12.5
1
1
1
1
Vo
Vo
Vo
12.5
12.5
12.5
12.5
Vo
25
25
25
25
1:2
1:2
1:2
1:2
100
100
100
100
V
2/27
TS616
ELECTRICAL CHARACTERISTICS
V
= ±6Volts, Rfb=910,T
CC
Note: As described on page 24 (table 71), the TS616 requires a 620Ω feedback resistor for an optimized bandwidth with a gain of 12B for a 12V power supply. Nevertheless, due to production test constraints, the TS616 is tested with the same feedback resistor for 12V and 5V power su ppl i es (910Ω).
Symbol Parameter Test Condition Min. Typ. Max. Unit
DC PERFORMANCE
V
Input Offset Voltage
io
V
Z
C
CMR
SVR
Differential Input Offset Voltage
io
I
Positive Input Bias Current
ib+
I
Negative Input Bias Current
ib-
Input(+) Impedance 82 k
IN+
Z
Input(-) Impedance 54
IN-
Input(+) Capacitance 1 pF
IN+
Common Mode Rejection Ratio 20 log (∆V
/∆Vio)
ic
Supply Voltage Rejection Ratio 20 log (∆V
I
Total Supply Current per Operator No load 13.5 17 mA
CC
/∆Vio)
cc
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTIC
R
Open Loop Transimpedance
OL
-3dB Bandwidth
Full Power Bandwidth
BW
Gain Flatness @ 0.1dB
Tr Rise Time
Tf Fall Time
Ts Settling Time
SR Slew Rate
V
High Level Output Voltage
OH
V
Low Level Output Voltage
OL
Output Sink Current
I
out
Output Source Current
= 25°C (unless otherwise specified)
amb
T
amb
< T
T
min.
T
amb
T
amb
T
min.
T
amb
T
min.
V
ic
T
min.
V
cc
T
min.
V
out
T
min.
< T
amb
= 25°C
< T
< T
amb
< T
< T
amb
= ±4.5V
< T
< T
amb
=±2.5V to ±6V < T
< T
amb
= 7Vp-p, RL = 25
< T
amb.
Small Signal V A
= 12dB, RL = 25
V
Large Signal V
= 12dB, RL = 25
A
V
Small Signal V
= 12dB, RL = 25
A
V
V
= 6Vp-p, AV = 12dB, RL
out
= 25
= 6Vp-p, AV = 12dB, RL
V
out
= 25
= 6Vp-p, AV = 12dB, RL
V
out
= 25
= 6Vp-p, AV = 12dB, RL
V
out
= 25
R
=25Ω Connected to GND
L
R
=25Ω Connected to GND
L
V
= -4Vp
out
< T
T
min.
V
out
T
min.
amb
= +4Vp
< T
amb
< T
< T
< T
max.
max.
max.
max.
max.
max.
<20mVp
out
=3Vp
out
<20mVp
out
max.
max.
1 3.5
1.6
mV
2.5 mV
530
7.2 315
3.1
A
µ
A
µ
58 64
62
72 81
80
5 13.5
5.7
dB
dB
M
25 40
MHz
26
7 MHz
10.6 ns
12.2 ns
50 ns
330 420 V/µs
4.8 5.05 V
-5.3 -5.1 V
-320 -490
-395
330 420
mA
370
3/27
TS616
Note: As described on page 24 (table 71), the TS616 requires a 620Ω feedback resistor for an optimized bandwidth with a gain of 12B for
a 12V power supply. Nevertheless, due to production test constraints, the TS616 is tested with the same feedback resistor for 12V and 5V power su ppl i es (910Ω).
Symbol Parameter Test Condition Min. Typ. Max. Unit
NOISE AND DISTORTION
eN Equivalent Input Noise Voltage F = 100kHz 2.5 nV/√Hz iNp Equivalent Input Noise Current (+) F = 100kHz 15 pA/√Hz iNn Equivalent Input Noise Current (-) F = 100kHz 21 pA/√Hz
= 14Vp-p, AV = 12dB
HD2
HD3
IM2
IM3
2nd Harmonic Distortion (differential configuration)
3rd Harmonic Distortion (differential configuration)
2nd Order Intermodulation Product (differential configuration)
3rd Order Intermodulation Produ ct (differential configuration)
V
out
F= 110kHz, R
= 14Vp-p, AV = 12dB
V
out
F= 110kHz, R
= 50Ω diff.
L
= 50Ω diff.
L
F1= 100kHz, F2 = 110kHz
= 16Vp-p, AV = 12dB
V
out
= 50Ω diff.
R
L
F1= 370kHz, F2 = 400kHz
= 16Vp-p, AV = 12dB
V
out
R
= 50Ω diff.
L
F1 = 100kHz, F2 = 110kHz
= 16Vp-p, AV = 12dB
V
out
= 50Ω diff.
R
L
F1 = 370kHz, F2 = 400kHz
= 16Vp-p, AV = 12dB
V
out
= 50Ω diff.
R
L
-87 dBc
-83 dBc
-76 dBc
-75
-88 dBc
-87
4/27
TS616
ELECTRICAL CHARACTERISTICS
V
= ±2.5Volts, Rfb=910,T
CC
Symbol Parameter Test Condition Min. Typ. Max. Unit
DC PERFORMANCE
V
Input Offset Voltage
io
V
Z
C
CMR
SVR
Differential Input Offset Voltage
io
I
Positive Input Bias Current
ib+
I
Negative Input Bias Current
ib-
Input(+) Impedance 71 k
IN+
Z
Input(-) Impedance 62
IN-
Input(+) Capacitance 1.5 pF
IN+
Common Mode Rejection Ratio 20 log (∆V
/∆Vio)
ic
Supply Voltage Rejection Ratio 20 log (∆V
I
Total Supply Current per Operator No load 11.5 15 mA
CC
/∆Vio)
cc
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS
R
Open Loop Transimpedance
OL
-3dB Bandwidth
BW
Full Power Bandwidth
Gain Flatness @ 0.1dB
Tr Rise Time
Tf Fall Time
Ts Settling Time
SR Slew Rate
V
High Level Output Voltage
OH
V
Low Level Output Voltage
OL
Output Sink Current
I
out
Output Source Current
= 25°C (unless otherwise specified)
amb
T
amb
< T
T
min.
T
amb
T
amb
T
min.
T
amb
T
min.
V
ic
T
min.
V
cc
T
min.
V
out
T
min.
< T
amb
= 25°C
< T
< T
amb
< T
< T
amb
= ±1V
< T
< T
amb.
=±2V to ±2.5V < T
< T
amb.
= 2Vp-p, RL = 10
< T
< T
amb.
Small Signal V
= 12dB, RL = 10
A
V
Large Signal V
= 12dB, RL = 10
A
V
Small Signal V A
= 12dB, RL = 10
V
V
= 2.8Vp-p, AV = 12dB
out
= 10
R
L
V
= 2.8Vp-p, AV = 12dB
out
= 10
R
L
= 2.2Vp-p, AV = 12dB
V
out
= 10
R
L
= 2.2Vp-p, AV = 12dB
V
out
R
= 10
L
R
=10Ω Connected to GND
L
R
=10Ω Connected to GND
L
= -1.25Vp
V
out
< T
T
min.
V
out
T
min.
< T
amb
= +1.25Vp
< T
< T
amb
max.
max.
max.
max.
max.
max.
<20mVp
out
= 1.4Vp
out
<20mVp
out
max.
max.
0.2 2.5
1
2.5 mV 430 7
1.1 11
1.2
55 61
60
63 79
78
24.2
1.5
20 28
MHz
20
5.7 MHz
11 ns
11.5 ns
39 ns
100 130 V/µs
1.5 1.7 V
-1.9 -1.7 V
-300 -400
-360
200 270
240
mV
A
µ
A
µ
dB
dB
M
mA
5/27
TS616
Symbol Parameter Test Condition Min. Typ. Max. Unit
NOISE AND DISTORTION
eN Equivalent Input Noise Voltage F = 100kHz 2.5 nV/√Hz iNp Equivalent Input Noise Current (+) F = 100kHz 15 pA/√Hz iNn Equivalent Input Noise Current (-) F = 100kHz 21 pA/√Hz
= 6Vp-p, AV = 12dB
HD2
HD3
IM2
IM3
2nd Harmonic Distortion (differential configuration)
3rd Harmonic Distortion (differential configuration)
2nd Order Intermodulation Product (differential configuration)
3rd Order Intermodulation Produ ct (differential configuration)
V
out
F= 110kHz, R
= 6Vp-p, AV = 12dB
V
out
F= 110kHz, R
= 20Ω diff.
L
= 20Ω diff.
L
F1= 100kHz, F2 = 110kHz
= 6Vp-p, AV = 12dB
V
out
R
= 20Ω diff.
L
F1= 370kHz, F2 = 400kHz V
= 6Vp-p, AV = 12dB
out
= 20Ω diff.
R
L
F1 = 100kHz, F2 = 110kHz
= 6Vp-p, AV = 12dB
V
out
= 20Ω diff.
R
L
F1 = 370kHz, F2 = 400kHz V
= 6Vp-p, AV = 12dB
out
R
= 20Ω diff.
L
-97 dBc
-98 dBc
-86
-88
-90
-85
dBc
dBc
6/27
TS616
Figure 1: Load Configuration
Load: RL=25Ω, VCC=±6V
+6V
TS616
TS616
+6V
-6V
-6V
+
+
_
_
25
25
50
50
cable
49.9
49.9
33
33 1W
1W
cable
Figure 2: Closed Loop Gain vs. Frequency
AV=+1
2
0
-2
-4
-6
-8
(gain (dB)
-10
-12
-14
(Vcc=±2.5V, Rfb=1.1k, Rload=10) (Vcc=±6V, Rfb=750
-16 100 1k 10k 100k 1M 10M 100M
gain
phase
, Rload=25Ω)
Frequency (Hz)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±2.5V)
(Vcc=±6V)
50
50
40
20
0
-20
-40
-60
-80
-100
-120
Figure 4: Load Configuration
Load: RL=10Ω, VCC=±2.5V
+2.5V
TS616
TS616
+2.5V
-2.5V
-2.5V
10
10
+
+
_
_
11
11
0.5W
0.5W
49.9
49.9
Figure 5: Closed Loop Gain vs. Frequency
AV=-1
2
0
-2
)
°
Phase (
-4
-6
-8
(gain (dB))
-10
-12
-14
(Vcc=±2.5V, Rfb=1k, Rin=1k, Rload=10) (Vcc=±6V, Rfb=680
-16 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
, Rin=680, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
50
50
cable
cable
(Vcc=±6V)
50
50
-140
-160
-180
-200
-220
-240
-260
-280
-300
)
°
Phase (
Figure 3: Closed Loop Gain vs. Frequency
AV=+2
8
6
4
2
0
-2
(gain (dB))
-4
-6
(Vcc=±2.5V, Rfb=1k, Rload=10)
-8
(Vcc=±6V, Rfb=680
-10 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
, Rload=25Ω)
Frequency (Hz)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc=±6V)
40
20
0
-20
-40
-60
-80
-100
-120
Figure 6: Closed Loop Gain vs. Frequency
AV=-2
8
6
4
)
°
Phase (
2
0
-2
(gain (dB))
-4
-6
(Vcc=±2.5V, Rfb=1k, Rin=510, Rload=10)
-8
(Vcc=±6V, Rfb=680
-10 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
, Rin=750//620, Rload=25Ω)
Frequen c y (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
(Vcc=±6V)
-140
-160
-180
-200
-220
-240
-260
-280
-300
)
°
Phase (
7/27
TS616
Figure 7: Closed Loop Gain vs. Frequency
AV=+4
14
12
10
8
6
4
(gain (dB))
2
0
-2
(Vcc=±2.5V, Rfb=910, Rg=300, Rload=10) (Vcc=±6V, Rfb=620
-4 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, R g =560//330Ω, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
Figure 8: Closed Loop Gain vs. Frequency
AV=+8
20
18
16
14
12
10
(gain (dB))
8
6
4
(Vcc=±2.5V, Rfb=680, Rg=240//160, Rload=10) (Vcc=±6V, Rfb=510
2
100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, Rg=270//100, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
40
20
0
-20
-40
-60
-80
-100
-120
40
20
0
-20
-40
-60
-80
-100
-120
)
°
Phase (
Figure 10: Closed Loop Gain vs. Frequency
AV=-4
14
12
10
8
)
°
Phase (
6
4
(gain (dB))
2
0
(Vcc=±2.5V, Rfb=1k, Rin=320//360, Rload=10)
-2
(Vcc=±6V, Rfb=620
-4 100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc=±2.5V)
(Vcc=±6V)
, Rin=360//270, Rload=25Ω)
Frequency (Hz)
Figure 11: Closed Loop Gain vs. Frequency
AV=-8
20
18
16
14
12
10
(gain (dB))
8
6
4
(Vcc=±2.5V, Rfb=680, Rin=160//180, Rload=10) (Vcc=±6V, Rfb=510
2
100 1k 10k 100k 1M 10M 100M
gain
phase
(Vcc= ± 2. 5V)
(Vcc=±6V)
, Rin=150//110, Rload=25Ω)
Frequency (Hz)
(Vcc=±2.5V)
(Vcc=±6V)
(Vcc=±2.5V)
(Vcc= ± 6V )
-140
-160
-180
-200
-220
-240
-260
-280
-300
-140
-160
-180
-200
-220
-240
-260
-280
-300
)
°
Phase (
)
°
Phase (
Figure 9: Bandwidth vs. Temperature
AV=+4, Rfb=910
50
45
40
35
Bw (MHz)
30
25
20
-40-200 20406080
8/27
Vcc=±6V Load=25
Vcc=±2.5V Load=10
Temperature (°C)
Figure 12: Positive Slew Rate
AV=+4, Rfb=620
4
2
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
=±6V, RL=25
CC
Time (s)
TS616
Figure 13: Positive Slew Rate
AV=+4, Rfb=910
2
1
(V)
0
OUT
V
-1
-2
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
CC
=±2.5V, RL=10
Time (s)
Figure 14: Negative Slew Rate
AV=+4, Rfb=620Ω, VCC=±6V, RL=25
4
2
Figure 16: Positive Slew Rate
AV= - 4, Rfb=620
4
2
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
=±6V, RL=25
CC
Time (s)
Figure 17: Positive Slew Rate
AV= - 4, Rfb=910
2
1
, V
CC
=±2.5V, RL=10
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
Time (s)
Figure 15: Negative Slew Rate
AV=+4, Rfb=910
2
1
(V)
0
OUT
V
-1
-2
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
, V
CC
=±2.5V, RL=10
Time (s)
(V)
0
OUT
V
-1
-2
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
Time (s)
Figure 18: Negative Slew Rate
AV= - 4, Rfb=620Ω, VCC=±6V, RL=25
4
2
(V)
0
OUT
V
-2
-4
0.0 10.0n 20.0n 30.0n 40.0n 50.0n
Time (s)
9/27
Loading...
+ 18 hidden pages