Datasheet TDA1910 Datasheet (SGS Thomson Microelectronics)

10W AUDIO AMPLIFIERWITHMUTING
DESCRIPTION
The TDA 1910 is a monolithicintegratedcircuit in MULTIWATTpackage, intended for use in Hi-Fi audiopowerapplications,as high quality TV sets.
The TDA 1910 meets the DIN 45500 (d = 0.5%) guaranteed output power of 10W when used at 24V/4W.At 24V/8Wthe output power is 7W min. Features:
– muting facility – protection against chip overtemperature – very low noise – high supplyvoltage rejection – low ”switch-on”noise. The TDA 1910 is assembled in MULTIWATT
packagethat offers: – easy assembly – simple heatsink
Multiwatt 11
ORDERING NUMBERS
TDA1910 (Multiwatt11Vertical)
TDA1910HS (Multiwatt11 Horizontal)
– space and cost saving – high reliability
TDA1910
:
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
V
I
o
I
o
V V
V
11
P
tot
T
stg,Tj
Supply voltage 30 V
s
Output peak current (non repetitive) 3.5 A Output peak current (repetitive) 3.0 A Input voltage 0 to + V
i
Differential input voltage
i
Muting thresold voltage V Power dissipation at T Storage and junction temperature -40 to 150
=90°C20W
case
7V
±
s
s
TESTCIRCUIT
V
V
C
°
May 1997
(*)Seefig. 13.
1/14
TDA1910
PIN CONNECTION
(Topview)
SCHEMATICDIAGRAM
2/14
TEST CIRCUIT
(*) See fig. 13.
TDA1910
MUTINGCIRCUIT
3/14
TDA1910
THERMALDATA
Symbol Parameter Value Unit
R
th j-case
Thermal resistance junction-case max 3
C/W
°
ELECTRICALCHARACTERISTICS(Refer tothetestcircuit, T
=25°C,Rth(heatsink)=4°C/W,unless
amb
otherwisespecified)
Symbol Parameter Test condition Min. Typ. Max. Unit
V
V V
CE sat
P
Supply voltage 8 30 V
s
Quiescent output voltage Vs= 18V
o
I
Quiescent drain current Vs= 18V
d
V
V
= 24V
s
= 24V
s
8.3
11.5
9.2
12.41013.4 19
21
Output stage saturation voltage IC=2A 1
I
= 3A 1.6
C
Output power d = 0.5%
o
V
s
V
s
V
s
d = 10% V
s
V
s
V
s
Harmonic distortion f = 40 to 15,000 Hz
d
Vs= 18V RL=4
V
s
V
s
= 18V = 24V = 24V
= 18V = 24V = 24V
= 24V RL=4
= 24V RL=8
f = 40 to 15,000Hz
=4
R
L
=4
R
L
=8
R
L
f = 1 KHz
=4
R
L
=4
R
L
=8
R
L
= 50 mW to 6.5W
P
o
= 50 mW to 10W
P
o
=50mWto 7W
P
o
6.5 10
7
8.5 15
9
7
12
7.5
9.5 17 10
0.2
0.2
0.2
32 35
0.5
0.5
0.5
V
mA
V
W
%
d Intermodulation distortion V
V
Input sensitivity
i
V
Input saturation voltage (rms) Vs= 18V
i
R
Input resistance (pin 5) f = 1 KHz 60 100 K
i
I
Drain current Vs= 24V f = 1 KHz
d
4/14
= 24V RL=4ΩPo= 10W
s
f
= 250 Hz f2 = 8 KHz
1
(DIN 45500)
F = 1 KHz, V
= 18V
s
v
= 24V
s
V
= 24V
s
V
= 24V
s
R RL = 8 P
R
L
R
L
R
L
=4 Po= 12W
L
=4
=4 =8
P P P
o
=7W
o
=12 W
o
= 7.5W
o
= 7.5W
1.8
2.4
0.2 %
170 220
mV
245
820
mA
475
V
TDA1910
ELECTRICALCHARACTERISTICS(continued)
Symbol Parameter Test condition Min. Typ. Max. Unit
h Efficiency V
BW Small signal bandwidth V BW Power bandwidth V
G G
e
Voltagegain (open loop) f = 1 KHz 75 dB
v
Voltagegain (closed loop) Vs= 24V
v
Totalinput noise Rg=50
N
S/N Signal to noiseratio
SVR Supply voltage rejection V
= 24V f = 1 KHz
s
R
=4
L
=8
R
L
= 24V RL=4ΩPo= 1W 10 to 120,000 Hz
s
P
= 24V
s
= 12W
o
R d≤5%
RL=4
f = 1 KHz
Po = 1W
L
=4
Po= 12W
Po= 7.5W
29.5 30 30.5 dB
=1KΩ(°)
R
g
= 10K
R R
R R
V P R
= 24V
s
= 12W
o
=4
L
R R
R R
= 24V RL = 4
s
= 100 Hz Rg = 10 K
f
ripple
g
=50
g
=1KΩ(°°)
g
= 10K
g
= 10K
g
=0 (°)97
g
= 10K
g
=0 (°°)93
g
50 60 dB
62 65
40 to 15,000 Hz
1.2
1.3
1.5
2.0
2.0
2.2
3.0
3.2
4.0
5.0
5.2
6.0
103 105
100 100
%
µ
µ
dB
dB
V
V
T
Thermal sjut-down case (*)
sd
temperature
MUTINGFUNCTION (Refer to Muting circuit)
V
V
R
R
A
Note :
(°) Weightingfilter = curve A. (°
°) Filter with noise bandwidth:22 Hz to22 KHz.
(*) See fig. 29 and fig. 30.
Muting-offthreshold voltage
T
(pin 11)
Muting-on threshold voltage
T
(pin 11)
Input resistance (pin 1) Muting off 80 200 K
1
Input resistance (pin 11) 150 K
11
Muting attenuation Rg+R1=10K 50 60 dB
T
P
= 8W 110 125 °C
tot
1.9 4.7 V
0 1.3 6V
s
Muting on 10 30
V
5/14
TDA1910
Figure 1. Quiescent output voltage vs.supply voltage
Figure 4. Output power vs. supplyvoltage
Figure 2. Quiescent drain currentvs. supply voltage
Figure 5. Output power vs. supply voltage
Figure 3. Open loop fre­quencyresponse
Fi gure 6. Di storti on vs. output power
Fi gure 7. Di storti on vs. output power
6/14
Figure 8. Output power vs. frequency
Figure 9. Output power vs. frequency
TDA1910
Figure 10. Output power vs. input voltage
Figure 13. Values of capaci­tor C and gain (G
vs. bandwidth (BW)
X
)
V
Figure 11. Output power vs. inputvoltage
Figure 14. Supply voltage rejectionvs. voltagegain
Figure 12. Total input noise vs. source resistance
Figure 15. Supply voltage rejection vs. source resistance
Figure 16. Power dissipa­tionand efficiencyvs.output power
Figure 17. Power dissipa­tionandefficiencyvs. output power
Figure 18. Max power dissipation v s. supply voltage
7/14
TDA1910
APPLICATIONINFORMATION
Figure19. Applicationcircuitwithout muting
Figure 20. PC boardand component lay-outof the circuitof fig. 19 (1:1 scale)
Figure21. Applicationcircuitwith muting
8/14
Performance(circuitsof fig. 19 and 21)
=12W(40 to 15000Hz, d 0.5%)
P
o
= 24V
V
s
I
= 0.82A
d
G
=30dB
v
APPLICATIONINFORMATION(continued)
TDA1910
Figure22. TwopositionDC tonecontrol(10 dBboost 50Hz and 20 KHz) using change of pin 1 resistance(muting function)
Figure24. 10dB 50 Hz boos tonecontrolusing change of pin1 resistance(muting function)
Figure 23. Frequenc y re­sponse of the circuit of fig.22
Figure 25. Frequenc y re­sponse of the circuit of fig.24
Figure26. Squelchfunction in TV applications Figure 27. Delayed muting circuit
9/14
TDA1910
MUTINGFUNCTION
The output signal can be inhibitedapplying a DCvoltage V
Figure28
to pin 11,as shownin fig.28
T
The input resistanceat pin 1 dependson thethresholdvoltage V
= 200 K
R
1
R1 = 10
@ 1.9V≤V
@
0V V
6V VT≤ V
4.7V muting-off
T
1.3V
T
s
muting-on
at pin 11and is typically.
T
Referringtothefollowinginputstage, thepossibleattenuationof theinputsignalandthereforeoftheoutput signalcan be found using the following expression.
R
⁄⁄
R
⁄⁄
5
1
R
1
Considering Rg = 10 KΩ the attenuation in the muting-on condition is typicallyA
= 60 dB. In the
T
muting-off condition, the attenuation is very low, typically 1.2dB.
Avery low current is necessaryto drivethe thresh­old voltageV
becausethe input resistance at pin
T
11is greaterthan150 K. Themutingfunction can beusedinmanycases,whenatemporaryinhibition
V
R
=
100
+
g
R
5
K
=
A
T
V
where R5
i
5
- during commutationsat the input stages.
- during the receivertuning. The variable impedance capabilityat pin 1 can be
useful in many applications and we haveshown 2 examplesin fig.22 and 24,where it hasbeen used tochangethe feedbacknetwork,obtaining2 differ­ent frequencyresponses.
of the output signal is requested,for example:
- in switch-on condition, to avoid preamplifier power-on transients(see fig. 27)
10/14
TDA1910
APPLICATIONSUGGESTION
The recommended values of the components are those shown on applicationcircuit of fig. 21. Different valuescan be used. The followingtablecan helpthe designer.
Component
R
g+R1
R
2
R
3
R
4
P
1
C
1
C
2
C
3
C
4
C
5
Raccom.
value
10K
Purpose
Input signal imped. for muting operation
3.3K Close loop gain setting.
100
Close loop gain
setting.
1
20K
Frequency stability Danger of oscillation
Volume
potentiometer.
1 µF
Input DC decoupling. Higher low frequency
1µF
0.22µF
2.2µF Inverting input DC decoupling.
0.1µF Supply voltage bypass.
Larger than
recommended value
Increase of the atte­nuation in muting-on condition. Decrease
Smaller than
recommended value
Decrease of the attenuation in muting on condition.
Allowed range Min. Max.
of the inputsensitivity. Increase of gain. Decrease of gain.
Increase quiescent
9R
3
current.
Decrease of gain. Increase of gain. R2/9
at high frequencies with inductive loads.
Increase of the switch-on noise.
Decrease of the input impedance and of the
10K
100K
input level.
cutoff.
Increase of the switch-on noise.
Higher low frequency cutoff.
0.1µF
Danger of oscillations.
C
6
10µF Ripple rejection. Increase of SVR.
Increase of the
Degradation of SVR
2.2µF 100µF
switch-on time
C
7
47µF Bootstrap. Increase of the distor-
10µF 100µF
tion at low frequency.
C
8
C
9
0.22µF Frequency stability. Danger of oscillation.
2200µF
(R
=4Ω)
L
Output DC decoupling.
Higher low frequency cutoff.
1000µF
=8Ω)
(R
L
11/14
TDA1910
THERMALSHUT-DOWN
The presence ofa thermallimiting circuit offersthe followingadvantages:
1) An overload on the output (even if it is perma­nent), or an above limit ambient temperature can be easily supportedsince the T
cannotbe
j
higher than 150°C.
2) The heatskink can have a smaller factor of safety compared with that of a conventional
Figure 29. Output power and drai n curre nt vs. case temperature
Figure 30. Output power and drai n curre nt vs. case temperature
circuit.Thereis no possibilityof devicedamage due to high junction temperature. If for any reason, the junction temperature in­creases up to 150°C, the thermal shut-down simply reduces the power dissipation and the currentconsumption.
The maximum allowable power dissipation de­pendsupon thesizeof theexternalheatsink(i.e.its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for differentthermalresistance.
Figure31.Maximumallowable powerdissipation vs. ambient temperature
MOUNTINGINSTRUCTIONS
The power dissipated in the circuit must be re­movedby addingan externalheatsink. Thanks to the Multiwattpackage attaching the heatsinkis verysimple, ascrewor a compression
12/14
spring(clip) beingsufficient.Between theheatsink andthepackageitisbettertoinsertalayerofsilicon grease,to optimizethe thermalcontact;no electri­cal isolationis neededbetweenthe two surfaces.
MULTIWATT 11VERTICAL PACKAGE MECHANICAL DATA
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197 B 2.65 0.104 C 1.6 0.063 D 1 0.039 E 0.49 0.55 0.019 0.022 F 0.88 0.95 0.035 0.037
G 1.57 1.7 1.83 0.062 0.067 0.072 G1 16.87 17 17.13 0.664 0.669 0.674 H1 19.6 0.772 H2 20.2 0.795
L 21.5 22.3 0.846 0.878
L1 21.4 22.2 0.843 0.874 L2 17.4 18.1 0.685 0.713 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L7 2.65 2.9 0.104 0.114
M 4.1 4.3 4.5 0.161 0.169 0.177
M1 4.88 5.08 5.3 0.192 0.200 0.209
S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
mm inch
TDA1910
13/14
TDA1910
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor forany infringementof patents orother rights of third partieswhich may result from its use. No license is granted by implicationor otherwiseunder any patentor patentrights of SGS-THOMSON Microelectronics. Specificationmentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSONMicroelectronics products arenot authorizedfor use as criticalcomponents in lifesupport devicesor systems withoutexpress written approval of SGS-THOMSONMicroelectronics.
1997 SGS-THOMSON Microelectronics – Printedin Italy– All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil- Canada- China - France - Germany- Hong Kong - Italy- Japan - Korea - Malaysia- Malta - Morocco - TheNetherlands -
Singapore - Spain - Sweden - Switzerland- Taiwan- Thailand - United Kingdom - U.S.A.
14/14
Loading...