SGS Thomson Microelectronics M41T81 Datasheet

SERIAL ACCESS RTC WITH ALARMS

FEATURES SUMMARY

2.0 TO 5.5V CLOCK OPERATING VOLT A GE
COUNTERS FOR TENTHS/HUNDREDTHS
OF SECONDS, SECONDS, MINUTES, HOURS, DAY, DATE , MONTH, YEAR, and CENTURY
AUTOMATIC SWITCH-OVER and DESELECT
CIRCUITRY
SERIAL INTERFAC E SU PPO R TS I
(400KHz PROTOCOL)
PROGRAMMABLE ALAR M and INTERRUPT
FUNCTION (valid even during Battery Back-up Mode)
WATCHDOG T IM E R
LOW OPERATING CURRENT OF 400µA
BATTERY BACK-UP NOT RECOMMENDED
FOR 3.0V APPLICAT IO N S (C APAC ITOR BACK-UP ONLY)
BATTERY OR SUPER-CAP BACK-UP
OPERATING TEMPERATURE OF –40 TO
85°C
ULTRA-LOW BATTERY SU PPL Y C URRENT
OF 1µA
PACKAGE OPTI ONS INCLUDE A 28-LEAD o r
18-LEAD EMBE DDE D CRYSTAL SOIC
2
C BUS
M41T81

Figure 1. 8-pi n S OI C Package

8
1
SO8 (M)

Figure 2. 28-pin (300mil) SOIC Package*

EMBEDDED Crystal
SOX28 (MX)

Figure 3. 18-pin (300mil) SOIC Package*

EMBEDDED Crystal
18
1
SOX18 (MY)
Rev. 2.0
1/28September 2003
M41T81

TABLE OF CONTENTS

SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 5. 8-pin SOIC (M) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 7. 28-pin, 300mil SOIC (MX) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 6. 18-pin, 300mil SOIC (MY) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 8. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 9. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Crystal Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2-Wire Bus Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 10. Serial Bus Data Transfer Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 11. Acknowledgement Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 12. Bus Timing Requirements Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 7. AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 13. Slave Address Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 14. READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 15. Alternative READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 16. WRITE Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 17. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
TIMEKEEPER® Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Table 10. TIMEKEEPER® Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Setting Alarm Clock Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Figure 18. Alarm Interrupt Reset Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/28
M41T81
Figure 19. Back-up Mode Alarm Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Alarm Repeat Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Square Wave Outp ut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 12. Square Wave Output Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Century Bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Output Driver Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Preferred Initial Power-on Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 13. Preferred Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 20. Crystal Accuracy Across Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 21. Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3/28
M41T81

SUMMARY DESCRIPTION

The M41T81 Serial Access TIMEKEEPER SRAM is a low power Serial RTC with a b uilt-in
32.768 KHz oscillator (external crystal controlled). Eight bytes of the SRA M (see Table 10, page 16) are used for the c lock/calendar function and are configured in binary coded decimal (BCD) form at. An additional 12 bytes of SRAM provide status/ control of Alarm, Watchdog and Square Wave functions. Addresses and data are transferred se­rially via a two line, bi-directional I
2
C in ter fac e. The built-in address register is incremented automati­cally after each WRITE or READ data byte.
The M41T81 has a built-in power sense circuit which detects power failures and automatically switches to the battery supply when a power f ail­ure occurs. The energy needed to sustain the SRAM and clock operations can be supplied by a

Figure 4. Logic Diagram

V
V
BAT
CC
(1)
XI
(1)
XO
SCL
SDA
M41T81
IRQ/FT/OUT/SQW
®
small lithium button supply when a po wer failure occurs. Functions avai lable to the user include a non-volatile, time-of-day clock/calendar, Alarm in­terrupts, Watchdog Timer and programmable Square Wave output. The eight clock address lo­cations contain the century, year, month, date, day, hour, minute, second and tenths/hundredths of a second in 24 hour BCD format. Corrections for 28, 29 (leap year - valid until year 2100), 30 and 31 day months are made automatically.
The M41T81 is supplied in either an 8-pin SOIC or an 18-pin (MY) or 28-pin (MX), 300mil SOIC pack­age which includes an embedded 32kHz crystal.
The 8-pin and 28-pin, embedd ed c rystal SOI C re­quires only a user-supplied battery to provide non­volatile operation.

Table 1. Signal Names

(1)
XI
(1)
XO
IRQ
/OUT/
FT/SQW
SDA Serial Data Input/Output SCL Serial Clock Input
V
BAT
Oscillator Input
Oscillator Output Interrupt / Output Driver / Frequency
Test / Square Wave (Open Drain)
Battery Supply Voltage
V
SS
Note: 1. For SO8 package only.
4/28
AI04613
V
CC
V
SS
Note: 1. For SO8 package only.
Supply Voltage Ground
M41T81

Figure 5. 8-pin SOIC (M) Connections

1
XI
2
XO
V
BAT
V
SS
M41T81
3 45
8
V
CC
7
IRQ/FT/OUT/SQW
6
SCL SDA
AI04769

Figure 6. 18-pin, 300mil SOIC (MY) Connections

1
NC
2
NC
3
NC
4
NC
5
NC
6
NC
7
NC
V
BAT
V
SS
8 9
M41T81
18
NC
17
NC
16
NC
15
V
14
NC
13
IRQ/FT/OUT/SQW
12
NC
11
SCL
10
SDA
CC
AI07830

Figure 8. Block Diagram

Figure 7. 28-pin, 300mil SOIC (MX) Connections

1
NC
2
NC
3
NC
4
NC
5
NC
6
NC
7
NC NC NC NC NC
8 9 10 11
M41T81
12
V
V
Note: 1. No Connect (NC) pin for 28-pin SOIC, but should be con-
13
BAT
14
SS
sidered t o have indicat ed function i n anticipation of re­placement with 18-pin S O I C.
28
V
27
NC
26
IRQ/FT/OUT/SQW
25
NC
V
24 23
NC
22
SCL
21
NC
20
V
19
NC
18
IRQ/FT/OUT/SQW
17
SDANC
16
SCL
15
SDA
CC
CC
SS
(1)
(1)
(1)
(1)
AI07805
CRYSTAL
SDA
SCL
V
CC
V
BAT
Note 1. Open drain output Note 2. VSO = V
– 0.5V (typ)
BAT
V
SO
OSCILLATOR
INTERFACE
(2)
COMPARE
32KHz
I2C
PROTECT
WRITE
REAL TIME CLOCK
CALENDAR
RTC W/ALARM
& CALIBRATION
WATCHDOG
SQUARE WAVE
INTERNAL
AFE
WDF
SQWE
POWER
IRQ/FT/OUT/SQW
AI04616
(1)
5/28
M41T81

MAXIMUM RATI N G

Stressing the device ab ove the rating listed in t he “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the dev ice at these or any other conditions above those indicat­ed in the Operating sections of this specification is

Table 2. Absolute Maximum Ratings

Sym Parameter Value Unit
T
STG
V
T
SLD
V
P
Note: 1. Reflow at peak temp erature of 2 15°C to 225°C for < 60 s econds (to tal therma l budget not to exceed 180° C for betw een 90 to 12 0
Storage Temperature (VCC Off, Oscillator Off) Supply Voltage
CC
(1)
Lead Solder Temperature for 10 Seconds 260 °C Input or Output Voltages –0.3 to Vcc+0.3 V
IO
I
Output Current 20 mA
O
Power Dissipation 1 W
D
secon ds).
CAUTION: Negative under shoots below –0.3 volts ar e not allowed on any pin while i n the Batter y B ack-Up Mode
not implied. Exposure to Absol ute Maxim um Ra t­ing conditions for extended periods may affect de­vice reliability. Refer also to the STMicroelectronics SURE Program and other rel­evant quality documents.
SOIC –55 to 125
–0.3 to 7
°C
V
6/28

DC AND AC PARAMETERS

This section summarizes the operat ing and mea­surement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the M easure-

Table 3. Operating and AC Measurement Conditions

Parameter M41T81
M41T81
ment Conditions listed in the rel evant tables. De­signers should check that the operating conditions in their projects match the measurement condi­tions when using the quoted parameters.
Supply Voltage (V Ambient Operating Temperature (T Load Capacitance (C
CC
)
)
A
)
L
2.0 to 5.5V
–40 to 85°C
100pF Input Rise and Fall Times 50ns Input Pulse Voltages Input and Output Timing Ref. Voltages
Note: Out put Hi-Z is def i ned as the poi nt where dat a i s no longer dri ven.
0.2VCC to 0.8 V
0.3V
to 0.7 V
CC

Figure 9. AC Measurement I/O Waveform

0.8V
0.2V
CC
CC
0.7V
0.3V
AI02568
CC
CC
CC
CC

Table 4. Capacitance

Symbol
C
IN
(3)
C
OUT
t
LP
Note: 1. Effective capacitance measured with power supply at 5V; sam p l ed only, not 100% tested.
2. At 25°C, f = 1MHz.
3. Outputs deselect ed.
Input Capacitance 7 pF Output Capacitance 10 pF Low-pass filter input time constant (SDA and SCL) 50 ns
Parameter
(1,2)
Min Max Unit
7/28
M41T81

Table 5. DC Characteristics

IN
V
V
CC
(1)
CC
CC
– 0.3V
= 3V
BAT
Min Typ Max Unit
0.7V
CC
(3)
2.5
0.6 1 µA
Sym Parameter
I
Input Leakage Current
LI
I
Output Leakage Current
LO
I I
Supply Current Switch Freq = 400kHz 400 µA
CC1
Supply Current (standby)
CC2
V
Input Low Voltage –0.3
IL
V
Input High Voltage
IH
Output Low Voltage
V
OL
Output Low Voltage (Open Drain)
(2)
V
BAT
I
Note: 1. Valid for Ambient Operating T em perature: TA = –40 to 85°C ; VCC = 2.0 to 5. 5V (except wh ere noted ) .
Battery Supply Voltage
Battery Supply Current
BAT
2. STMic roelectronics recommends the RAYOVAC BR 1225 or BR16 32 (or equiva l ent) as the battery supply.
3. After s wi tchover (V
4. For re chargeabl e back-up, V
5. For IRQ
/FT/OUT/SQW pin (Open Drain)
SO
), V
(min) can be 2.0V for crystal with RS = 40K.
BAT
(max) may be considered VCC.
BAT
(5)
Test Condition
0V V
0V V
OUT
SCL,SDA = V
I
= 3.0mA 0.4
OL
IOL = 10mA
T
= 25°C, VCC = 0V
A
Oscillator ON, V
3
±1 µA ±1 µA
100 µA
0.3V
CC
VCC + 0.3
0.4 V
(4)
3.5
V V V
V

Table 6. Crystal Electrical Characteristics

Sym
f
O
R
S
C
L
Note: 1. External ly supp lied if usin g th e SO8 pa ckag e. S TMic roe lectr onic s re com mend s th e KD S D T-38 : 1T A/1T C252 E127 , Tuni ng F ork
2. Load capacitors are in te grated within the M41T81. Circuit board layout considerations for the 32.768 kHz cryst al of m i ni m um trace
Resonant Frequency 32.768 kHz Series Resistance Load Capacitance 12.5 pF
Type (thru-hole) or the DMX-26S: 1TJS125FH2A212, (SMD) quartz crystal for industrial temperature operations. KDS can be con­tacted at kouhou@kds j .c o. j p or http:// www.kdsj.c o.jp for further inform ation on this cr ystal type.
lengths an d i solation from RF genera ting signals should be taken into acco unt.
Parameter
(1,2,3)
Min Typ Max Units
60
k
8/28

OPERATION

The M41T81 clock operates as a slave device on the serial bus. Access is obtained by implementing a start condition followed by the correct slave ad­dress (D0h). The 20 bytes contained in the device can then be accessed sequentially in the following order:
1. Tenths/Hundredths of a Second Register
2. Seconds Register
3. Minutes Register
4. Century/Hours Register
5. Day Register
6. Date Register
7. Month Register
8. Year Register
9. Control Register
10. Watchdog Register 11 - 16. Alarm Registers 17 - 19. Reserved
20. Square Wave Register The M41T81 clock continually monitors V
out-of-tolerance condition. Should V V
, the device terminates an ac ces s in progress
SO
CC
for an
CC
fall be low
and resets the device add ress counter. Inputs to the device will not be recognized at this time to prevent erroneous data from being written to the device fro m a an ou t-o f-tolerance syste m. The de­vice also automatically switches over to the battery and powers down into an ultra low current mode of operation to conserve battery life. As system pow­er returns and V
rises above VSO, the battery is
CC
disconnected, and the power supply is switched to external V
CC
.
For more information on Battery Storage Life refer to Application Note AN1012.

2-Wire Bus Characteristics

The bus is intended for communication between different ICs. It consists of two lines: a bi-direction­al data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must be connected to a positive supply voltage via a pull-up resistor.
The following protocol has been defined: – Data transfer may be initiated only when the bus
is not busy.
– During data trans fer, the dat a line mus t remain
stable whenever the clock line is High.
M41T81
– Changes in the data line, while the clock line is
High, will be interpreted as control signals.
Accordingly, the following bus conditions have been defined:
Bus not busy. Both data and clock lines remain High.
Start data transfer. A c hange in the st ate of the data line, from high to Low, while the clock is High, defines the START condition.
Stop data transfer. A change in the state of the data line, from Low to High, while the clock is High, defines the STOP condition.
Data Valid. The state of the data line represents valid data when after a start condition, the data line is stable for the duration of the high period of the clock signal. The data on the line may be changed during the Low period of the clock signal. There is one clock pulse per bit of data.
Each data transfer is initiated with a start condition and terminated with a stop condition. The number of data bytes transferred between the start and stop conditions is not limited. The information is transmitted byte-wide and each receiver acknowl­edges with a ninth bit.
By definition a device that gives out a message is called “transmitter,” the receiving device that gets the message is called “receiver.” The device that controls the message is called “master.” The de­vices that are controlled by the master are cal led “slaves.”
Acknowledge. Each byte of eight bits is followed by one Acknowledge Bit. This Acknowledge Bit is a low level put on the bus by the receiver whereas the master generates an extra acknowledge relat­ed clock pulse. A slave receiver which is ad­dressed is obliged to generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter.
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is a stable Low dur­ing the High period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master receiver must sig­nal an end of data to the slave transm itter by not generating an acknowledge on t he last byte that has been clocked out of the slave. In this case the transmitter must leave the data line High to enable the master to generate the STOP condition.
9/28
Loading...
+ 19 hidden pages