SGS Thomson Microelectronics M27W401 Datasheet

M27W401
4 Mbit (512Kb x 8) Low Voltage UV EPROM and OTP EPROM
2.7V to 3.6V LOW VOLTAGE in READ
OPERATION
ACCESS TIME:
–70nsatVCC= 3.0V to 3.6V –80nsatVCC= 2.7V to 3.6V
PIN COMPATIBLE with M27C4001
LOW POWER CONSUMPTION:
–15µA max Standby Current – 15mA max Active Current at 5MHz
PROGRAMMING TIME 100µs/byte
HIGH RELIABILITY CMOS TECHNOLOGY
– 2,000V ESD Protection – 200mA Latchup Protection Immunity
ELECTRONIC SIGNATURE
– Manufacturer Code: 20h – Device Code: 41h
32
1
FDIP32W (F)
PLCC32 (K)
Figure 1. Logic Diagram
32
1
PDIP32 (B)
TSOP32 (N)
8 x 20 mm
DESCRIPTION
The M27W401 is a low voltage 4 Mbit EPROM of­fered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage and is organisedas 524,288 by 8 bits.
The M27W401 operates in the read mode with a supply voltageas low as 2.7V at –40 to 85°C tem­perature range. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery re­charges.
The FDIP32W (window ceramic frit-seal package) has a transparent lid which allows the user to ex­pose the chip to ultraviolet lightto erase thebitpat­tern. A new pattern can then be written to the device by following the programming procedure.
For application where thecontent is programmed only one time and erasure is not required, the M27W401 is offered in PDIP32, PLCC32 and TSOP32 (8 x 20 mm) packages.
V
19
A0-A18 Q0-Q7
E
G
V
CC
M27W401
V
SS
PP
8
AI01590
1/15March 2000
M27W401
Figure 2A. DIP Connections
V
1
PP
2
A15
3
A12
4
A7
5
A6
6
A5
7
A4
8 A3 A2 A1 A0
Q0
Q2 SS
M27W401
9
10
11
12
13
14
15
16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
AI02676
V
CC
A18A16 A17 A14 A13 A8 A9 A11 G A10 E Q7 Q6 Q5Q1 Q4 Q3V
Figure 2B. LCC Connections
A16
A7 A6 A5 A4 A3 A2 A1 A0
Q0
A12
9
Q1
VPPV
A15
1
32
M27W401
17
Q2
Q3
SS
V
Q4
CC
A18
Q5
A17
25
Q6
A14 A13 A8 A9 A11 G A10 E Q7
AI01591
Figure 2C. TSOP Connections
A11 G
A9
A8 A13 A14 A17 A18
V
CC
V
PP
A16 A15 A12
A7
A6
A5
A4 A3
1
M27W401
8
(Normal)
9
16 17
32
25 24
AI01592
A10 E Q7 Q6 Q5 Q4 Q3 V
SS
Q2 Q1 Q0 A0 A1 A2
Table 1. Signal Names
A0-A18 Address Inputs Q0-Q7 Data Outputs E Chip Enable G Output Enable V
PP
V
CC
V
SS
Program Supply Supply Voltage Ground
2/15
M27W401
Table 2. Absolute Maximum Ratings
(1)
Symbol Parameter Value Unit
T
A
T
BIAS
T
STG
(2)
V
IO
V
CC
(2)
V
A9
V
PP
Note: 1. Except for the rating ”Operating Temperature Range”, stresses above those listed in the Table ”Absolute Maximum Ratings” may
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating condi­tions for extendedperiods may affect device reliability. Refer alsoto the STMicroelectronics SUREProgram andother relevant qual­ity documents.
2. Minimum DC voltage on Input or Output is –0.5V with possible undershoot to –2.0V for a period less than 20ns. Maximum DC voltage on Output is V
3. Depends on range.
Ambient Operating Temperature Temperature Under Bias –50 to 125 °C Storage Temperature –65 to 150 °C
Input or Output Voltage (except A9) –2 to 7 V Supply Voltage –2 to 7 V A9 Voltage –2 to 13.5 V Program Supply Voltage –2 to 14 V
+0.5V with possible overshoot to VCC+2V for a period less than 20ns.
CC
(3)
–40 to 85 °C
Table 3. Operating Modes
Mode E G A9
Read Output Disable V Program
V Verify V Program Inhibit Standby Electronic Signature
Note: X = VIHor VIL,VID= 12V ± 0.5V.
V
IL
IL
Pulse V
IL
IH
V
IH
V
IH
V
IL
V
IL
V
IH
IH
V
IL
V
IH
X XV X XVPPData Out X
XX
V
IL
V
ID
V
PP
V
or V
CC
SS
or V
CC
SS
V
PP
V
PP
V
or V
CC
SS
V
CC
Q7-Q0
Data Out
Hi-Z
Data In
Hi-Z Hi-Z
Codes
Table 4. Electronic Signature
Identifier A0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Hex Data
Manufacturer’s Code Device Code
V
IL
V
IH
00100000 20h 01000001 41h
3/15
M27W401
Table 5. AC Measurement Conditions
High Speed Standard
Input Rise and Fall Times 10ns 20ns Input Pulse Voltages 0 to 3V 0.4V to 2.4V Input and Output Timing Ref. Voltages 1.5V 0.8V and 2V
Figure 3. AC Testing Input Output Waveform
High Speed
3V
1.5V
0V
Standard
2.4V
0.4V
Table 6. Capacitance
Symbol Parameter Test Condition Min Max Unit
C
IN
C
OUT
Note: 1. Sampled only, not 100% tested.
Input Capacitance Output Capacitance
(1)
(TA=25°C, f = 1 MHz)
2.0V
0.8V
AI01822
Figure 4. AC Testing Load Circuit
1.3V
1N914
3.3k
DEVICE UNDER
TEST
C
L
CL= 30pFfor HighSpeed CL= 100pF for Standard CLincludes JIG capacitance
V
V
IN
OUT
=0V
=0V
6pF
12 pF
OUT
AI01823B
DEVICE OPERATION
The operating modes of theM27W401 are listed in the Operating Modes table.A single power supply is required in the read mode. All inputs are TTL levels exceptfor VPPand 12V on A9 for Electronic Signature.
Read Mode
The M27W401 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable(G)is the output control and should be used to gate data to the output pins, indepen­dent of device selection. Assuming that the ad­dresses are stable, the address access time
4/15
(t
) is equal to the delay from E to output
AVQV
(t
). Data is available attheoutputafteradelay
ELQV
of t
from the falling edge of G, assuming that
GLQV
E has been low and the addresses have been sta­ble for at least t
AVQV-tGLQV
.
Standby Mode
The M27W401 has a standby mode which reduc­es the supply current from 15mA to 15µA with low voltage operation VCC≤ 3.6V, see Read Mode DC Characteristics table for details. The M27W401 is placed in the standby mode by applying a CMOS high signal to the E input. When in the standby mode, the outputs are in a high impedance state, independent of the G input.
M27W401
Table 7. Read Mode DC Characteristics
(1)
(TA= –40 to 85°C; VCC= 2.7V to 3.6V; VPP=VCC)
Symbol Parameter Test Condition Min Max Unit
I
I
I
CC
I
CC1
I
CC2
I V
V
IH
V
V
Note: 1. VCCmust be applied simultaneously with or before VPPand removed simultaneously or after VPP.
Two Line Output Control
Because EPROMs are usually used in larger memory arrays, this product features a 2 line con­trol function which accommodates the use of mul­tiple memory connection. The two line control function allows:
a. the lowest possible memory power dissipation, b. complete assurance that output bus contention
will not occur.
For the most efficient use of these two control lines, Eshould be decodedand usedas theprima­ry device selecting function, while G should be made a common connection to all devices in the array and connected to the READ line from the system controlbus. This ensures that all deselect­ed memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.
Input Leakage Current
LI
Output Leakage Current
LO
Supply Current
Supply Current (Standby) TTL Supply Current (Standby) CMOS Program Current
PP
Input Low Voltage –0.6
IL
(2)
Input High Voltage Output Low Voltage
OL
Output High Voltage TTL
OH
2. Maximum DC voltage on Output is V
CC
+0.5V.
E=V
IL
f = 5MHz, V
E>V
0V V
0V V
,G=VIL,I
CC
I
OH
V
IN
CC
V
OUT
E=V
–0.2V,VCC≤ 3.6V
V
PP=VCC
I
= 2.1mA
OL
= –400µA
CC
IH
CC
OUT
3.6V
= 0mA,
System Considerations
The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, ICC, has three seg­ments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of E. The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output.
The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling ca­pacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between V and VSS. This should be a high frequency capaci­tor of low inherent inductance and should be placed as close to the device as possible. In addi­tion, a 4.7µF bulk electrolytic capacitor should be
±10 µA ±10 µA
15 mA
1mA 15 µA 10 µA
0.2 V
CC
0.7 V
CCVCC
2.4 V
+ 0.5
0.4 V
used between VCCand VSSfor every eight devic­es. The bulkcapacitor should be located near the power supply connection point.The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.
V V
CC
5/15
Loading...
+ 10 hidden pages