Datasheet L4971D, L4971 Datasheet (SGS Thomson Microelectronics)

1.5A STEP DOWN SWITCHING REGULATOR
UP TO 1.5A STEPDOWN CONVERTER OPERATINGINPUT VOLTAGE FROM 8V TO
55V PRECISE 3.3V (±1%) INTERNAL REFER-
ENCE VOLTAGE OUTPUT VOLTAGE ADJUSTABLE FROM
3.3VTO 50V SWITCHINGFREQUENCY ADJUSTABLE UP
PULSEAND HICCUPMODE) INHIBIT FOR ZERO CURRENT CONSUMP-
TION PROTECTION AGAINST FEEDBACK DIS-
CONNECTION THERMAL SHUTDOWN SOFTSTART FUNCTION
DESCRIPTION
The L4971 is a step down monolithic power switching regulator delivering 1.5A at a voltage between 3.3V and 50V (selected by a simple ex­ternal divider). Realized in BCD mixed technol­ogy, the device uses an internal power D-MOS transistor (with a typical Rdson of 0.25)toob­tainvery high efficency and high switchingspeed.
TYPICAL APPLICATIONCIRCUIT
L4971
Minidip SO16W
ORDERING NUMBERS: L4971 (Minidip)
L4971D (SO16)
A switching frequency up to 500KHz is achiev­able (the maximum power dissipation of the pack­ages must be observed). A wide input voltage range between 8V to 55V and output voltages regulated from 3.3V to 50V cover the majority of today’sapplications. Features of this new generations of DC-DC con­verter include pulse-by-pulse current limit, hiccup mode for short circuit protection, voltage feedfor­ward regulation, soft-start, protection against feedback loop disconnection, inhibit for zero cur­rent consumption and thermal shutdown.
The device is available in plastic dual in line, MINIDIP 8 for standard assembly, and SO16W for SMD assembly.
May 2000
Vi=8V to 55V
C1
220µF
63V
C7
220nF
R1
20K
C2
2.7nF
C5
100nF
5
3
2
L4971
7
R2
9.1K
22nF
1
C4
6
C6
100nF
D97IN748A
8
4
D1
GI
SB360
L1
126µ
H
(77120)
C
330µF
VO=3.3V/1.5A
8
1/12
L4971
BLOCKDIAGRAM
COMP
FB
2
7
8
3.3V
SS_INH
THERMAL
SHUTDOWN
INHIBIT SOFTSTART
E/A
OSCILLATOR
VOLTAGES
MONITOR
PWM
3.3V
INTERNAL
REFERENCE
R
Q
S
INTERNAL
SUPPLY
5.1V
DRIVE
VCC
5
CBOOT
CHARGE
CBOOT
CHARGE
AT LIGHT
LOADS
6
BOOT
3
OSC GND OUT
1
4
D97IN594
PIN CONNECTIONS
GND
SS_INH
OSC OUT
1 2 3 4 VCC
D97IN595
FB8 COMP
7
BOOT
6 5
Minidip
N.C.
GND
SS_INH
OSC
OUT OUT
N.C. N.C. N.C.
2 3 4 5 6 7 8
D97IN596
16 15 14 13 12 11 10
9
SO16W
N.C.1 N.C. FB COMP BOOT VCC N.C.
PIN FUNCTIONS
DIP SO (*) Name Function
1 2 GND Ground 2 3 SS_INH A logic signal (active low) disables the device (sleep mode operation).
3 4 OSC An external resistor connected between the unregulated input voltage and this pin and
4 5, 6 OUT Stepdown regulator output 511 V
CC Unregulated DC input voltage
6 12 BOOT A capacitor connected between this pin and OUT allows to drive the internal DMOS
7 13 COMP E/A output to be used for frequency compensation 8 14 FB Stepdown feedback input. Connecting directly to this pin results in an output voltage of
(*) Pins 1, 7,8, 9, 10, 15 and 16 are not internally, electrically connected to the die.
A capacitor connected between this pin and ground determines the soft start time. When this pin is grounded disables the device (driven by open collector/drain).
a capacitor connected from this pin to groundfix the switching frequency. (Linefeed forward is automatically obtained)
Transistor
3.3V. An externalresistive divider is required for higher output voltages.
2/12
THERMALDATA
Symbol Parameter Minidip SO16 Unit
R
th(j-amb)
(*) Package mounted on board.
Thermal Resistance Junction to ambient Max. 90 (*) 110 (*) °C/W
ABSOLUTE MAXIMUM RATINGS
L4971
Symbol
Minidip S016
V
11
V5,V
I5,I
V12-V
V
12
V
13
V3 Analogs input voltage (VCC = 24V) 13 V
V
14
P
tot
V
V
5
V
4
I
4
6-V5
V
6
V
7
V
2
V
8
Input voltage 58 V Output DC voltage
6
Output peak voltage at t = 0.1µs f=200KHz Maximum output current int. limit.
6
11
Bootstrap voltage 70 V Analogs input voltage (VCC= 24V) 12 V
(VCC= 20V) 6
Power dissipation a T
Parameter Value Unit
-1
-5
V V
14 V
V
-0.3
60°C Minidip 1W
amb
V
SO16 0.8 W
T
j,Tstg
Junction and storage temperature -40 to 150 °C
ELECTRICAL CHARACTERISTICS (Tj = 25°C, Cosc = 2.7nF, Rosc = 20k,VCC = 24V, unless other- wisespecified.) * SpecificationReferedto Tj from 0 to 125°C
Symbol Parameter Test Condition Min. Typ. Max. Unit
DYNAMICCHARACTERISTIC
V
V
o
V
d Dropout voltage Vcc = 10V; Io = 1.5A 0.44 0.55 V
I
l Maximum limiting current Vcc = 8to 55V * 2 2.5 3 A
f
s Switching frequency * 90 100 110 KHz
SVRR Supply voltage ripple rejection V
Operating input voltage range Vo= 3.3 to 50V; Io= 1.5A * 8 55 V
I
Output voltage Io= 0.5A 3.33 3.36 3.39 V
I
= 0.2 to 1.5A 3.292 3.36 3.427 V
o
V
= 8to 55V * 3.22 3.36 3.5 V
cc
* 0.88 V
Efficiency V
Voltage stability of switching
o = 3.3V; Io = 1.5A 85 %
i =Vcc+2VRMS;Vo=Vref;
I
= 1.5A; f
o
ripple
= 100Hz
60 dB
Vcc = 8 to 55V 3 6 %
frequency Temp. stability of switching
j = 0 to 125°C4%
T
frequency
Soft Start
Soft start charge current 30 40 50 µA Soft start discharge current 6 10 14 µA
Inhibit
VLL Low level voltage * 0.9 V I
sLL Isource Low level * 5 15 µA
3/12
L4971
ELECTRICAL CHARACTERISTICS (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
DC Characteristics
Iqop Total operating quiescent
current
I
q Quiescent current Duty Cycle = 0; V
I
qst-by
Total stand-by quiescent current
V
<0.9V 100 200 µA
inh
Vcc = 55V; V
= 3.8V 2.5 3.5 mA
FB
<0.9V 150 300 µA
inh
Error Amplifier
V
FB
R
L Line regulation Vcc = 8 to 55V 5 10 mV
V
oH High level output voltage V
V
oL Low level output voltage V
I
o source Source output current V
I
o sink Sink output current V
I
b Source bias current 2 3 µA
SVRR E/A Supply voltage ripple rejection V
gm Transconductance I
Voltage Feedback Input 3.33 3.36 3.39 V
Ref. voltage stability vs
* 0.4 mV/°C
temperature
= 2.5V 10.3 V
FB
= 3.8V 0.65 V
FB
= 6V; VFB= 2.5V 200 300 µA
comp
= 6V; VFB= 3.8V 200 300 µA
comp
; Vcc = 8 to 55V 60 80 dB
= 50 57 dB
= -0.1 to 0.1mA
=6V
DC open loop gain R
comp=Vfb L
comp
V
comp
OscillatorSection
Ramp Valley 0.78 0.85 0.92 V Ramp peak Vcc= 8V 2 2.15 2.3 V
Vcc = 55V 9 9.6 10.2 V Maximum duty cycle 95 97 % Maximum Frequency Duty Cycle = 0%
R
osc
= 13k,C
= 820pF
osc
46mA
2.5 ms
500 kHz
4/12
TypicalPerformance(Using EvaluationBoard) fsw = 100kHz
L4971
Output
Voltage
Output
Ripple
Efficiency
V
CC =35V IO = 1.5A
Line Regulation
Io = 1.5A VCC = 8 to 55V
VCC =35V IO = 0.5 to 1.5A
3.3V 10mV 84 (%) 3mV 6mV
5.1V 10mV 86 (%) 3mV 6mV 12V 12mV 93 (%) 3mV (V
CC =15 to 55V) 4mV
Figure1. Testand valuation board circuit.
Vi=8V to 55V
R1
20K
C1
220µF
63V
C7
220nF
C1=220µF/63V EKE C2=2.7nF C5=100nF C6=100nF C7=220nF/63V C8=330µF/35V CG L1=126µH KoolMu 77120 - 65 Turns ­R1=20K R2=9.1K D1=GI SB360
C2
2.7nF
Sanyo
C5
100nF
5
3
2
22nF
0.5mm
C4
L4971
7
R2
9.1K
8
4
1
6
C6
100nF
D1
GI
SB360
D97IN749A
L4971
VO(V) R3(K) R4(K)
3.3
5.1 12 15 18 24
0
2.7 12 16 20 30
L1
126µH
(77120)
C
330µF
8
4.7
4.7
4.7
4.7
4.7
Load Regulation
VO=3.3V/1.5A
R
3
R
4
Figure2. PCBand componentlayout of the figure 1.
5/12
L4971
Figure3. Quiescentdraincurrent vs. input
voltage.
Iq
(mA)
200KHz R1=22K
5
C2=1.2nF
4
3
2
Tamb=25°
C
0% DC
1
0 5 10 15 20 25 30 35 40 45 50
100KHz R1=20K C2=2.7nF
0Hz
D97IN724
Vcc(V)
Figure5. Stand-bydrain currentvs. input
voltage
Ibias
(µA)
150 140
Vss=GND
Tj=25°C
130 120 110 100
Tj=125°C
90 80 70 60
0 5 10 15 20 25 30 35 40 45 50 VCC(V)
D97IN732
Figure 4. Quiescent currentvs. junction
temperature
200KHz R
=22K
1
=1.2nF
C
2
0Hz
D97IN731
Iq
(mA)
5
4
100KHz
=20K
R
1
=2.7nF
C
2
3
VCC=35V
2
0% DC
1
-50 -30 -10 10 30 50 70 90 110 Tj(°C)
Figure 6. LineRegulation
VO (V)
3.377
Tj=125°C
3.376
3.375
3.374
3.373
3.372
3.371
3.370 0 5 10 15 20 25 30 35 40 45 50 VCC(V)
D97IN733
Tj=25°C
Figure7. Loadregulation
VO (V)
3.378
3.376
3.374
3.372
3.370
3.368
3.366
3.364
3.362
3.360 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
6/12
Tj=125°C
V
Tj=25°C
CC
=35V
D97IN734
Figure 8. Switching frquency vs. R1 and C2
fsw
(KHz)
500
200
0.82nF
1.2nF
100
50
20
2.2nF
3.3nF
4.7nF
5.6nF
10
5
0 20 40 60 80 R1(K)
D97IN784
Tamb=25°C
L4971
Figure9. SwitchingFrequencyvs.input
voltage.
fsw
(KHz)
107.5
105.0
102.5
Tj=25°C
100.0
97.5
95.0
92.5
90.0 0 5 10 15 20 25 30 35 40 45 50 VCC(V)
D97IN735
Figure11. Dropout voltage between pin 5
and 4.
∆V
(V)
0.5
0.4
0.3
0.2
0.1
D97IN736
Tj=125°C
Tj=25°C
Tj=-25°C
Figure 10. Switching frequency vs. junction
temperature.
fsw
(KHz)
105
100
95
90
-50 0 50 100 Tj(°C)
D97IN785
Figure 12. Efficiency vs output voltage.
(%)
96 94 92 90 88 86 84
η
100KHz
200KHz
V I
O
=35V
CC
=1.5A
D97IN737
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
Figure13. Efficiencyvs. output current.
η
(%)
V
=12V
90
CC
85
V
=24V
CC
80
=48V
V
75
CC
70
65
60
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN738
VCC=8V
fsw=100KHz VO=5.1V
82
0 5 10 15 20 25 VO(V)
Figure 14. Efficiencyvs.outputcurrent.
η
(%)
90
85
80
75
=12V
V
CC
VCC=8V
V
=24V
CC
V
=48V
CC
70
65
60
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN739
fsw=100KHz VO=3.36V
7/12
L4971
Figure15. Efficiencyvs. output current.
η
(%)
90
85
80
=12V
V
CC
V
CC
V
=24V
CC
VCC=8V
=48V
75
70
65
60
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN740
fsw=200KHz VO=5.1V
Figure17. Efficiencyvs. Vcc.
SW
=
1
200KHz
D97IN742
=100KHz
η
(%)
85
80
75
V
=5.1V-f
0
SW
=100KHz
V
0
=5.1V-f
SW
=200KHz
V
=3.36V-f
0
V
0
=3.36V-f
SW
IO=1.5A
Figure 16. Efficiencyvs.outputcurrent.
η
(%)
90 85 80
VCC=8V
=12V
V
CC
V
=24V
CC
75 70
V
=48V
CC
65 60 55
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 IO(A)
D97IN741
fsw=200KHz VO=3.36V
Figure 18. Powerdissipationvs.Vcc.
Pdiss (mW)
800
600
400
200
=5.1V
V
O
fsw=100KHz
IO=1.5A
D97IN743
I
=1A
O
=0.5A
I
O
70
0 1020304050VCC(V)
Figure19. Efficiencyvs. Vo.
Pdiss
8/12
(mW)
800
600
400
200
0
0 5 10 15 20 25 30 V0(V)
V
CC
fsw=100KHz
=35V
IO=1.5A
I
=0.5A
O
I
O
D97IN744
=1A
0
0 1020304050VCC(V)
Figure 20. Pulsebypulselimitingcurrentvs.
junction temperature.
Ilim
(A)
2.9
fsw=100KHz VCC=35V
2.8
2.7
2.6
2.5
2.4
2.3
-50 -25 0 25 50 75 100 125Tj(°C)
D97IN747
L4971
Figure21. Load transient.
Figure23. Soft start capacitorselectionVs in-
ductor and Vccmax.
L
(µH)
400
300
200
100
680nF
fsw=100KHz
D97IN745
470nF
330nF
220nF
100nF
Figure 22. Line transient.
1A
D97IN786
V
O
(mV)
100
0
-100
V
1
2
(V)
30
20 10
CC
1ms/DIV
IO= fsw= 100KHz
Figure 24. Softstartcapacitorselectionvs.In-
ductorandVccmax.
L
(µH)
300
200
100
fsw=200KHz
D97IN746
56nF
47nF
33nF
22nF
0
15 20 25 30 35 40 45 50 V
CCmax
(V)
Figure25. Openloopfrequencyandphaseofer-
roramplifier
GAIN
(dB)
50
0
-50
-100
-150
-200 10 10
3
2
10
5
4
10
10
GAIN
Phase
6
10
7
D97IN787
8
10
Phase
0
45
90
135
f(Hz)10
0
15 20 25 30 35 40 45 50 VCCmax(V)
9/12
L4971
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.32 0.131
a1 0.51 0.020
B 1.15 1.65 0.045 0.065
b 0.356 0.55 0.014 0.022
b1 0.204 0.304 0.008 0.012
D 10.92 0.430 E 7.95 9.75 0.313 0.384
e 2.54 0.100 e3 7.62 0.300 e4 7.62 0.300
F 6.6 0.260
I 5.08 0.200
L 3.18 3.81 0.125 0.150
Z 1.52 0.060
mm inch
OUTLINE AND
MECHANICAL DATA
Minidip
10/12
L4971
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.35 2.65 0.093 0.104
A1 0.1 0.3 0.004 0.012
B 0.33 0.51 0.013 0.020
C 0.23 0.32 0.009
D 10.1 10.5 0.398 0.413
E 7.4 7.6 0.291 0.299
e 1.27 0.050
H 10 10.65 0.394 0.419
h 0.25 0.75 0.010 0.030
L 0.4 1.27 0.016 0.050
K0°(min.)8° (max.)
mm inch
0.013
OUTLINE AND
MECHANICAL DATA
SO16 Wide
L
hx
45
A
B
e
K
A1
C
H
D
16
9
E
1
8
11/12
L4971
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
2000 STMicroelectronics– Printedin Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland- France - Germany - Hong Kong - India - Italy - Japan - Malaysia- Malta - Morocco -
Singapore- Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
12/12
Loading...