L C 5 3
“ Z M E T E R "
C A P A C I T O R — I N D U C T O R
AN A L Y Z E R
Opera tion, Appl ic at ion , a n d M ai n te n a n c e M a n u a l
" ' • 4 .
S E N C O R E
. . . t h e e lec tr on ic in s t ru m e n t “ a n a ly z e r p e o p l e ”
3200 S E N C O R E D R IV E . SIO UX F A L L S . S O U T H D A K O T A 5 7 1 0 7 - ( 6 0 5 ) 339 -0 10 0
1
T A B L E O F C O N T E N T S
S A F E T Y P R E C A U T I O N S
S I M P L I F I E D O PER AT IO NS
D E S C R I P T I O N
I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
F e a t u r e s . . . .
S p e c i f i c a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
C o n t r o l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
S u p p l i e d A c c e s s o r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0
O p t i o n a l A c c e s s o r i e s
O P E R A T I O N
I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
P o w e r C o n n e c t i o n
Fuse R e p l a c e m e n t
T e s t L e a d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
T e s t L e a d M o u n t i n g C l i p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2
Ca pacito r Testin g
S p e c ia l N o t e s on C a p a c it o r T e s t i n g
C a p a c i t y M e a s u r e m e n t A c c u r a c y . . . . . . . . . . . . . . . . . . . . .1 3
T o E li m i n a t e L e a d C a p a c i t y
C h e c k i n g C a p a c i t o r s Be io w 2 p F . . . . . . . . . . . . . . . . . . . . .1 4
I n t e r p r e t i n g “ Z M E T E R ” Va lu e R e a d i n g s
T e s t i n g L a rg e S c re w Te rm in a l L y t i c s
C h e c k i n g C a p a c i t o r s f o r L e a k a g e
C e ra m ic , P a p e r , M ic a , a n d Film T y p e s . . . 1 6
A l u m i n u m L y t i c s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
T a n t a lu m L y t i c s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6
Lea kage C h a r t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
I d e n t i f y i n g C a p a c i t o r T y p e s
T a n t a l u m L y t i c s
C e r a m ic D i s c s
F il m T y p e s
T e s t i n g fo r D i e l e c t r i c A b s o r p t i o n . .
R e f o r m i n g L y t i c s on the “ Z M ETE R”
R e f o r m i n g L y t i c s w i t h a Pow er S u p p l y
Capa citor Test ing Application T i p s
N o Value R e adi ng o n Small Va lu e
C a p a c i t o r s
L eaka ge i n C e ra m ic , P a p e r , Film, a n d
M ic a C a p a c i t o r s
C h e c k i n g f o r Le ak ag e Bet we en S e c t io n s
o f a M u l t i - S e c t i o n L y t i c
Larg e F l u c t u a t i o n s i n Ly tic L e a k a g e
R e a d i n g s
Lea kage M e a s u re m e n ts o f N on -P ol ar iz ed
L y t i c s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
L y t i c s S i t t i n g i n S t o c k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
Lo w V alue L y ti c s U s e d i n H ig h
F r e q u e n c y C i r c u i t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
I n t e r m i t t e n t C a p a c i t o r s
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1
I ns ide F r o n t C o v e r
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 1 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . .
1 0
1 2
1 2
1 3
1 4
1 4
1 5
1 7
1 7
1 8
1 8
1 9
1 9
2 0
2 0
2 0
.2 1
T im e Required t o O b t a i n a Value
Read ing o n a C a p a c i t o r . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
C h e c k i n g C e r a m ic C a p a c it o r s f o r
T e m p er at u re S e n s i t i v i t y . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2
C h e c k i n g Fil m T y p e C a p a c it o r s f o r
T e m p er at u re S e n s i t i v i t y . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2
T e s tin g C a p a c it y o f S i l i c o n Diod es
a n d T r a n s i s t o r s
T e s t in g Hi gh V o l t a g e D i o d e s
T e s t in g S il ic o n C o n t r o l l e d R e c t if ie r s
( S C R s ) a n d T R I A C S
T e s tin g S C R s a nd TR IA CS f o r
D C L a t c h i n g
Te stin g S C R s and TRIACS for A C La tc h
a n d Unlat ch C o n d i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . .2 4
D e te r mi n ing the L e n g th of R F C oa xia l
C a b l e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4
How t o F i n d a S h o rt i n a Coa xia l C ab le . . 2 5
How to F in d the I n d u c t a n c e P e r Foot o f
C oa xi a l C a b l e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5
In d u c t o r T e s ti n g
C h ec ki ng I n d u c t o r s f o r In d u ct a n ce
V a l u e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B al an ci n g Ou t Lead I n d u c t a n c e
C h e c k i n g C o ils B e l o w 2 M i c r o h e n r y s . . . . 2 6
Op en W i n d in g i n a C o i l
C h e c k i n g I n d u c t a n c e I n - C i r c u i t
Te st in g I n d u c t o r s on P rin ted C ir c u it
B o a r d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7
Mu tual i n d u c t a n c e
Va lue Reading on H ig h R e s is ta n c e
C o i l s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8
In d u c t o r C o d i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8
C h ec k i ng I n d u c t o r s fo r Goo d o r B a d
Wi th the R in g in g T e s t
In d u c to r T es tin g A p p li c a t io n T i p s
Q u a lit y T e st in g on Gen er al C o il s
a n d T ra n s fo r m e r s
P e a k in g C o i l s
C o il s i n M e ta l S h i e l d s . . . . . . . . . . . . . . . . . . . . . . . . .3 1
Fe rrite Co re T r a n s f o r m e r s a n d
C o i i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1
T e s tin g Fly b a ck T r a n s f o r m e r s a n d Yo kes
W i th th e R i n g i n g T e s t . . . . . . . . . . . . . . . . . . . . . . . . . 3 1
In -C irc u it Q u i c k T e s t . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1
T e s tin g Yo kes w i t h t h e R in g in g T e s t . . . . 3 1
T e s tin g H o r i z o n t a l Yoke W in d in g s
f or Go od o r B a d
T e s tin g V e r t i c a l Yoke W i n d i n g s for
Go od o r B a d
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 2
2 2
2 3
2 3
2 6
2 6
2 7
2 7
2 8
2 9
3 0
3 2
3 3
2
M A I N T E N A N C E
i n t r o d u c t i o n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4
A c c e s s / D i s a s s e m b l y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4
E q u i p m e n t R eq uire d for C a l i b r a t io n . . . . . . . . . . . . . . . . . . . . . . 3 4
M e te r C a l i b r a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4
In p u t P ro te c t io n R e l a y Trip P oin t A d j u s t . . . . . . . . . . . . . . 3 5
I n d u c t a n c e C a l i b r a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5
R in g in g Test C a l i b r a t i o n
C a p a c i t o r C a l i b r a t i o n
A P P E N D I X
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6
C a p a c i t o r Theory a n d the “ Z M E T E R ” . . . . . . . . . . . . . . . . . . 3 8
C a p a c i t o r C o lo r Co de a n d Marking C h a r t s
. . . . . . . . . .
G lo s s a r y of T e r m s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 6
3 5
4 2
S E R V I C E A N D W A R R A N T Y
. . . . . . . . . . . . . . . . .
In s id e B a c k C o v e r
3
S I M P L I F I E D O PE R AT IO NS
C A P A C IT O R T E S T S
7 . Se le ct d e
s i r e d v o l t
a g e f o r
L e a k a g e
t e s t
5. R e a d V ALU E o f
c a p a c i t o r in p F o r
u F o n D is p l a y
9 . R e ad LE A K A G E i n
m i c r o a m p s o n
8 . Pu sh B u t t o n
4 . P ush b u t t o n
6
. S e l e c t LEAKAG E R A N G E
I N D U C TO R TE ST S
5 . R e a d V A L U E o f c o il in u H o r
m H on D is p la y
r ,
2 . A d j u s t f o r 00 0
r e a d o u t w h i l e
p u s h i n g C a p a
c i t o r V a l u e
b u t t o n .
4 . P u s h B u tt o n
1. O p e n t e s t leads
3 . C o n n e c t c a p a c i t o r t o t e s t l ea ds
8. Rea d R I N G I N G T E S T on d i s p l a y
1 0 o r m o r e i n d i c a t e s g o o d c o il .
6
. P u s h
Bu tton
7 . Rotate t o
R e d p o s i
ti o n s f o r
Y o ke &
Flyba ck
A L L p o s i
tio n s f o r
co ils
2 . A d j u s t f o r 00 0 r e a d o u t
w h i l e p u s h in g I n d u c t o r
V a l u e b u t t o n
1 . S h o r t t e s t l e a d s
3 . C o n n e c t co il, y o k e , o r f l y b a c k
N o t e s
5
D E S C R I P T I O N
INTRODUCTION
Th e use o f c a p ac ito rs i n el ect ron ic s h a s d r a m a t i c a l l y
i n cr e as e d i n t h e p a s t f e w y e a r s an d t h e f o r e c a s t i s f o r
e ve n a g r e a t e r us ag e. Th e t r a n s i s t o r h a s g i v e n w a y to
t h e I C , b u t du e t o t h e n a t u r e a n d c o n s t r u c t i o n of the
c a p a c i t o r a n d th e in d uc to r, t h e s e a r e n o t r e p l a c e d w it h
IC s. Th e more IC s t h a t a re use d, th e m o r e c a p a c i to r s
an d i n d u c t o r s t h a t w i l l be us ed . Th e t o l e r a n c e of th e
c a p a c i t o r u s e d t o b e 2 0 % , b u t today , y o u w i l l f i n d
c i r c u i t s h a v i n g 5 % to lerance c a p a c i to r s a s s t a n d a r d .
The u s e o f ele ctrolytic c a p a c i to r s h a s a ls o d r a s t ic a ll y
incr e as e d a s w e l l as t h e c a p a c i ty r a n g e . L y t i c s o f
1 0 ,0 0 0 u F c a n b e foun d i n m a n y c o n s u m e r electronic
i te m s . Now mor e t h a n ever , th e ne e d t o m e a s u r e
c a p a c i t y val ue, le aka ge o f t h e cap aci tor , i n d u c t o r v al ue
a n d q u a l i t y of the i n d u c t o r h a s bec ome v e r y i m p o r
t a n t . W i t h o u t a g o o d m e a s u r e o f th es e i m p o r t a n t p a r a
m e t e r s , p r o p e r c i r c u i t o p e r a t i o n b e c o m e s m o r e
dif ficult. S enc or e has m e t t h e challenge h e ad -on wi th
i t s a l l n e w , a u t o r a n g i n g “ Z M E T E R ” , t h e L C 5 3 . N o w
c a p a c i t o r s can b e chec ked fo r value a n d fo r l e a k a g e a t
t h e r a t e d w o r k i n g v o l t a g e o n a d i g i t a l r e a d o u t .
I n d u c t o r s can b e ch ec ked fo r i n d u c t a n c e a nd f o r
q u a l i t y w i t h th e p a t e n t e d Se nc or e r i n g i n g t e s t . T he
L C 5 3 i s t r u l y th e f ir s t c o mp le te c a p a c i to r a n d in d u c t o r
an aly ze r.
FE A TU R E S
S P E C IF I C A T I O N S
DIGITAL R E A D O U T
T Y P E : .5 ” , 7 s e g m e n t LE D .
ACCURACY: F u n c t i o n ac cu ra cy ± res o l u ti o n e rr or .
R E S O L U T I O N : 3 s ig n i f ic a n t d i g i t s ±2 c o u n t s on 3rd
di git ( 3 V i d i g i t s o n c a p a c i to r s o f 1 0 0 , 0 0 0 u F t o
2 0 0 , 0 0 0 u F ).
A U T O R A N G I N G : F u l l y a u t o m a t i c d e c i m a l
place men t. O n e o r two plac e hol din g zero s a d d e d as
n ee d e d (d o e s n o t a ff e c t ac curacy) to pr ovi de s t a n d a r d
value r e a d o u t s o f u F , pF, u H , or m H .
R A N G E I N D I C A T O R S :
T y p e : L E D .
Oper ation: C on t r o ll ed b y t he a u t o r a n g i n g c i r c u i t s .
C A P A C IT O R S (O u t o f C ir c u i t ) :
Dyn am ic t e s t of c a p a c i t y value d e te r m i n e d by m e a s u r
ing o n e R C t i m e c o n s t a n t w hen c a p a c i to r i s c h a r g e d t o
+5 V th ro u g h :
1 0 M e g o h m s for 0 - 9 0 0 0 pF.
1 0 Kilohms fo r 9 0 0 0 p F -9 0 u F .
1 0 0 O h m s for 9 0 - 1 9 9 , 9 0 0 uF.
ACCURACY: ± 1 % o f re a d i n g + r e s o l u ti o n erro r.
± 5 % o f r e a d i n g + res ol ut io n er r or f o r c a p s ove r
1 0 0 0 u F .
R A N G E : 1 . 0 p F to 1 9 9 , 9 0 0 u F i n 1 0 a u t o m a t i c a l l y
se le ct ed r a n g e s .
T h e Senco re L C 5 3 “ Z M E T E R ” f e a t u r e s a d v a n c e d
D i g i ta l L o g ic cir cuits t h a t pr ov ide a u t o r a n g i n g o f the
m e t e r wh en ch ecking the v alu es o f c a p a c i t y o r i n d u c
ta n c e . Si mp ly h o o k u p th e c a p ac ito r o r t h e in du cto r,
p r e s s th e p ro p er V A L U E b u t t o n , and r e a d t h e va lu e o n
t h e large di g ita l r ead ou t.
T h e “ Z M E T E R ” also c he cks c a p a c i t o r s for leak ag e
w i t h tw o selectable c u r r e n t r a n g e s a t t h e r a t e d
w o r k i n g v o l ta g e fr o m 3 Vo lt s to 6 0 0 V o l t s. An L E D
(l oc at ed b e tw e en th e L E A K A G E b u t t o n a n d the
A P P L I E D V O L T A G E sw it ch) w i l l f la s h o n a n d o f f a s
a s a fe t y r em i n d er w hen th e leakage t e s t v o l t a g e i s set
t o 5 0 Vo lt s or a b o v e .
T h e S en co re p a t e n t e d r i n g i n g t e s t c h e c k s c o i l s ,
defl ect io n yokes, a n d n o n- ir on c o r e t r a n s f o r m e r s w ith
a n a c c u r a t e c hec k o f go od or b ad . T h e r e a r e si x sw itc h
sele c ta b le impe da nce m a t c h i n g p o s it i o n s t o m a t c h the
c o i l to th e t e s t circ uit fro m 1 0 u l i to 1 0 I I . G oo d c o i l s
w i l l sho w 1 0 or more r in g i n g c y c l e s on t h e d i g it a l d is
p l a y w h ile b a d o n e s w i l l show le ss t h a n 1 0 .
A s p ec ia l L E A D ZE R O co ntr ol lets y o u b a la n c e o u t
t h e c a p a c i ty or i nd uct an ce o f the t e s t l e a d s I ' o r those
a c c u r a t e r e a d i n g s o f th e ve ry sm al l c a p a c i t o r s an d
c o i ls t h a t y ou may enco un ter. Th e “ Z M E T E R ” i s a l s o
p r o t e c t e d a g a i n s t a cci de nta l ap p lic at io n of v o l ta g e s t o
t h e t e s t leads b y a f ro n t panel repl a ce a b le fu se an d a
spec ial re lay i n s id e the i n s t r u m e n t .
C A P A C IT O R LE A K A G E
AC CU RAC Y: ± 5 % 4 - r eso l u ti o n er ro r.
R A N G E S : 0 to 9 9 . 9 uA a n d 0 to 9. 9 9 K u A i n two
s witch s e le c ta b l e r an ge s .
V O L T A G E S : 1 2 s ele cta bl e D C v o l ta g e s from 3 VDC
t o 1 0 VDC fil te red a n d fro m 1 . 5 V D C to 6 0 0 V DC,
no n-f il ter ed. A va ila bl e a t t e s t le ad s on ly w he n
L E A K A G E p u s h b u t t o n i s de pre ss ed . C a p a c i t o r i s
a u t o m a t i c a l l y d i s c h a r g e d w hen b u t t o n i s r el e as e d.
I N D U C T A N C E (In- o r O ut-of Ci rcuit)
P a t e n t p e n d i n g d y n a m i c t e s t o f i n d u c t a n c e va lu e
d e te r m in e d b y m e a s u r i n g t h e E M F cause d b y a c o n
s t a n t l y v a r y i n g c u r r e n t t h r o u g h t h e c o i l u n d e r t e s t .
C u rr en t r a t e s ar e :
1 0 m A/u sec - 0 to 9 0 u l i .
1 mA/usec - 90 to 9 0 0 u l i
. 1 mA/ use c - 90 0 u l i to 9 mH.
. 0 1 m A /u se c - 9 t o 9 0 m i l .
1 u A /u sec - 90 to 9 0 0 m i l .
. 1 uA /usec - 9 0 0 to 9, 9 9 0 m i l .
ACCURAC Y: ±2 % o f r e a d i n g - * ■ reso lution error.
RA NG ES : 1 . 0 u l i to 9 , 9 9 0 m i l i n 6 a u t o m a t i c a l l y
sel ect ed r a n g e s .
6
RIN GING TE ST
Dyn am ic t e s t o f i n d u c t o r q u a l i t y d e te r m i n e d b y c o u n t
in g t he n u m b er o f c y c l e s t h e i n d u c t o r ri ngs b e f o re
r ea c h in g a p r e s e t d am p i n g p o i n t a f t e r a give n e x c it in g
pu l se ha s be en ap pl ied . ( U S p a t e n t 3 , 8 7 9 , 7 4 9 ) .
A C C E S S O R I E S (Op tional)
3 9G 85 T ouch T e s t P ro be
G E N E R A L
E X C I T I N G P U L S E A M P L I T U D E : A p p r o x i m a t e l y 7
Volt s p e a k .
A C C U R A C Y : ± 1 c o un t fro m r e a d i n g s o f 8 to 1 3 .
A C C E S S O R IE S ( S up pl ie d )
3 9 G 1 4 3 T e s t L e a d s *
3 9G 14 4 T e s t Le a d A d a p t o r
39 G 14 5 T e s t B u t t o n H o ld D o w n Rod ( 2 su p p l ie d ) '
64G 37 T e s t Lead M o u n t i n g Clip
68G 34 A ll e n W re n c h
44G 20 S p a r e 1 A m p S l o - B l o F u s e
“ Specif ica tio ns s u b j e c t to c h a n g e w i t h o u t no t ic e .”
T E M P E R A T U R E R A N G E S ( T y p i c a l ) : C a li b r a te d a t
7 0 °F. R a t e d accur acy ra n g e: 5 0 - 9 0 ° F , O p e r a ti n g
r a n g e : 3 2-1 30 °F .
P O W E R : 1 0 5 - 1 3 0 V A C , 6 0 H z , 2 5 W a t t s .
T E S T L E A D I N P U T : Fu se p r o t e c t e d w it h i n - l i n e 1
A m p 3A G S l o - B l o f u s e .
S I Z E : 6 ” x 9 ” x 11 .5 ” ( 1 5 . 2 4 c m x 22.86 cm x 2 9 . 2 1 c m )
W E I G H T : 7 . 7 5 l b s . ( 3 . 5 6 K g ) .
C O NT RO LS
1 . F ro n t p a n e l digital r e a d o u t , f i r s t t h r e e d i g it s read
t h e va lue o f ca p ac ity , in du cta nce , l e a k a g e c u r r e n t o r
r in g i n g t e s t values, l a s t tw o d i g i t s a re plac e ho ld e rs
a n d o n ly ind icate 0 o n lar g e r v a lu e s of c a p ac i ty , in d u c
ta nc e , or le aka ge c u r r e n t s o a l l r e a d i n g s a re give n as
p F , uF, uH, o r m H.
2 . a . In d ic a to r L ED, light s up w h e n c a p a c i to r r e a d
ing i s i n pi co fa ra ds ( p F ) .
b . In d ic a to r LE D, lig h ts up w h e n c a p a c i to r r e a d
ing i s i n m icr of ara ds ( u F ) .
c . I n di c a to r LE D, lig ht s up w h e n c a p a c i to r leak
age rea ding i s i n m ic ro am ps ( u A ) .
d . In d ic a to r L ED, light s up w h e n i n d u c t o r r ea d
ing i s i n m ic ro he nr ys ( u H ) .
e . I n di c a to r LE D, lig h ts u p w h e n i n d u c t o r r e a d
ing i s i n millih en rys ( m H ) .
3 . I M P E D A N C E MA TCH s w i tc h , r o t a t e d t h r o u g h
t h e l a s t 4 t e s t po s it i o n s wh en m a k i n g t h e r in g i n g t e s t
on yo ke s an d f ly ba ck s a nd t h r o u g h a l l 6 pos iti ons
w h e n t e s t i n g o t h e r i nd uct or s. A r e a d i n g of 1 0 or m or e
i n d i c a t e s a g o o d in du cto r.
4 . Powe r ON -O F F switch, c o n t r o l s t h e A C l i n e v o l
t a g e to the “ Z M E T E R ”.
1 3 . L E A K A G E R A N G E swit ch, u s e d t o s e le c t th e
desi red r a ng e of c a p a ci to r le aka ge curre nt, 0 t o 1 0 0 u A
o r 10 K u A .
1 4 . A P P L I E D VO LT AG E S W I T C H , u s e d f o r
s e le c ti n g t he d es i r e d t e s t v o l ta g e when m a k in g cap aci
t o r le a k a g e t e s t s .
R E A R P A N E L
1 5 . R ea r p an el m et er z e r o ad just. A d j u s t to z e r o
d ig it a l re ado ut w ith a l l but t o n s o u t .
1 6 . 39G1 45 T e s t Butt on H ol d D ow n R od mou nting
c l i p .
1 7 . 39G14 4 T e s t L e a d Ad aptor m o u n t in g c l i p .
1 8 . C o r d w r a p p e r f o r sto ri ng A C li n e c o r d a n d t e s t
lea ds .
5 . RI N G IN G T E S T p us hb ut to n, d e p r e s s e d w h en
m a k i n g the p a t e n t e d Se n co re r i n g i n g t e s t o n i nd uc
t o r s , y o k es , a n d flybac ks t o c h e ck t h e q u a li ty . U se
I M P E D A N C E M A T C H swi tch ( 3 ) .
6 . T e s t L e a d Input ja c k . U ns c re w j a c k f o r access to
i n p u t pr ot ec tio n fu s e .
7 . In d u c to r V A L U E pu s h b u tt on , d e p re s s e d w h en
t e s t i n g in du ct or s fo r va lue o f i n d u c t a n c e .
8 . C a pa c ito r V A L U E p u s h b u t t o n , d e p r e s s e d w he n
t e s t i n g c a pa c ito rs fo r c a p a c i ty value .
9 . L ea k a g e ch a rt o n p u ll o u t .
1 0 . LE AD Z E R O ad ju st , u s e d t o b a la n c e o u t the
s m a l l va lue o f c a p a c i ty o r i n d u c t a n c e in t h e t e s t le ads
w h e n m aki ng pr eci se m e a s u r e m e n t s of s ma ll v alu es o f
c a p a c i t y or indu ctan ce.
1 1 . LE A K A G E t e s t pu sh b ut to n, d e p re s s e d when
t e s t i n g c a pa c ito rs f o r leakage a f t e r t h e A P P L I E D
V O L T A G E sw itc h ( 1 4 ) h a s b e e n s e t t o t h e w o r k in g vo l
t a g e o f t h e c a pa c ito r a n d L E A K A G E R A N G E switch
( 1 3 ) is s e t t o t h e p r o p e r va lu e as i n d i c a t e d in th e lea k
a g e c h a r t ( 9 ) .
1 2 . Ca ut io n i n d i c a t o r L E D , b l i n k s w h e n t h e
A P P L I E D V O L T A G E switch ( 1 4 ) i s s e t to 5 0 Volts o r
h i g h e r as a w a r n in g to th e u s e r . V o l t a g e is on ly p r e s e n t
on t e s t leads w h e n L E A K A G E b u t t o n ( 1 1 ) i s
de p re s s e d .
8
F ig . 1 — L o c a t i o n o f c o n t r o l s a n d f e a t u r e s o f th e L C 5 3 .
9
S U P P L I E D A C C E S S O R I E S
2 2 . 6 4 G 3 7 T e s t Le ad M o u n t i n g C li p.
1 9 . 3 9 G 1 4 5 T e s t B u t t o n H o l d D ow n R od. U s e d t o
h o l d L E A K A G E ( 1 1 ) b u t t o n d e p re s s e d when r ef o r m
ing ly ti c s. ( 2 s u p p li e d — 1 in m o u n t i n g c l i p , 1 i n spare
p a r t s b a g . )
2 0 . 3 9 G 1 4 4 T e s t Lead A d a p t o r , U s e d to a d a p t t e s t
l e a d ( 2 1 ) c l ip s to large scre w t e r m in a l l y t i c s .
2 1 . 3 9 G 1 4 3 T e s t L e a d s . Spe cia l l o w c a p a c i ty c a b l e
w ith E - Z H o o k ® c l i p s . C o n n e c t to T e s t Le a d I n p u t
j ack ( 6 ) .
2 3 . 6 8 G 3 4 A lle n Wre nch . U s e d t o t i g h t e n k n o b s.
2 4 . 4 4 G 2 0 Sp ar e Fu se . 1 Am p, S lo - B l o .
O P T IO N A L A CC E S S O R IE S
2 5 . 3 9 G 8 5 Touch T e s t P ro be fo r in-circuit t e s t i n g o f
c o i ls f rom f o i l si d e o f P . C . bo ard.
N o t e s
O P E R A T I O N
IN T R O D U C T I O N
Bef ore u s i n g y o u r L C5 3 “ Z M E T E R ” fo r the f i r s t
time, t a k e a fe w m i n u t e s to read t h r o u g h t h e o p e r a
t io n s a n d a p p l i c a t i o n s s e ct io n o f t h e m an u a l carefully
to a c q u a i n t y o u r s e l f w i t h th e fe a t u re s o f th e L C 53 .
Once y o u a r e f am i li ar w i t h t h e general o p e ra t io n s ,
m o s t t e s t s can be p e r f o r m e d with th e in fo r m a t io n p r o
vi d ed on t h e L C5 3 f r o n t pan el.
P O W E R C O N N E C T I O N
Th e LC53 i s d e s i g n e d t o be o p e ra te d fro m 1 0 5 - 1 3 0
VAC (5 0 / 6 0 H z ) . If 21 0- 23 0 V AC o p e ra tio n i s r equ ir ed,
t h e u n i t m a y be m o d if ie d (a t ad d iti o n al co st ) by t h e
Se n co re Ser vic e D e p a r t m e n t , 3 2 0 0 Senco re Driv e,
S io ux F a lls , SD 57 1 0 7 .
To o p e r a t e t h e L C5 3 fro m t h e A C l i n e :
1 . C o n n e c t t h e AC li n e cord to a 1 1 7 VAC ( o r 2 2 0
VAC fo r m od ified u n i ts ) o u t l e t .
2 . T u r n t h e p o w e r s w i t c h o n .
3 . T h e L C 53 i s i m m e d i a t e l y r ea d y to m ea s u r e c a p a
cit y o r i n d u c t a n c e . If pr ec is e m e a s u r e m e n t s are to b e
mad e, t h e u n i t sh o u ld be al lo w e d to o p e ra t e f o r a t l e a s t
5 m i n u t e s to al lo w t h e c i r c u i t s t o st ab il iz e .
B L O W N F U S E C O N D I T I O N S
F U S E
T e s t
Lea d
I n p u t
T E S T L E A D I N P U T F U S E R E P L A C E M E N T : T h e
f u s e f o r th e t e s t l e a d i n p u t is lo c a t e d behi nd th e B N C
i n p u t ja c k . Th e f u s e ho l d er m a y b e r em ov ed b y tu rn i n g
th e BNC conn ecto r c o u n t e r cloc kwi se a nd u ns c re w in g
th e co n n ect or unt il t h e f u s e is fr e e . T h e B N C c onn ect or
o f a s e t o f t e s t le a d s m a y b e u s e d a s a “ W r e n c h ” to a i d
i n the rem ova l o f th e f u se ho ld er . W he n r epl aci ng th e
fu se h o ld e r , m ake s u re t h e ho ld er i s sc re w ed i n t ig h t ly
t o p r e v e n t t h e c o n n e c t o r f r o m t u r n i n g w h e n
co nn e ct in g a n d d i s c o n n e c t i n g t e s t le ad s. R epl ac e th e
fu se w it h a 1 A m p S lo - B l o 3 A G fuse o n ly .
) L Q C A P A C I T O R t U H A N D D U R I N G
> 0 L A R I T Y A N D V O L T A G E R A T IN G .
F U S E
T Y P E C O N D I T I O N S
1 A m p
3 A G
S l o - B l o
No L e a k a g e r e a d i n g s
C a p a c i t y r e a d s a s ma ll ne g a tiv e
v a l u e u n c h a n g e d b y L E A D
Z E R O a d j u s t m e n t
I n d u c t a n c e s h o w s f la s hi ng 8 8 8
w i t h 0 following i n d i c a t i n g o p e n .
No i n d i c a t i o n on R in g i n g Te st.
M O O E L LCJ
F USE R E P L A C E M E N T
A C F U S E : T h e L C 53 do e s n o t u s e an A C l i n e f u s e . T h e
u n i t is p r o t e c t e d by a sp ecial t h e r m a l s w itc h in t h e
power t r a n s f o r m e r . If t h e po w er t r a n s f o r m e r i s o v e r
lo aded, t h e t h e r m a l s w i tc h w i l l op e n th e p r im a ry ,
r e m o v i n g t h e v o l t a g e from th e unit. Sim ply a l l o w t h e
u n i t t o c o o l d ow n a n d t h e t h er m al s w itc h w i l l c l o s e ,
a p p l y i n g po we r to t h e p r i m a r y a nd allow ing t h e u n i t to
o p e r a t e a g a in . I f y o u r u n i t g o es o f f , a l lo w it to c o o l
down a n d t u r n it o n before any t r o u b l e s h o o t in g i s
s t a r t e d to a l lo w t h e t h e r m a l swi tch to c l o se i f it h a s
ope ned .
W A R N I N G
A l w a y s r e p l a c e t h e f u se i n th e t e s t le ad with a 1
A m p , 3 AG, S l o - B l o t y p e. A n y o t h e r t y p e o r c u r
r e n t r a t i n g m a y c a u s e i n t e r n a l d a m a g e to the u n i t
a n d w i l l voi d a l l w a r r a n t i e s .
T E S T L E A D F U S E : A 1 A m p, 3 A G , S l o - B l o fu se i s
used i n t h e t e s t le ad i n p u t o n the “ Z M E T E R ” . T h i s
p r o t e c t s t h e i n p u t of t h e u n i t fr o m vol tag e applied to
t h e i n p u t a c c i d e n tl y . Repl ace w ith a 1 Amp, 3 A G , S l o -
B l o t y p e on ly .
F i g . 2 — Th e 1 A m p , S A G C Sl o -B lo f u s e i s located
be h in d th e t e s t l e a d i n p u t j a c k .
TEST L E AD S
3 9 G 1 . 4 3 T E S T L E A D S : T h e t e s t leads ( s u p p li e d w it h
th e m e te r) use a sp e c ia l l o w c a p a c i t y c a b l e . Th e use o f
any o t h e r c ab le w i l l a d d e x t r a c a p a c i ty to the mete r
and may b e o u t o f r an g e of t h e L E A D ZE R O control. I f
t h e t e s t l e a d s e v e r n e e d r e p l a c e m e n t , i t i s
reco mme nde d t h a t new leads ( 3 9 G 1 4 3 ) b e orde red
dir ectly fr o m th e S e nc or e Servi ce D e p a r t m e n t , 3 2 0 0
S e n c o r e D ri v e , S i o u x - Fal ls, SI) 5 7 1 0 7 .
TEST L E A D M O U N T I N G C L IP
Th e sp e c ia l T e s t Lead M o u n t i n g C l i p ( 6 4 G 3 7 ) , inc lu d ed
i n th e sp a re p a r t s , m ay be m o u n t e d o n th e t o p o f th e
“ Z M E T E R ” , o n th e side o f t h e h a n d le or o n y o u r w o r k
b e n c h . Th e c l i p c a n t h e n be u s e d to h o ld th e t e s t le a d s
1 2
o u t of t h e way, b u t read y f o r u se a t an y t im e . To m o u n t
t h e t e s t le ad c l i p , simp ly p e e l of f the b a c k i n g , plac e o n
t h e s p o t to b e m o u n te d , an d p r e s s f i r m ly .
N O T E : D o no t m o u n t th e T e s t L e a d C li p to t h e s id e s o f
t h e “ Z M E T E R " a s i t w ill in te r fe r e w i t h t h e m o v e m e n t
o f t h e ha nd le .
F i g , 3 — T h e sp ecial T e s t L e a d M o u n t i n g C li p holds
th e t e s t leads o u t o f t h e w ay , b u t re ady f o r u s e a t a n y
ti me .
C A P A C IT O R TES TIN G
Th e “ Z M E T E R ” chec ks c a p a c i to r s fo r t h e i r a c tu a l
c a p a c i t y with 6 a u to m a ti c a l ly selec te d r a n g e s . Simpl y
c o n n e c t the c a p a c i to r to t h e t e s t l ead s, p u s h th e
V A L U E b u t t o n un d er C A P A C I T O R S a n d r e a d th e
v a lu e on the d i g it a l rea d o u t.
b u t vo id th e w a r r a n t y as w e l l . I f g r o u n d e d , o u t l e t i s
una va il ab le , u s e a g r o u n d i n g a d a p t o r a nd c o n n e c t the
th i r d w ire p i g t a i l to a g o o d e a r t h g r o u n d s u c h a s a
w at erp ip e.
2 . The “ Z M E T E R ” ha s be en d e s i g n e d t o g i v e a c c u
ra te r e a d i n g s o f c a p a c i t o r v a lu e o u t o f c ir c u it.
I m p e d a n c e s f o u n d i n th e c ir c u i t w ill u p s e t t h e “Z
M E T E R ' ’ ' 1 re a d in g s . Cap aci tors c a n n o t b e c h e c k e d i n -
c irc ui t w i t h a n y d e gr ee o f ac c u ra c y o r re li a b il i ty w i t h
a n y k n o w n t e s t m e t h o d .
3 . R e m o v e t h e p o w e r f r o m the ci r c u i t i f a c a p a c i t o r i s
to b e c h e c k e d t h a t ha s o ne e n d r e m o v e d b u t t h e o t h e r
e n d s til l c o n n e c t e d t o th e c i r c u it . I f th e u n i t u n d e r t e s t
is A C op e r a te d , r e m o v e th e A C line co rd f r o m t h e A C
o u t le t . W h e n e v e r p o s s i b l e , r e m o v e the c a p a c i t o r
c o m p l e t e l y f r o m th e c i rc u it .
C A P A C IT Y M E A S U R E M E N T A C C U R A C Y
Th e Se nc o re “ Z M E T E R ” has bee n de sig ne d to p r o
v id e a c c u r a t e m e a s u r e m e n t s (w it h in 1 % o f readi ng) o f
c a p ac ity u s i n g t he m o s t a c c u r a t e method ava ilab le .
Th e “ Z M E T E R ” m e a s u r e s the R C c h a rg i n g t im e o f
th e c a pa c ito r w i t h a p recision c h a r g i n g r es i s to r . This
giv es a t r u e a n d a c c u r a t e c a p a c i t y m e a s u r e m e n t. The
r e a d i n g s o f t h e ‘ ‘ Z M E T E R ” m a y o r ma y n o t be the
sa m e a s t h o s e of a n o t h e r i n s t r u m e n t usin g a d i f f e r e n t
m e a s u r in g s y s t e m . T h e b ri d g e, fo r exam ple , u s e s an
A C sign al a n d m e a s u r e s c a pa c i ti v e reactan ce , n o t th e
a c tu a l c a p a c i t y . Two b r id ge s w i t h dif ferent fre q u e n c y
signa ls w i l l g i v e di ff e re n t c a p a c i ty rea di ng s b e c a u s e
th e c a p a c i ti v e r e a c t a n c e c h a ng es with fre quency. The
h i g h e r t h e f r e q u e n c y , t h e lowe r th e c a p a c i t i v e
r ea c ta n c e a n d t h e lo w er t h e c a p a c i ty re a d i n g . Th e
Se nc or e “ Z M E T E R ” w i l l pr ov id e a tr u e m e a s u r e o f
cap aci ty.
E
3 V
; J O O V
/ 4 9 0 V
1 0 V
C A P A C IT O R S I I N D U C T O R S
L E A K A G E V A L U E I V A L U E R I N G I N G T E S T ( 0 }
F ig . 4 — J u s t c o n n e c t th e c a p ac ito r to t h e t e s t l e a d s ,
d e p r e s s t h e V A L U E b u t t o n , a n d re a d t h e c a p a c i t y o n
t h e d i s p l a y ; th e r e a r e n o range s w i t c h e s to set.
S P E C I A L N O T E S O N C A P A C I T O R T E S T I N G :
1 . B e f o r e o p e r a t i n g t h e “ Z M E T E R ” , be s ur e t o
c o n n e c t th e A C li ne cord to a p r o p e r l y g r o u n d e d A C
o u t l e t . T h e t h i r d w ir e g r o u n d on t h e “ Z M E T E R ”
p r o v i d e s m o r e a c c u ra t e re a d in g s o f low l e v e l ca p ac ito rs
(below 10 00 p F ) w i t h th e th ir d w ire s h ie l d i n g . D e f e a t
i n g t h e t h i r d w ir e g r o u n d w il l n o t o n l y r e s u l t in lower
a c c u r a c y v a lu e re a d in g s o n c ap ac ito rs b e lo w 10 0 0 p F ,
- W A R N I N G
When c h e c k i n g c a p ac ito r s , co nn ect th e c a p a c i t o r
t o th e t e s t l e a d s be fore d e p re s s in g the V A L U E o r
L E A K A G E p u s h b u t t o n .
To C he ck C a p a c i t o r s fo r C a pa c it y V a lu e
1 . . Co nn ec t t h e t e s t le ads to th e c a p a c i to r to b e
tes te d. P o l a r i t y o f t h e t e s t leads i s o n ly i m p o r t a n t i f
ch ecking a p o l ar i ze d c a p a c i to r su ch a s a n e le c tr ol yt ic
capacitor. W h e n c he cki ng a polar iz ed l y t i c , th e r ed le a d
m u s t b e c o n n e c t e d to t h e po sit iv e te rm in al .
2 . D ep re ss t h e V A L U E b u t t o n un de r t h e C A P A
C I T O R S s e c t i o n o f t h e p u s h b u t t o n sw it c h .
3 . R e a d t h e v a l u e of t he c a p a c i to r o n the f r o n t pane l
r ead ou t. Th e v a l u e o f c a p a c i t y w i l l b e i n m ic r o f a r a d s
( u F ) i f th e L E D i n f r o n t o f th e u F in di ca to r i s l i t. Th e
c a p ac ity i s in p i c o f a r a d s ( p F ) i f t he L E D i n f r o n t o f th e
p F i n d ic a to r is li t.
1 3
N O T E : M o s t c a p a c ito r valu es will r e a d v e r y q u i c k l y ,
b u t e x t r e m e l y la r g e e le c tr ol y tic ca p a ci tor s ( o v e r 5 0 , 0 0 0
uP) m a y t a k e a f e w s e c o ? i d s t o c om e u p t o a r e a d i n g
le v e l. F o r e xa mp le, a 5 0 , 0 0 0 u F w i l l t a k e a b o u t 5
s e c o n d s bef ore a re ading i s se en on th e d i g i t a l rea dou t.
A n e x t r e m e l y la rg e ( 1 0 0 , 0 0 0 u F ) c o m p u t e r - t y p e l y t i c
m a y t a k e 1 0 se co n d s b e f o r e th e valu e i s d i s p l a y e d on
t h e readout. I f th e val ue does n o t r e a d i n th e t i m e l i s t
ed abov e, t h e n t h e ca p acitor i s e it h e r s h o r t e d o r v e ry
l e ak y . I n e it h e r c a s e , i t i s p r o b a b l y defective. R e c h e c k
t h e v a lu e ag ain j u s t t o b e sure .
th e a u t o r a n g i n g c i r c u i t . Values be lo w 2 p F c a n be r e a d ,
h o w e v e r, b y u s i n g t h e L E A D Z E R O co n t ro l to o f f s e t
th e m e t e r z e r o .
To R e a d C a p a c i t o r s L e s s T h a n 2 p F
1 . Place t h e t e s t l e a d s ( w it h n o c a p a c i t o r co nne cted)
o n t h e w o rk a r e a in s u c h a wa y t h a t t h e y w i l l n o t be
move d w hen t h e c a p a c i t o r to b e t e s t e d i s co nnected. B e
sure t h a t t he t e s t lea ds are n o t o n a m et a l s u rf a c e or
ne ar A C pow er or a n AC o p e r a t e d d e v i c e .
T h i s p ro c e d u r e pr ovi de s a c c u r a te r ea di ng s on t h e c a p a
c i t o r s be in g t es t e d . Sma ll va lu e readi ngs ( 2 p F to 1 0 0 0
p F ) m a y b e o f f sli g h t ly du e to th e cap aci ty o f t h e t e s t
lea ds . T h i s c a p a c i t y ca n b e ba lan c e d out fo r e x t r e m e l y
h i g h a c c u r a c y r e a d i n g s w i t h t h e L E A D Z E R O co n tr o l .
T h e L E A D Z E R O control i s a u to m a ti c a l ly s w i t c h e d
o u t o f c ir c u it f o r c a p a c i ty va lue s above 1 0 , 0 0 0 p F .
T O E L I M IN A T E TE S T L E A D C A P A C IT Y
1 . P l a ce t h e t e s t le ads ( w it h n o c ap aci tor c o n n e ct e d )
on t h e work area i n su ch a way t h a t they w il l n o t b e
m o v ed wh en th e c a pa c ito r to b e t e s t e d i s c o n n e c t e d . B e
s u re t h a t th e t e s t lead s are not o n a met al s u r f a c e o r
n e a r a n A C pow er o u t le t or A C ope rat ed devi ce. S t r a y
AC m a y a f f e c t t h e r e a d i n g of s m a l l v a l u e s o f
c a p a c i t o r s .
2 . D e p r e s s t h e V A L U E b u t t o n a nd a d j u s t t h e L E A D
Z E R O con tro l un til the m e t e r re a ds 0 0 . 0 , with n e g a t i v e
s ig n a p p e a r i n g o c c a si o n a lly .
3 . Ca re ful ly co nn ect th e c a pa c ito r to b e t e s t e d to t h e
L e s t le ads . D e p r e ss th e V A L U E b u t to n a n d r e a d the
a c t u a l value o f t he c a pa c ito r o n th e m e te r .
2 . D ep re ss t h e V A L U E b u t t o n a nd a d j u s t t he L E A D
ZE R O control u n t i l t h e m e t e r read s a pos itive n u m b e r
such as 2 . 0 p F . A n e g a t i v e n u m b e r can b e ob t a i n e d on
th e re a d o u t b u t w il l gi ve an in co rr ect re adi ng .
3 . Co nne ct t h e c a p a c i t o r to th e t e s t l e a d s w i t h o u t
d i s t u r b i n g t h e i r p o s i t i o n o n t he wo rk are a.
4 . D e pr e ss t h e V A L U E b u t t o n t o o b t a i n a r e a d i n g on
t h e m ete r. S u b t r a c t t h e s e t t i n g o f s t e p 2 fr o m t h e r e a d
ing to g e t t h e a c t u a l va lu e o f t h e ca pacitor. F o r
e xamp le, i f t h e r e a d i n g o b t a i n e d wa s 2 . 6 a n d t h e s e t
t i n g in s te p 2 w a s 2 . 0 , t h e n t h e c a p a c i t o r v al u e i s 2 . 6
m in us 2 . 0 or 0 . 6 p F .
INTER PR ETIN G “ Z METE R” V A L U E REA DINGS
S om e c a p a c i t o r d e f e c t s r e s u l t i n a r e a d i n g m uch lower
t h a n th e t o le r a n c e spec ifi ed f o r t h e ca pacitor. D e t a i l s
o n d e te r m i n in g t h e t o le r an c e o f co m m on c a p a c i to r s a re
included i n t h e A p p e n d i x secti on a t th e e n d of t h e
m anu al . If t h e r e a d i n g i s o u t si d e t h i s tol era nce , t h e
c a pa c ito r s ho u ld b e c on sid er ed b a d .
S om e c a p a c i to r s , esp ecial ly a lu m in u m e le c tro ly tic s,
m ay show a n o v e r r a n g e ind ic a tio n (f las hin g 8 8 8 ) . T h i s
r e a d i n g i n d ic a te s t h a t th e c a p a c i to r i s d ef e c t iv e .
F ig . 5 T e s t lea d c a p a c it y c a n b e z e ro e d o u t fo r
e x t r e m e l y a c c u ra t e rea di ng s o n s m a l l va lu e ca p a c ito rs.
C H E C K I N G C A P A C IT O R S BE L O W
2 P I C O F A R A D S
T h e a u t o r a n g i n g circ uit i n th e “ Z M E T E R ” w il l o f te n
sh ow a “ 0 0 . 0 ” r e a d o u t f o r c a pa c ito rs l e s s t h a n 2 p F .
T h i s is du e to th e “ z e r o w i n d o w ” t h a t i s n e c e s s a r y f o r
T he L C 5 3 a u t o m a t i c a l l y d i s p l a y s t h e two m o s t
c om m on c a p a c i t o r v a lu e s o f pi c o f a ra d s ( p F ) and m i c r o
f a r a d s ( u F ) . C a p a c i t o r s from 1 p F to . 0 8 9 uF w i l l s ho w
as “ p F ” , a n d c a p a c i t o r s o ver . 0 9 u F w i l l s h o w a s “ u F ” .
Y o u m a y e n c o u n t e r s om e c a p a c i to r s t h a t a r e m a r k e d
w it h t he o p p o s i t e multiplier. Some co mpanies, fo r
exam ple, w i l l m a r k t h e va lu e o f a g i ve n c a p a c i to r a s
“ . 0 4 7 u F M , w h ile o t h e r s m a y m a r k t h e same t y p e o f
c a p a c i to r as “ 47 00 p F " . Th e fo ll o w in g t a b l e w i l l
explain h o w to e a s i l y c o n v e r t o n e r e a d i n g t o a n o t h e r .
This co nv e rsi on c h a r t also a p p e a r s o n th e pu l l- o u t
c h a r t o n t h e b o t t o m o f th e “ Z M E T E R ” f o r y o u r
c o n v en ie n ce .
CH AN GE T O
FR O M
M I CROF ARAD S
NA NOFARAD S M o v e d e c i m a l
PICO FA R AD S M o v e d e c i m a l
M I C R O F A R A D S NA NO FA RA DS PICO FARA DS
3 p l a c e s l e f t
6 p l a c e s l e f t
Mov e d e c i m a l
3 p l a c e s r i g h t
M o v e d e c i m a l
3 p l a c e s l e f t
M o ve d e c i m a l
6 pla ce s r i g h t
M o ve d e c i m a l
3 pla ce s r i g h t
C har t 1 — C a p a c i to r m u l t i p l i e r c o n v e r s i o n cha rt
1 4
TE ST IN G L A R G E S C RE W T E R M I N A L LY TI CS
Some ly t i c s , espe cia lly i n i n d u s t r i a l a p p li c a t i o n s, us e
r a t h e r la r g e s c r e w te rm in a ls r a t h e r t h a n th e co n v en
t io na l s o l d e r t erm in als . T h e 3 9 (1 1 4 4 T E S T L E A D
A d a p t o r ( s u p p l i e d with the L C 5 3 ) s ho uld b e u s e d to
c o n v e r t the sm all E - Z 1 l o o k “ cli ps to lar ge all iga to r
clips to f i t the la rge scr ew t e r m in a ls . A sp ec ia l c l i p i s
m o u n te d o n the b a c k o f t h e L C 5 3 t o s t o r e th e 3 9 G I 4 4
when i t ' s not i n u s e .
F ig . 6 — Th e 3 9 G 14 4 T e s t L e a d a d a p t o r allows e v en
t h e la r g e sc re w t e r m in a l ca p a c ito r s t o b e c o n n e c t e d to
th e LC 5 3 f o r t es tin g .
T o Us e th e 3 9 G 1 4 4 :
1 . Co nnect t h e R e d E - Z H o o k " o n t h e L C 5 3 t e s t
le a d s to the re d t er m in a l o f t h e 39 G 1 4 4 T E S T L E A D
A D A P T O R . Co nn ec t t h e Blac k cl ip to th e o t h e r
ter m ina l.
2 . Connect t h e R e d alliga tor c l i p o f t h e 3 9 G . 1 4 4 to t he
p o s it i v e s c r e w t er m in a l a n d t h e B l a c k a ll ig a t o r c l i p t o
t h e n e ga tiv e ter mina l.
3 . T e s t t he c a p a c i to r i n t h e u s u a l m a n n e r .
N O T E : T h e red a r e a , o f the A P P L I E D V O L T A G E
s w i t c h s h o u l d b e o b se rv ed. Voltag es in t h i s a r e a a r e 5 0
Vol ts a n d a bo v e and cou ld cause a s ho c k h a z a r d . Th e
b l i n k i n g L E D i s a n e x tr a r e m in d er t h a t the A P P L I E D
V O L T A G E s w i tc h i s s e t t o 5 0 Vo lt s o r gre at er. A l w a y s
o b s e r v e the red a r e a o f th e s w i t c h i n c a se th e e x tr a
r e m i n d e r L E D i s burned o u t .
F i g . 7 — - T h e LC 53 c a n t e s t ca p ac itor s for L e a k a g e a t
the r a t e d w o r k i n g vo lt a g e o f the c a p ac i to r. J u s t s e t , the
A P P L I E D V O L T A G E sw it c h , s e t t h e L E A K A G E
R A N G E , a n d de p r es s the L E A K A G E b u t t o n a n d r e a d
the l e a k a g e on the d i sp l a y i n mi c ro am p s .
T o Check a C a p a c i t o r f o r L ea k a ge
1 . C o n n e c t th e c a pa c it or to b e t e s t e d to th e t e s t
l e ad s. I f t h e c a pa c it or i s p o la ri z ed , su c h as an e lec tro
ly ti c c a p a c i t o r , c o n n e c t t h e p o s i t i v e e n d o f th e
c a p a c i t o r to t h e re d l e a d a n d t h e n e g a t i v e en d to th e
bla ck le ad .
2 . S e l e c t t h e de sire d lea ka ge r a n g e wit h t h e
L E A K A G E R A N G E switch . The A L L O T H E R
C A P A C I T O R S ( 1 0 0 u A m a x ) r an ge i s us e d f o r m o st
sm all ly tics, paper , m i c a , f i l m , and ceramic capacitors .
The L A R G E ALU M. E L E C T R O L Y T I C S ( 1 0 0 K u A
m a x ) r a n g e i s u se d f o r l arge lyt ics . C o n s u l t th e lea k ag e
c h a r t t o d e te r m in e w h ic h ran ge sho uld b e u sed . It i s
C H EC K IN G C A P A C IT O R S FOR LE A K A G E
C a p a c it o rs w i l l often r ead th e c o r r e c t va lu e b u t e xhi bi t
l eak ag e w h i c h may affec t th eir o p e r a t i o n i n th e c ir cu it .
T h e “ Z M E T E R ” w i l l c h e c k c a p a c i t o r s fo r this lea k
a g e a t the ir ra t e d wo rk in g v o l t a g e u p to 6 0 0 V ol ts .
T h e r e a r e tw o leakage c u r r e n t r a n g e s , 0 to 1 0 0 uA and
0 to 1 0 K u A a nd 1 2 v o lta g e s fro m 3 V o l t s to 6 0 0 Volt s
D C . Th e vo lta ge i s applied t o t h e t e s t le a d s on ly w h en
t h e L E A K A G E b u t t o n i s d e p re s s e d . T h e c a p a c i to r i s
a u t o m a t i c a l l y d i s c h a r g e d w h e n t h e L E A K A G E
B U T T O N IS R E L E A S E D .
|
- - - - - - - - - - - - - - - - - - - - - - - - - - -
1 T h is i n s t r u m e n t i s t o b e o p e r a t e d b y a techni ca lly
tr a in ed p erson on ly — w h o u n d e r s t a n d s t h e sh o c k
ha z ar d o f up to 6 0 0 Vo lts a pp lied t o t h e t e s t l e a d s
d u r in g the c a p a c i to r le aka ge t e s t .
DO NO T ho ld the c apacitor i n y o u r h a n d or touc h
th e te s t l e ad s o r c a pa c it or lead s w h e n m a k i n g t h e
leakage t e s t w ith 5 0 Vo lts o r more.
W A R N I N G
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
F i g . 8 — S i m p l y c o n s u lt t h e leak age c h a r t o n the p u l l
o u t t a b u n d e r th e LC 53 o r the lea ka ge c h a r t i n thi s
m a n u a l fo r t h e m a x i m u m allo wab le l ea k a g e o f a l u m i
n u m a n d t a n t a l u m lytics.
1 5
b e s t to s t a r t w ith th e h i g h e s t rang e ( L a rg e Al um inu m
El e ct ro l y t ic s ) i f y o u are n o t su re wh ich r a n g e to u s e . I f
t h e di spl ay s h o w s “ 00 0", then s w i t c h to t h e o t h e r
r a n g e . Y o u c a n sw itch ra n g e s o f t h e L E A K A G E
R A N G E sw itch w h i l e ho lding the L E A K A G E b u t t o n
i n i f yo u ha ve se l e c t e d th e wr ong r a n g e o r merely w is h
t o sw itc h r a n g e s .
3 . Select th e n or m al D C wo rk in g v o l t a g e o f th e c a p a
c i t o r to b e tested w it h th e A P P L I E D V O L T A G E
s w i tc h . I f the n or m al wo rk in g v o lta g e of t h e ca p ac ito r
fall s betw een the range s o n the sw itc h , sele ct th e n e x t
l o w e r range. F or exam ple, i f th e w o r k i n g v o l ta g e o f the
c a p a c i t o r to b e t e s t e d is 3 5 V ol ts , s e le c t t h e 2 5 V ol t
p o s i t i o n o f the A P P L I E D V O L T A G E s w itc h .
4 . D ep re ss the L E A K A G E b u t t o n a n d read the
v a lu e o f le aka ge c u r r e n t i n m ic ro am ps o n t h e di sp lay .
C a p a c i t o r s w i l l take a s p e c i f i c a m o u n t o f time t o
c h a r g e and g i v e a n a c c u r a t e re a d i n g o f th e leak age
c u r r e n t . Consul t t he t y p e o f c a p ac ito r y o u are t e s t i n g
in t h e f o l l o w i n g list ing f o r time r e q u i r e d to sh o w a
d is pl a y.
C E R A M I C , P A PE R , M IC A , A N D FIL M T Y P E S :
U s e t h e A L L O T H E R C A P A C I T O R S p o s it i o n o f the
L E A K A G E R A N G E sw i tc h w hen t e s t i n g t h e s e c a p a
c i t o r s fo r le a k a g e . T he leakage r e a d i n g sh o u ld t a k e
o n l y 2 to 3 se c o n d s f o r a n a c c u r a t e d i s p l a y . In so m e
c a s e s , w it h a very l a rg e va lu e o f c a p a c i t y , a l o w lea kage
r e a d i n g m a y ap p e ar i n t h e f irs t se con d o r tw o and t h e n
c h a n g e to 0 0 . 0 . This i s a normal c o n d it io n a n d me rely
s h o w s th e cap acito r i s cha rgi ng . I f a r e a d i n g i s stil l
p r e s e n t a ft e r a b o u t f i v e se co nds , t h e c a p a c i t o r has
e x c e s s i v e le aka ge and shou ld b e c o n s id e r e d de fe ct iv e.
c ircu its. W h e n a ly tic i s f u l l y ch a rg e d, t h e r e a d i n g w i l l
ch an ge in s ma ll s t e p s up a nd do wn sh o w i n g t h e c a p a
ci tor i s c h a r g e d . T h e s e sm al l s t e p s s im pl y i n d i c a t e t h a t
the c a p a c i t o r u n d e r t e s t i s a t t e m p t i n g t o fil te r sma ll
ch a n g es in t h e A C power l i n e vo ltag e. I t is n o t neces
sa ry , i n m o s t ca ses, to wai t u n til t h e c a p a c i t o r i s f u l l y
ch arg ed t o d e t e r m i n e if i t i s g o o d . J u s t d e p r e s s th e
L E A K A G E b u t t o n unt il th e leakage d r o p s b e l o w the
m a x i m u m allo wab le l e v e l as sh own o n t h e c h a r t i n the
m a n u a l or o n th e pu ll o u t t able o n th e b o t t o m o f t h e “ Z
M E T E R ” .
If th e L A R G E A L UM . E L E C T R O L Y T I C ( L 0 K u A
m a x ) r a n g e i s us ed fir st a nd th e re a d i n g d r o p s to 0 0 0 ,
s im p ly c h a n g e t h e L E A K A G E R A N G E s w i t c h to the
ALL O T H E R C A P A C I T O R S ( 1 0 0 uA max) rang e
w h i l e d e p r e s s i n g th e L E A K A G E b u t t o n . Ig n o re the
first tw o r e a d i n g s a f t e r ch a n g in g r a n g e s a s t h e r a n g e
sw i tc h i n g c h a n g e s the se ri es imped an ce w hi c h i n t u r n
cause s a m o m e n t a r y c ha ng e i n t he c h a r g i n g r a t e .
130
S P E C I A L N O T E O N L O W V O L T A G E C E R A M I C S :
C e r a m i c cap acitors o f 5 0 w o r k i n g v o l t s or g r e a t e r h a v e
a v e r y h i g h i n sul at ion re sis ta n c e a n d s h o u l d n o t s h o w
a n y lea ka ge o n th e lea ka ge test. Ce r am ic ca p a cit or s
w i t h a lowe r w o r k i n g v o lt a g e t h a n 50 V o l t s h a v e a
m u c h lo w e r i n sul at ion r e si s ta n c e a n d m a y sho iv lea k
a g e on th e le aka ge te st . T h e a c t u a l i n s u l a t i o n r e si s
t a n c e va rie s f ro m m a n u f a c t u r e r to m a n u f a c t u r e r , b u t a
g e n e r a l r ul e o f t h u m b i s : 1 6 w o r k i n g v o l t cap a citor s
m a y s h o w a s m u c h a s 16 u A o f l e a k a g e a n d b e w i t h i n
tolerance. 2 5 Vo lt ce ramic ca p a cit or s m a y s h o w up t o
2 . 5 u A o f l e a k a g e . I t i s b e s t to m a k e a c o m p a r i s o n tes t,
i f p o s s ib l e , w i t h a k n o w n g o o d c a p a c i t o r a n d t h e s u s
p e c t ca p a cit o r wh en i n d o u b t I n m o s t ca se s, t h e s e l o w
v o l t a g e cap acitors w ill o n l y b e u s e d i n c ir c u i ts whe re
t h i s h i g h leak age w il l n o t u p s e t th e c i r c u i t op er atio n.
A L U M I N U M LY TICS :
T h e alu m in u m ly ti c c h a rg i n g tim e w i l l v a r y w it h t h e
c a p a c i t y and th e applied le aka ge v o l ta g e . O n larg er
l y ti c s , th e m ete r w i l l ov e rra n g e (sho w ing f la s h in g 8 8 8 )
u n t i l t h e c h a rg in g c u r r e n t drop s b e lo w 1 0 mA. The
t y p i c a l a m o u n t o f time t h a t th e m e t e r w i l l o v e rr a n g e
c a n b e d ete rm in ed fro m c h a r t 2 . T h e d i sp l a y w i l l
u s u a l l y be gi n a t a h ig h leakage r e a d i n g an d th en drop
w i t h each u p d a te o f th e d i g ita l d i sp l a y . T h is sh ow s the
c h a r g i n g a c t i o n of t h e c a p a c i t o r t h r o u g h t h e
i m p e d a n c e o f t h e A P P L I E D V O L T A G E power s u p p ly
C a p a c it y ( u F )
Cha rt 2 — M e t e r ov err ang e t im e v e rs us c a p a c i t o r val ue
a nd a p p l i e d v o lt a g e .
N O T E : S o m e l y t i c s m a y s h o w a go od v a lu e reading
a nd a lo w l ea k a g e re ading a n d b e a q u e s t i o n a b l e c o m
p o n e n t. I f t h e val ue i s r e ch ec ke d a f t e r t h e l ea k a g e i s
c h e c k e d a n d th e ca p a c it y i s lowe r th a n f i r s t c h e c k e d
a n d b e g i n s t o inc rea se t o w a r d th e or ig in a l v a l u e , the
l y t i c i s e x h i b i t i n g dielectric abs orp tion. T h i s ge n e ra l l y
oc cu rs w h e n th e ele ctr olite i n th e l y t i c b e g i n s to d r y
o u t . T h e c a p a c it o r do es n o t c o m p l e t e l y d i s c h a r g e a n d
th e r e s i d u a l v o lt a g e reduc es th e c h a r g in g t i m e m a k i n g
t h e c a p a c i t o r a p p e ar t o b e a s ma lle r va lu e. I f a c ap a
citor e x h i b i t s die lec tr ic abs orp tion, t r y r e f o r m i n g the
ca p a c ito r a s e x p l a i n e d i n “ R e f o r m i n g L y t i c s on th e “ Z
M E T E R ” or ‘ R e f o r m i n g L y t i c s w i t h a P o w e r S u p p l y ”
c o v er e d l a t e r i n t h i s m a n u a l. I f the l y t i c s t i l l s h o w s
diel ec tric a b s o r p t i o n a f te r ref orm ing , t h e l y t i c s h o u ld
b e c o n s i d e r e d d efe ct ive .
T A N T A L U M L Y T IC S :
T a n t a l u m ly ti c s ha ve a m uch l o w e r l e a k a g e c o m p a r ed
t o a l u m i n u m l yt ic s fo r th e s a m e c a p a c i ty a n d w o r k i n g
voltag e. T a n t a l u m ly tics sho u ld , i n m o s t ca ses, b e
ch ecked on th e A L L O T H E R C A P A C I T O R S r a n g e o f
the L E A K A G E R A N G E swit ch. T a n t a l u m l yt ic s w i l l
g i v e a l e a k a g e r e a d i n g in a very s h o r t p e r i o d o f tim e ,
j u s t a m a t t e r o f 2 t o 5 se c o n d s.
1 6
L EAK AGE CH A R TS
Th e f o l l o w i n g leakage c h a r t s a r e th e s a m e c h a r t s t h a t
y o u w i l l f i n d o n t h e pu ll o u t t r a y o n the L C 5 3 * ' Z
vI ETER". Th ey s h o w th e m a x i m u m al lo w ab le leak age
o f co m mo n ly tics an d t a n t a l u m lyt ics. Not e t h a t th ese
fi gu re s are t h e w o r s t c ase c o n d i t i o n s as sp e c if i e d b y
t h e E le ctr on ic s I n d u s t r y A s s o c i a t i o n ( E l A ) s t a n d a r d s
It S - 3 4 5 , and m a n y ly tic s w i l l s ho w le aka ge values w e l l
b e l o w these fi gu re s .
M A X I M U M A L L O W A B L E L E A K A G E (i n m ic r o a m p s )
S t a n d a r d A l u m i n u m E l e c tr o l y t ic C a p a c it o r s S t a n d a rd T a n t a l u m C a p a c i t o r s
Cap ac ity
i n ij F
1 , 0 0 0
1 , 5 0 0 4 00
2 , 0 0 0 4 70
5 , 0 0 0 74 0
1 0 ,0 0 0 Ί
2 0 ,0 0 0 1 4 7 0
5 0 ,0 0 0 1 7 0 0
10 0 , 0 0 0 3 3 0 0
2 0 0, 00 0
3 V
1
3
5
1 0 5
1 5
2 0 5
2 5 5
3 0
3 5 6
4 0 6
5 0 8
7 0 1 1
1 0 0
1 5 0
2 " 0
2 5 0
3 0 0 4 5
4 0 0 20 0
5 0 0 2 3 0
7 5 0 2 9 0
4 0
3 4 0
1 0 4 0
4 650 66 00 8 500
1 5
2 2
3 0
1 0 V 1 5 V
6 V
5
5
5
5 5
5
5 5 5
5 5 8
5
5 8 1 3
1 0 1 5
6
1 3 2 0
8
5
9 1 5 2 5
1 0
1 8
1 2 2 0
1 5 2 5 4 0
2 0 3 5 1 9 0
3 0 5 0 23 0
4 5 2 3 0 28 0
2 0 0 270 33 0
2 3 0 300
2 50 3 30
2 90 38D 4 70
33 0 4 2 0
5 20 64 0
4 0 0
4 7 0 600 74 0
7 4 0 900
57 0
660 8 50
1 0 4 0 134 0
1 4 70 190 0 2 3 20
2070 2 6 8 0 3 2 90
2 3 4 0 4 2 4 0 5 2 00
4 650 6 000
5 0 V 1 0 0 V
2 5 V
5
5
5 5
5
5 8
6 1 3
1 3 2 5 5 0 2 7 0
2 0 4 0
5 Π
2 5
3 0 22 0 30 0 4 2 0
4 0
230 3 3 0 4 6 0
2 8
4 5 25 0 3 6 0 5 0 0
3 0
1 9 0
27 0 38 0
2 1 0 30 0 4 20
25 0 35 0 5 0 0
3 0 0 4 20 6 0 0 8 5 0
3 7 0 52 0 7 3 0
4 2 0 6 0 0
3 7 0
4 7 0 67 0
4 00
S 2 0 7 3 0
66 0 850 1 2 00 1 7 0 0
5 2 0
67 0 950 1 3 4 0 1 9 0 0
82 0 1 1 60
95 0 1 3 4 0
1 1 6 0 1 6 4 0 2 3 20
10 4 0
1 3 4 0 1 9 0 0
1 6 4 0
2 1 20 30 00
3 0 0 0
4 2 4 Θ
6000
4 24 0
9500
6 7 0 0
73 50
9 5 00
2 0 0 V
5
1 5 3 0
2 5 5 0
2 3 0
2 7 0
1 0 4 0
8 5 0 1 2 0 0
9 5 0 1 3 4 0
1 0 4 0 1 4 7 0
1 6 4 0 2 3 2 0
1 9 0 0 2 6 8 0
3 2 8 6
2700
4 24 0
3 0 0 V
1 5 2 0
1 0
4 5 20 0 b e lo w
23 0 27 0
33 0
3 3 0
4 00 4 60
4 60 54 0
3 8 0
52 0 600
57 0 660
6 20
5 4 0
660 76 0
6 0 0
7 3 0 850
7 1 0
8 7 0 1000
1 0 4 0 1200
1 3 0 0 14 70
1 4 70
1 6 4 0
18 00
2 Q 8 Q
23 20
24 50
Non-polarized lytics s hou ld b e m e a s u r e d fo r leakage i n
b o t h direc tio ns . Make th e l e a k a g e t e s t , t he n rever se
t h e t e s t le ads a n d r e p e a t th e t e s t . Som e non-p ol ari zed
ly t i c s ha ve o n e le ad c o n n e c t e d to th e c a s e . The
allow ab le le aka ge o n th es e t y p e s i s tw ic e t h a t o f a
r e g u l a r lytic o f t he s a m e c a p a c i t y a n d v o lta ge r a t i n g i n
b o t h dir ections.
4 0 0 V
38 0 3 . 3
70 0
1550 2 2 0
Ca pacity
i n u F
1 . 5 a n d
2 . 2
4 . 7
6 . 8
1 0
1 5
2 2
3 3
4 7
6 8
1 0 0
1 5 0
3 3 0
4 7 0
6 8 0
3 V 8 V 1 0 V
A L L C A P A C I T O R S I N
T H I S A R E A S H O U L D
J>hUW I M U
L E A K A G E
1 . 5
2 . 5
1 . 5
2 3 . 5
1 . 5 3 5
2 4 .5 7
1 4
2 2
1 0
2 0
3 6 . 5
5 1 0 1 5
7
1 0 . 5 2 0
1 5
2 0
1 5 V 2 5 V 5 0 V
1 . 5
2 3 . 5
2 2 . 5
2 . 5 4 6
3 . 5
5 . 5 1 0
8 . 5
5
7 . 5 1 2 2 0
1 1 1 5
1 6
2 0
1 4
2 0
1 . 5
2
2 . 5
5
U s e L A R G E A L U M I
N U M E L E C T R O LY T IC S
U s e A L L O T H E R
C A P A C I T O R S R a n g e
R a n g e
C har t 3 — M a x i m u m a l l o w a b l e l ea ka ge f o r A l u m i n u m a n d
ID E N T IF Y IN G C A P A C I T O R T Y P E S
The c a p ac ito r h a s i ncr eas ed in u se t r e m e n d o u s l y i n the
p a s t f e w y e a rs . M an y ne w t y p e s a nd i mp ro ve d
ve rsions are n ow i n u s e . T h e fol lo w in g in fo r m a t io n i s
o ro vid ed as a g u id e t o aid in t h e i d en tif ic a tio n o f the
,y p e o f c a p a c i t o r a n d i t s v a lu e . Th e c o l o r co de c h a r t s
co ve r m o s t o f t h e v a r i a t i o n s t h a t w i l l b e en co u n ter ed .
Th e re m ay be o t h e r s n o t c o v e re d h er e a n d i n th os e
ca s es , c o n s u lt t h e m a n u f a c t u r e r of t h e e q u i p m e n t f o r
i nfo rm at ion .
T a n t a l u m l y t i c s p e r E l A s ta n d a r d s .
T A N T A L U M L Y T IC S :
T a n t a l u m l y ti c s a re b e in g f o u n d i n m o r e elec tronic cir
c u i t s t h a n e ve r b e f o r e . I t s lo w l e a k a g e c u r r e n t a nd
s m a l l e r ph ys ic a l s i z e h a s m a d e i t a s t a n d o u t f o r s o l i d -
s t a t e c ircuits. Th e t a n t a l u m l y t i c s can b e m a d e to
t i g h t e r to ler anc es t h a n a l u m i n u m ly tics. T a n t a l u m s
a r e n o t m a r k e d as s u c h a n d t h e s c h e m a t i c gen era lly
doe s n o t in di c a te t h e ly tic as a t a n t a l u m . T he t a n t a l u m
ly ti c is smal ler (ab ou t one-half or l e s s ) t h a n t h e same
c a p a c i t y a n d v o l ta g e a l u m i n u m lyt ic. Th e t a n t a l u m
1 7
comes i n m a n y si z e s a n d s h a p e s a s sh own in fi gu re 9 .
Som e u s e a c o l o r c o d e l i k e t h a t s h o w n in fi g u r e 9 . No te
t h a t th e c o l o r co d in g can s ho w t h e p o s it i v e l e a d . Some
t a n t a l u m s are m a r k e d with t h e v a l u e a n d a + o n t h e
p o s it i v e l e a d . O t h e r t a n t a l u m s u s e t h e s h a p e o f t h e
l e ad or a r o u n d i n g o f a corner t o i n d ic a te th e p o s iti v e
l e a d .
T y p i c a l Ph ysi cal S h a p e s of
C o m m o n T a n t a l u m C a p a c i t o r s
F I L M T Y P E S :
T h e s e a re t h e h a r d e s t to identify a s t o t h e t y p e o f f i l m
b e i n g use d. Th e t y p e o f f i l m i s n o t g e n e r a l l y m ar k e d
a n d i t c oul d b e a n y o n e o f a t l ea s t five t y p e s . O n th ese
c a p a c i t o r s , you w i l l h a v e to c o n s u lt t h e m a n u f a c t u r e r ’ s
s e rv ic e i n f o r m a t io n f o r t h e c o rr e c t t y p e . I t s hou ld b e
n o t e d t h a t a M y l a r ® c a pa c ito r i s n o t a uni ver sa l
r e p l a c e m e n t f o r a ny f i lm t y p e c a p a c i t o r . E a c h f i l m has
d i f f e r e n t c h a r a c t e r i s t i c s a n d m u s t b e r e p l a c e d w i t h the
s a m e t y p e o f fi l m us ed in th e c ircuit. T h i s i s espe cia lly
t r u e in t h o s e a re a s o f s c h e m a ti c s t h a t a r e de s ig n e d a s
“ S a f e t y C r i t i c a l ” .
T E S T I N G F O R DI ELECTRIC A B S O R P T I O N
D ie le c tri c a b s o r p t i o n is th e i n a b i l i t y o f a c a p a c i t o r t o
c o m p l e t e l y d i sc ha r ge to z e r o . T h i s is s o m e t i m e s c a l le d
“ b a t t e r y a c t i o n ” or “ c a p a c i to r m e m o r y ” a n d i s due t o
t h e diele ctric of th e c a pa c ito r r e t a i n i n g a c ha rg e . A l l
c a p a c i t o r s ha ve some die lec tri c a b s o r p t i o n , b u t e le c tr o
l y ti c c a p a c i t o r s ha ve t h e hi g h e s t a m o u n t a n d w i l l often
a f f e c t c ir c ui t o p e r a t io n i f it b e c o m e s exc essive . Y o u
c an c he ck ly tics f o r die lec tri c a b s o r p t i o n d u r i n g t h e
n o r m a l t e s t f o r c a p a c i t o r v al ue a n d l e a k a g e by simpl y
r e e h e c k i n g th e va lu e o f th e c a p a c i t o r a f t e r th e lea ka ge
t e s t in t h e fo ll o w in g man ne r.
F i g . 9 — T a n t a l u m l y t i c s c o m e i n a ll s iz e s a nd sh ap es .
T he m o s t c o m m o n s hap es a r e s h o w n h ere for id e n t i f i ~
c a ti o n o f th e p o s i t i v e l e a d .
C E R A M IC D ISC S:
T h e ceramic disc i s w el l -k n o w n a n d c a n be ide ntified by
i t s ro und s h a p e a n d generally b r o w n c o l o r . S om e c e r a
m i c dis cs com e i n diffe rent c o lo r s su ch a s bl u e a n d
gr ee n d u e to a di ffe ren t c o a t i n g m at e ri a l o n t h e
o ut si de . M o s t cera mic d is cs a r e m a r k e d w it h the valu e
a n d th e to le ra n ce. T h e m o st c o m m o n w o r k in g v o l ta g e
( 5 0 0 V o lt s ) i s ge ne ra lly not m a r k e d , b u t a n y t h i n g dif
f er e nt i s nor mally foun d o n t h e c a p a c i t o r bo dy . Th er e
are o t h e r m a r k i n g s suc h a s N P O , G M V , N 1 5 0 0 , o r
sim ilar. Th es e a re t h e t e m p e r a t u r e co ef fi cie nt s or h o w
m u c h the c a p a c i t o r w i l l c h a n g e w i t h a ch an g e i n
t e m p e r a t u r e . W h e n rep la ci n g a c e r a m i c d i s c , b e s u re to
u se t h e s am e e x a c t t y p e t h a t w a s u s e d i n th e orig inal
c ircuit. NPO s t a n d s f o r N e ga tiv e -P o s iti v e -Z e ro or n o
c h a n g e i n c a p a c i ty . G M V i s G u a r a n t e e d M in im um
Valu e and th e a c tu a l va lu e cou ld be m u c h hi ghe r. T h e
l e t t e r N i n d ic a te s t h a t th e c a p a c i t y w i l l decr ease wit h
a n increase i n t e m p e r a t u r e , a n d if y o u fi n d o n e w i t h a
l e t t e r P , t h a t o n e w i l l i n cre ase in c a p a c i ty with an
i n cre ase i n t e m p e r a t u r e . F u r t h e r i n fo rm a tio n w i l l b e
found i n t h e s ect io n o n “ C a p a c i t o r T he or y an d t h e ‘ Z
M E T E R ’ ” a n d i n t h e G l o s s a r y a t th e back o f the
man ua l.
1 . C o n n e c t t he c a p a c i t o r to t h e t e s t le a d s a n d t e s t f o r
t h e c a p a c i t o r va lu e i n t h e n or m a l m a n n e r . No te the
v a l u e o f t h e cap acito r.
2 . T e s t t h e c a p a c i to r fo r l ea ka ge a t t h e r a t e d w o r k
i n g v o l t a g e o f th e c a pa c ito r. A ll o w t h e l e a k a g e c u rr e n t
s h o w n o n th e di sp la y to dro p t o t h e m a x i m u m al lo w
a b le le a ka ge o r b e l o w a s sho wn on t h e l e a k a g e c h a r t i n
t h e m a n u a l or on t h e p u ll o u t t a b u n d e r t h e mete r.
3 . Re lease t h e L E A K A G E b u t t o n a n d allo w t h e d i s
p l a y to d r o p to 0 0 0 a nd t h e n i m m e d i a t e l y d e p r e s s the
V A L U E b u t t o n a n d n o t e t h e c a p a c i t o r r ead in g.
a . If t h e c a p a c i t y re a d i n g i s w i t h i n 5 % o f th e origi
n a l value a n d t he re a d i n g i n c r e a s e s sl o w l y up w a rd
t o w a r d th e original v al ue, or t h e r e i s n o d if fe r en ce
in t h e r ea di ng s , t h e c a pa c ito r h a s v e ry l itt le d ie le c
t r i c a b s o r p t i o n a n d i s g o o d .
b. I f t h e va lu e r e a d i n g dif ference is g r e a t e r t h a n 5 %
b u t le ss t h a n 1 5 % , th e c a p a c i t o r m a y requ ire
r e f o r m i n g a s de sc ri be d later. S o m e o f t h e die lec tric
o x id e h a s d e te r i o r a t e d a nd r e f o r m i n g t h e lyt ic m ay
b r i n g i t ba c k to a us efu l l i f e . R e c h e c k fo r die lec tri c
a b s o r p t i o n o fte n a t t e m p t i n g t o r e f o r m t h e cap aci tor .
c . I f th e va lu e re a d i n g di fference i s g r e a t e r t h a n
1 5 % a n d t h e re a d i n g c h a n g e s u p w a r d rap id ly
t o w a r d th e orig in al v al u e, t h e c a p a c i t o r has e xc es
s iv e die lectric ab s o rp t io n . E l e c t r o l y t i c c a p a c i to r s
e x h i b i t i n g t h is m u c h die lec tri c a b s o r p t i o n m a y b e
r ef o r m e d i n some cas es. I f t h e c a p a c i t o r e x h ib i ts
s im i la r die lec tric a b s o r p t i o n a f t e r r ef o r m i n g hai
b e e n a t t e m p t e d , it s hou ld b e r e p l a c e d a s it w i l l g iv e
t r o u b l e i n t he cir cui t.
N O T E : I f a m i c a o r f i l m t y p e c a p a c i t o r s h o w s a n y
di ele c tri c abs or p ti on, i t c a n b e c o n s i d e r e d “ b a d ”
a n d s h o u l d b e r e p l a c e d .
1 8
R E F O R M IN G L Y T I C S ON T HE “ Z M E T E R ”
A l u m i n u m ly ti c s w il l o f te n sh o w l o w va lu e o r hi gh
lea ka g e i f t h e y h a v e been s i t t i n g o n a sh el f fo r a lo ng
per iod o f tim e. G e n e r a l l y a n y alu m in u m e lec tro ly tic
c a p a c i to r s i t t i n g o n t h e sh elf f o r over one ye ar w i l l
sho w up i n t h i s m a n n e r . T h i s i s cau sed by a lo s s o f
some o f t h e oxid e c o a t i n g t h a t fo r m s th e die lectric o f
the c a p a c i to r . In m a n y c a se s , t h e ox id e c o a t i n g m ay be
ref or me d w i t h t h e a p p l i c a t i o n o f a D C v o l ta g e fo r a
pe ri od o f tim e. T h e “ Z M E T E R ” can refo rm t h e
dielectric m a t e r i a l by u s i n g t h e sam e DC po we r s u p p ly
t h a t i s u s e d f o r l e a k a g e te s t in g . R e f o rm i n g m a y
r eq u ir e m o r e t h a n a n h o u r be fo re th e c a p a c i t o r r e t u r n s
to i t s n o r m a l c o n d it io n . T h e 39 G 1 4 5 T E S T B U T T O N
H O L D D O W N R O D is in cl u d e d w it h th e “ Z M E T E R ”
to ho ld t h e L E A K A G E b u t t o n down f o r r e f o r m i n g
lytics . A sp e ci a l cl ip is m o u n te d o n t h e r e a r o f t h e
i n s t r u m e n t for s t o r a g e of t h e 39 G 1 4 5 when it is n o t in
u s e .
W A R N I N G
Use th e 3 9G 14 5 w i t h e x tr e m e caut ion! D o n o t
to u ch t h e t e s t l e a d s or t h e c ap aci tor leads w h il e
th e 39 G 1 4 5 is b e in g us ed. M ake s u re t h a t the
c a p a c i t o r bein g r e f o r m e d w i l l n o t t o u ch any
m e t a l or come i n c o n t a c t w ith any m e t a l obje ct
w h ile it is being r e f o r m e d . Th e v o l ta g e from th e
A P P L I E D V O L T A G E switch i s p r e s e n t o n th e
t e s t l e a d s w h e n t h e L E A K A G E b u t t o n is
d e p re s s e d .
S P E C I A L N O T E : T h i s m e t h o d o f h o l d i n g t h e
L E A K A G E b u t t o n i n p r o v i d e s a g r e at e r degree o f
s a f e t y than a “ l a t c h i n g " t y p e o f s w i t c h . A l w a y s
o b s e rv e e x t r e m e c au ti o n w h e n y o u s ee th e han dle i n
f r o n t o f th e s w i tc h e s as t h i s w i l l t e l l y o u v ol t a g e i s
being ap p l ied t o th e t e s t le ad s a n d . c a p a c i to r . N e v e r
a t t e m p t t o op erate a n y o t h e r f u n c t i o n p u s h b u t t o n s
wh en th e 3 9 G 1 4 5 i s b e in g use d.
i A P A C I T O R S | IN D UC TO RS
w u m 't iT o w n I f tN w our w f j n c i i m
L E A K A G E V A t U t I V A L U E R I N G I N G T E S T ( G )
F i g . 1 0 ~ Th e 39 G 1 4 5 T e s t b u t t o n H o l d D o w n R o d c a n
b e u s e d t o k e e p th e L E A K A G E b u t t o n d e p r e s s e d
w h e n r e fo r m i n g a l y t i c on t h e “ Z M E T E R " .
R EF OR M IN G LY TI C S W I T H A POWER S UP P L Y
N O T E : O b s e r v e t h e red a r e a o n the A P P L I E D
V O L T A G E s w i t c h . T h i s i 7 i d i c a t . e s a v o lt a g e o f 5 0 t o
6 0 0 Vol ts D C a n d can b e da ngerous. T he sp e cia l L E D
w il l als o b l i n k on a n d o f f t o i n di c at e t h a t th e
A P P L I E D V O L T A G E s w i t c h i s s e t t o 50 t o 6 0 0 Vo lts
b u t rely o n t h e re d area o f th e s w i t c h i n ca se th e L E D
bu r ns o u t.
T o Us e t h e 3 9 G 1 4 5 T e s t B u t t o n Hold Dow n R o d :
1 . C o n n e c t t h e ly tic t o b e re formed to t h e t e s t le ads
o b s e rv i n g p o l a r i t y ,
2 . Select t h e p r o p e r v o l t a g e with t h e A P P L I E D
V O L T A G E s w i tc h . O b s e r v e th e above w a r n in g when
u s in g 5 0 V o l t s or mor e.
3 . D e p r e s s t h e L E A K A G E b u t t o n , a n d wh il e
hol di ng t h e b u t t o n i n , p l ac e t h e 39G 14 5 o n t h e b u t t o n .
Br in g th e h a n d l e to t h e f r o n t o f th e m e t e r a nd we dg e
th e 39G14 5 b e t w e e n t h e h a n d le a nd th e L E A K A G E
b u t t o n s o t h a t t h e ro d ho ld s t h e L E A K A G E b u t t o n
d e pr e s s e d.
4 . A f t e r t h e c a p a c i t o r h a s be en refo rme d fo r a t l e a s t
o n e hou r, i t s h o u ld be allowed to d i sc h a r g e a n d sit fo r
a b o u t 3 0 m i n u t e s . T h e n r ech ec k the value a n d t h e l e a k
a ge t o se e if t h e r e f o r m i n g p r o ce s s e d h a s im p ro ve d t h e
c a pa c ito r.
A s e p a r a t e D C p o w er s u p p l y m a y b e used to reform a
capac ito r. Th e power s u p p l y m u s t hav e a vol ta ge
o u t p u t eq u al to th e c a p a c i t o r s wo rk in g voltage, and
should be a d j u s t a b l e from zero t o a l lo w the vol ta ge to
be i ncr eas ed s l o w l y . T h e p o w e r su pp ly shou ld a ls o
h a v e a D C c u r r e n t m e t e r or a n e x t e r n a l m et e r m u s t b e
use d to m o n it o r th e c h a r g i n g c u r r e n t .
■CA UTIO N·
A l w a ys us e a se ri es l i m i t i n g r e s i s t o r when a p p l y *
m g v o l ta g e from an e x t e r n a l po w e r su pply . Th is
w i l l p r e v e n t th e c a p a c i t o r f r o m c ha rg i n g to o f a s t
wh ich m ay caus e p e r m a n e n t d a m a g e to t he
ca pa ci to r.
- W A R N I N G -
V o l t ag e s fro m 5 0 to 6 0 0 V o l t s c a n b e da nge rou s.
D o n o t to u ch t h e leads f r o m t h e power s up pl y o r
th e leads o f t h e c a pa c i to r . Do n o t a l lo w the c a p a
citor to com e i n c o n t a c t w i t h m e t a l o r any meta l
o bj ec t w h il e t h e v o l ta g e i s b e in g applied. A w a r n
in g sign sh o u ld b e pl ac e d o n or n e x t to the uni t
w h ile t h e c a pac ito r is b e i n g r efor me d.
1 9
T o U se t h e E x t e r n a l P o w e r Su p p l y to Reform Lytics:
1 . W it h t he p o w e r s u p p l y t u r n e d OF F, c o nn ect th e
pos it ive powe r s u p p l y t e r m in a l, t h r o u g h a 1 0 0 0 Oh m, 5
W a t t r e s i s t o r a n d t h e e x t e r n a l c u r r e n t m e t e r ( i f
r e q u ir e d ) to t h e p o s i t i v e t e r m in a l o f th e lytic to b e
r e fo rm ed .
2 . Connect t h e n e g a t i v e t e r m in a l o i ' th e power sup ply
t o the n e g a t i v e t e r m in a l of t h e ly t i c .
3 . Set t h e o u t p u t v o l t a g e co n tr o l o n th e power s u p p ly
t o mini mum .
4 . T u r n t h e p o w e r s u p p l y to ON a nd s l o w l y inc rea se
th e v o l ta g e w h il e w a t c h i n g t h e c u r r e n t met er. D o not
a l l o w t h e c h a r g i n g c u r r e n t to go above 5 0 m A . If the
meter r e a d s h i g h e r t h a n 5 0 mA, st o p in cr e as in g the
volt age u n til t h e c u r r e n t d r o p s b e l o w t h is l e v e l . Th en
s l o w l y i n cre ase t h e v o l t a g e a g a i n w h i l e w a t c h in g th e
c u rr e n t m e t e r u n t i l t h e D C w o r k in g v o l ta g e o f the
cap acito r i s rea ch ed . Allow t h e c a p a c i to r to r em a in a t
it s f u l l r a t e d w o r k i n g v o l t a g e f o r a t l ea s t 3 0 m i n u t e s t o
o n e h o u r .
5 . A f t er one hour, t u r n t h e pow er s up ply of f and
a l l o w th e c a p a c i t o r to d i s c h a r g e . A f t er th e ca p ac ito r
h as d i s c h a r g e d fo r a t l e a s t one hou r, rech eck t h e v al ue
a nd lea kage on t h e “ Z M E T E R ” to s e e i f f u rth e r
reforming i s n e c e s s a ry .
LEAKAGE I N C E R A M IC , P A P E R , FILM, AND
M IC A C A P A C IT O R S
Ce ra m ic , paper, f i l m , a nd mica t y p e c a p a c i to r s shou ld
n o t show any lea ka ge a t a l l . T h e m a x i m u m a l lo w a b le
lea ka ge i s b e l o w th e s e n s i t i v i t y o f th e m e a s u r in g
ci rcuit. If a ny o f t h e s e t y p e c a p a c i t o r s e xh ib it le ak ag e,
t h e y are d ef ec ti v e.
C H E C K IN G F O R LE A K AG E B E T W E E N
S E C T IO N S O F A M U L T I- S E C T I O N LYTIC
M u lti pl e section ly tics a re c o m m o n i n m a n y po we r
sup plie s. Lea ka ge so m e t im e s d e v e lo p s b e tw e en tw o o r
mo re sections of a m ul tip le s e c t i o n t y p e. Thi s lea kage
m a y b e due to a n i n te r n a l s h o r t c ir c u it , o r a bu il d -u p o f
d i r t be tw een t h e t e r m in a ls o n t h e o u t si d e o f the
cap aci tor . T h is t y p e o f l ea ka ge is p a r t i c u l a r l y diffi cul t
t o tro ub l e sh o o t bec aus e t h e s i g n a l f ro m o n e section o f
t h e c a p a c i to r i s coupled to t h e o t h e r sec tion w h ic h
r e s u l t s i n mult ipl e s y m p t o m s in t h e o p e ra t io n o f the
d ev ic e i n wh ich t h e c a p a c i to r is u s e d .
A n o h m m e t e r w i l l of ten fa i l t o s ho w th is leakage
be c au s e it o n ly occu rs a t or n e a r th e c a p a c i t o r 's
o p e r a t i n g vo ltag e.
T he “ Z M E T E R ” w i l l qui ckly lo c a t e t h i s t y p e o f l eak
a g e w h il e p e rf o r m i n g th e s t a n d a r d l eak ag e t e s t . Th e
s e ct io ns t h a t a r e n o t b e in g t e s t e d f o r leakage are
sim pl y s h o rt e d o u t w h i l e t h e l ea k a g e o f t h e f irs t
s ect io n i s be ing m o n it o re d w i t h t h e L C 5 3 c u r r e n t
m et e r. A n incre ase i n l eak ag e i n d i c a t e s i n te r na l l ea k
a g e be tw een s e ct io ns a nd a b a d c a p a c i to r .
F i g . 1 1 — A l y t i c m a y be r e fo r m e d w i t h an e x te r na l
p o w e r s u p p l y b e in g sure to us e a se ri es r e s i s to r a n d a
cu rre n t m e t e r t o m o n i t o r t h e r e fo r m i n g c u r r e n t
CA PACITOR TE ST IN G
APP LIC ATI ON T IP S
N O VA LU E R EA D IN G O N SM A LL
V A L U E C A P A C I T O R S
A sh o rt e d c a p a c i t o r w i l l n o r m a l ly gi v e a 0 0 0 read out .
H ow ev e r, th e r e a re s om e c a p ac i to r s , generally b e l o w
1 0 0 0 pF, t h a t a re n o t s h o r t e d , b u t w i l l s t il l gi v e a 0 0 0
re a d o u t o n c a p a c i t o r V A L U E . If the leakage o f thes e
ca p ac ito rs i s m e a s u r e d , it w i l l b e dis covered a l o w
v a l u e leak ag e c u r r e n t i s p r e s e n t . This sm all ' value o f
le aka ge c u r r e n t w i l l u p s e t th e c a p a c i ty m ea s u r in g
ci rc ui t o f t h e ” Z M E T E R ” a n d cau se th e 0 00 rea d o u t.
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
The fo l lo w in g pr oc ed ur e s h o u l d only b e p e r
formed b y a qualifi ed p e r s o n who u n d e r s t a n d s
t h e p o te n ti a l h a z a r d o f up to 6 0 0 V o lts b ei n g
ap pl ied to the t e s t lead s while m a k i n g th e leak
age t e s t . D o n o t to uc h t h e R ed t e s t lea d c l i p o r th e
c a pac itor ter m in a l i t i s c o n n e c t e d to d u ri ng th e
t e s t o r w h i l e t h e L E A K A G E b u t t o n i s depr essed.
To t e s t f o r leakage be twe en s e c t i o n s o f multi -se cti on
cap acitor:
1 . Connect o n e sec tion of t h e c a p a c i to r to th e t e s t
lead s ob se rvi ng polari ty.
2 . Set t h e A P P L I E D v o l t a g e s w i tc h to th e pr ope r
v o lt a g e f o r t h e sect ion be in g t e s t e d . Be su re to use th e
co rr e c t vo lt a g e as m a n y m u lt i- s e c t io n c a p ac it o r s hav e
differen t vo lt a ge s f o r ea ch secti on.
3 . D ep re ss the L E A K A G E b u t t o n a n d obs erve th e
leakage c u rr e n t re a d in g on t h e di sp la y.
4 . Us in g a s h o r t ju m p e r, c o n n e c t on e en d to the
comm on ter m in a l o f the c a p a c i t o r and th en w h i l e
d e p re s s in g the L E A K A G E b u t t o n , conn ect the other
end o f th e j u m p e r to o n e o f t h e o t h e r ter m in a ls o f th e
c a pa c it or n ot connec ted to t h e t e s t le a d s. A g o o d l y t i c
w i l l sh ow n o ch a ng e i n t h e le a k a g e r ea din g. A ca pac i
t o r w i t h le a k a g e b e tw e e n s e c t i o n s w i l l sho w an
W A R N I N G
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 0
i n c r e a s e i n l e a k a g e wh en t h e s h o r t i s ap pli ed t o t h e
u n t e s t e d t er m in a l.
N O T E : B e s u r e t o t e s t a l l th e te rm in al s o f t h e m u l t i -
s e c t i o n l y t i c a g a i n s t e a c h o t h e r f o r leakage b e t w e e n
s e c t i o n s .
F ig . 1 2 — T e s t t h e l ea ka ge o f o ne s e ct io n a n d t h e n
s h o r t one o f t h e o t h e r s e c t i o n s to groun d. A n in c r e a s e
in l e a k a g e c u r r e n t s h o w s l ea k a g e b e tw e e n t h a t s e c t i o n
a n d t h e one u n d e r tes t.
L A R G E F L U C T U A T IO N S I N LYTIC
L E A K A G E R E AD IN G S
of ten b e ref or m e d t o i t s o r ig in a l c a p a c i ty w i t h t h e “ Z
M E T E R ” o r p o w e r s u p p ly or w hen p la ce d in t h e
circ uit a n d al low ed t o r u n fo r a pe rio d o f ti m e .
LOW VALUE L Y T I C S U S E D IN H IG H
FRE QU EN CY C IR C U IT S
L o w va lu e ly tics ( 1 u F to 1 0 0 0 u F ) use d i n hi gh f r e
que nc y filtering a p p l i c a t i o n s s u c h as s w itc hi ng po w e r
s upplies and AGO c i r c u i t s i n television c an d ev el op an
above normal i n t e r n a l series res is ta nc e. I n th ese a p p l i
cations, the seri es r e s i s t a n c e w i l l in ter fere with t h e
filte rin g action of t h e c a p a c i t o r an d i m pr ope r c i r c u i t
a ction w i l l re su lt. I n t h e s e rare occasions, th e c a p a c i t o r
co u l d b e p u t t o u s e i n a co n v e n ti o n al 6 0 H e r tz po w e r
s u p p l y a n d f u n c t i o n n o r m a l l y . B e c a u s e t h e s e
c a pa c ito rs w i l l f u n c t i o n n or m a lly a t 6 0 Hertz, t h e y
m ay n o t show u p a s b a d o n the “ Z M E T E R ” . In fac t,
t h e leakage o f t h e h i g h in te r n a l se ri es r e s i s ta n c e c a p a
citor m a y ev en b e lowe r t h a n a good capa citor. I f t h i s
i s t h e c a s e , c o n n e c t a sco p e u s i n g t h e L o C a p a c i t y
probe acro ss t h e c a p a c i t o r a n d obs erve the ripple
wave fo rm w h en c h e c k i n g le akage. I f the wave fo rm h a s
ti p s, a s shown in F i g u r e 1 3 B , t h e c a pa c ito r has a se ries
i n te r n a l r e s i s ta n c e t h a t w i l l in te rfe re with circ uit o p e r
a ti o n a n d s hou ld be replac ed. I f n o tip s are ob se rve d,
as sh own i n F i g u r e 1 3 A , t he n t h e c a p a c i to r h a s v e r y
l o w or no rm al i n t e r n a l series resi sta nc e.
L e a k a g e r e a d i n g s on lytics w i l l no rmally s t a r t a t s o m e
h i g h v a lu e a n d t h e n de crease a s th e c a p a c i to r c h a r g e s
up. W h e n t h e c a p a c i t o r i s f u l l y cha rged , t h e r e w il l be a
s m a l l v a r i a t i o n i n t he l eak ag e re a d i n g i n d i c a t i n g t h a t
t h e c a p a c i t o r is t r y i n g t o filter o u t th e s m a ll v a r i a t i o n s
i n t h e l i n e vo lta ge . Wh en t h e v a r i a t i o n s bec ome r a t h e r
l a r g e a n d c h a n g e i n l a r g e j u m p s , s u s p e c t a n
i n t e r m i t t e n t ly ti c . Ly tic s t h a t e x h ib it t h is s y m p t o m
w i l l gi ve t r o u b l e i n t h e circ uit a n d s ho uld be r e j e c t e d .
L E A K A G E M E A S U R E M E N T S O F
N O N - P O L A R I Z E D LY TI C S
L e a k a g e m e a s u r e m e n t s o n no n- po la ri ze d l y t i c s m u s t
b e m a d e i n b o t h di re c tio n s. Simp ly make t h e l e a k a g e
t e s t , n ot e t h e l e a k a g e c u rr e n t, a n d t hen r e v e r s e t h e
l e a d s a n d m a k e t h e le a ka ge t e s t again. I f b o t h e n d s o f
t h e no n- pol ar ize d ly ti c a r e i n s u l a t e d fro m t h e c a se , t h e
m a x i m u m allo wa bl e lea ka ge i s t h e s a m e as l i s t e d in t h e
l e a k a g e c h a r t . I f o ne end i s c o n n e ct e d to t h e c a se , t h e
a ll o w a b l e le a k a g e is do ub le d.
L Y T I C S S I T T I N G I N S TO CK
L y t i c s t h a t h a v e been s i t t i n g o n the s h e l f m a y s ho w
h i g h l e a k a g e w he n ch ec ked . T h e s e lytics sh o u ld be r e
f o r m e d a c c o r d i n g to the in fo r m a t io n i n t h i s m a n u a l
u n d e r “ R e f o r m i n g L y t ic s w i t h th e ‘ Z M E T E R ” ’ or
“ R e f o r m i n g L y t i c s w it h a Po w er S u p p l y ” . G e n e r a l ly , a
l y t i c t h a t h a s been s i t t i n g a n d i s c h ec ke d fo r v a l u e a n d
t h e n l e a k a g e m a y i nd ic a te a l a r g e r c a p ac ity v a l u e w h e n
t h e v a lu e is rec hecked. F o r ex ampl e, th e l y t i c m a y
m e a s u r e 1 0 0 0 u F when t e s t e d b ef o re p e r f o r m i n g t h e
l e a k a g e chec k. W h e n th e va lu e i s c h ec ke d a f t e r t h e
l e a k a g e t e s t , t h e v a lu e m ay now b e a s hi gh a s 11 0 0 u F .
T h i s i n d i c a t e s t h a t t h e ly tic wa s p a r t i a l ly r e f o r m e d
w h e n t h e l e a k a g e w a s t e s t e d . T hi s ty pe of l y t i c c an
G o o d 2 . 2 u F l e a k a g e r ip p i e . B V / P i v .
Defec tive 2 u F le a k a g e r i p p l e , 5 V / 0 i v .
F i g . 1 3 — T he s c o p e w a v e f o r m s h o w n in A i s a g o o d
c ap ac ito r w i t h no i n t e r n a l series resista nce . B s h o w s a
d e f e c t i v e c ap ac ito r w i t h in te r n a l se ri es re si s ta n c e a s
d e t e c t e d b y th e s p i k e s a t th e to p o f the wave fo rm .
I N T E R M IT T E N T C A P A C I T O R S
O c c as io n al ly , a c a p a c i t o r c a n becom e i n t e r m i t t e n t . A
poor w e l d o f t h e lead to t h e f o i l or o t h e r m ech an ica l
m al fu nc tio n c a n c a u s e t he c a p a c i to r to op e ra t e i n a
r a n d o m fa shi on . T h e leads o f t h e su s p e c t e d c a p a c i to r
s hou ld b e m ove d a r o u n d or pul led o n wh en m a k i n g t h e
V alu e t e s t . A c h a n g e in c a p a c i t y i n d ic a te s an i n t e r
m i t t e n t prob lem.
2 1
A n i n t e r m i t t e n t c a u s e d by a ba d w e l d can s o m e t im e s
sh ow up a s f l a s h i n g 8 8 8 on t h e meter. T h is i s due t o t h e
c a p a c i t y c h a n g i n g a t t h e time th e V A L U E b u t t o n is
d e p r e s s e d a n d th e m e t e r c a n n o t l o c k in on a r ang e.
IN T E RN A L C O N S T R U C T IO N O F
A L U M IN U M E L E C T R O L Y T I C
I n s u l a t o r
P o s i ti v e
Lead
Tab C o n n e c t e d
T o A n o d e Foil
Ta b
W e l d e d
T o Le ad
Paper
Im p r e g n a te d
W ith
E l e c tr o l y te
Ta b C o n n e c te d
Rol led
to O th e r F o il
Fo il
A l u m i n u m Lead
Ca se
Tab W e l d e d to
A l u m i n u m Cas e
N e g a t iv e
F ig . 1 4 — A l y t i c c a n be co me i n t e r m i t t e n t i f the w e l d is
n o t p r o p e r o n e i t h e r tab o r becomes corroded a f t e r a
l o n g p e r i o d o f u s e .
T I M E R E Q U IR E D T O OB TA IN A VA LU E
R E A D IN G ON A C A P A C IT O R
C a p a c i t o r s of 1 0 0 0 u F a n d b e l o w w i l l read a l m o s t
i n s t a n t a n e o u s l y . M o re t im e i s required f o r c a p a c i to r s
ab o v e t h i s v alu e. T h e a c t u a l time d e p e n d s up on t h e R C
t im e c o n s t a n t of t h e cap aci tor . For ex ample, a 50, 000
u F w i l l r e a d in only 5 seconds a n d a 1 0 0 ,0 0 0 u F t a k e s
on ly 1 0 se co n d s. T h e m e t e r w i l l r e a d 0 0 0 u n til t h e
c o u n t i n g c i r c u i t h a s r eac h ed the p r o p e r l e v e l a n d t h e n
t h e c a p a c i t y r e a d i n g w i l l a p p e a r o n th e display.
soldering ir o n o r h e a t g u n , t h e t e m p e r a t u r e va ri a ti o n
can b e s e e n . If the c a p a c i t o r is m a r k e d C O G o r N PO ,
f o r exam ple, th e c a p a c i t y sh o u ld n o t ch an ge o r cha nge
o n ly slightly. If t h e c a p a c i t o r i s m a r k e d with an N ,
su ch a s N 1 5 0 0 , t h e n t h e c a p a c i t y w i l l decr ease a s lo n g
as th e h e a t i s applied u n t i l t h e lo w e r limi t i s r e ac h ed .
Ca p a c ito rs m a r k e d w i t h t h e l e t t e r P ( n o t i n co mmon
usag e) w i l l inc rease c a p a c i t y w it h t h e ap plication o f
hea t.
C H E C K IN G F IL M T Y P E C A P A C IT O R S F O R
TEMPERATURE S E N S I T I V I T Y
F i l m t y p e c a p a c i t o r s c a n b e c o m e t e m p e r a t u r e
sensi tiv e a n d cau se p r o b l e m s i n th e ci rc u it . B y con
n e c tin g t h e s u s p e c t c a p a c i t o r to t he “ Z M E T E R ” a n d
t e s t i n g t he c a pa c ity whil e a p p ly i n g h e a t f r o m a sold er
in g iro n o r h e a t gun or s p r a y i n g w ith a “ f r e e z e s p r a y ” ,
t h e ch an ge in c a p a c i ty c a n be s e e n . M o s t f i l m t y p e c a p
a c ito rs should c ha n g e v e r y lit tle i n ca pac ity. I f a
d r a s t i c c ha n g e i s seen, t h e c a p a c i to r ha s b ec o m e
t e m p e r a t u r e sen sit ive a n d sh o u ld b e re p la c ed . A w o rd
o f c a ut io n h er e — do n o t t o u c h th e s old er ing ir o n to the
capacitor. Th e h e a t c a n d a m a g e t h e se ns it iv e pl ast ic
f i l m use d as a d i e l e c t r ic a n d m ak e the ca pa c ito r
u se l e s s .
TE S T IN G C A P A C IT Y O F S IL IC O N DI OD ES
AND T R A N S IS T O R S
The “ Z M E T E R " can m e a s u r e the c a p ac i ty o f s i l i c o n
diode s an d t r a n s i s t o r s . T h e rever se leakage p a t h s
a r o u n d t h e t r a n s i s t o r a n d diode ca n also b e mea su red
wi th in th e limi ts o f t h e l e a k a g e po w er supp ly o f the “ Z
M E T E R ” . Th e c o n n e c t io n s to m e a s u r e c a pa c ity an d
leakage a re th e s a m e a n d t h e p ro pe r l e a d connections
a re show n i n f i g u re 1 5 . i f t h e r e a d o u t shows 0 0 0 w h e n
t e s t i n g fo r c a p a c i ty o r f la s h in g 8 8 8 w hen t e s t i n g
l e ak ag e, th e le a d s a re r e v e r s e d . N o p r e c a u ti o n s a r e
ne ces sa ry w h e n t e s t i n g c a p a c i ty , b u t the f o l l o w i n g
guide lines sh ou ld be o b s e r v e d when t e s t i n g le a k a g e .
1 . Us e o n ly th e 3 V o l t p os iti on o f the A P P L I E D
V O L T A G E switch w h e n t e s t i n g Ib e o .
O n v e r y l a r g e c a p a c i t o r s , gen era lly o v e r 1 0 0 ,0 0 0 u F ,
t h e f i r s t r e a d i n g m a y dif fer fro m l a t e r r e a d i n g s by a s
m u c h a s 1 0 p e r c e n t . T h is i s n o rm al a n d ca u se d b y t h e
diel ect ric a b s o r p t i o n f o u n d i n m o s t t y p e s o f c a p a c i
to rs . T h i s s l i g h t c h a n g e in r e a d in g s sh o u ld c a u se n o
p r o b l e m b e c a u s e t h e to le ra n c e s o f t h e s e c a p a c i to r s a r e
g e n e r a ll y -2 0 % , + 8 0% wh ich m e a n s t h a t t h e f i r s t
r e a d i n g w i l l be close e n o u g h to loca te c a p a c i to r s t h a t
h a v e c h a n g e d v a lu e o u t s i d e t h e t ole ran ce li mi ts. I f y o u
r e q u i r e a v e ry p r ec is e reading, sim p ly le av e t h e
C a p a c i t o r V A L U E b u t t o n d e p re s s e d u n t il t h e “ Z
M E T E R ” h a s g o n e t h r o u g h a t l e a s t 2 c o mp le te r e a d
ing cycles.
C H E C K I N G C E R A M IC C A P A C IT O R S F O R
T E M P E R A T U R E S E N S IT I V IT Y
C e r a m i c c a p a c i t o r s (often c a ll ed d isc c a p a c i t o r s
b e c au s e of t h e i r p h y s ic a l ap pe arance) com e i n a wid e
v a r i e t y o f c a p a c i t y v a lu e s a n d t e m p e r a t u r e t ole ran ce s.
B y c o n n e c t i n g t h e c a p a c i to r to th e “ Z M E T E R " a n d
c h e c k i n g t h e c a p a c i t y an d t hen a p p ly i n g h e a t fr o m a
2 . Us e the s e t t i n g of t h e A P P L I E D V O L T A G E
swi tch t h a t m a t c h e s t h e m a x i m u m app lied vol tag e to
t h e t r a n s i s t o r w hen t e s t i n g Ic b o o r I c e o . D o no t e x c e e d
t h e r a t i n g s o f th e t r a n s i s t o r . Th e t r a n s i s t o r w i l l g o int o
a ze n er m o d e and gi ve a n i n co r r ec t lea ka ge rea ding . If
le ft i n this mann er, it co u ld d a m a g e t h e t r a n s i s t o r .
N O T E : The c a p a c it y o f g e r m a n i u m t r a n s i s to r s a n d
di o d es ca n n o t b e m e a u s r e d . T h e h i g h leakage o f thes e
d e v ic e s w il l u p s e t t h e c a p a c i t y m e a s u r i n g circuit o f th e
“ Z M E T E R ' ’ " and th e r e a d o u t w il l s h o w f l a s h i n g 8 8 8
w h e n th e V A L U E b u t t o n is dep res se d. Th e leak age o f
g e r m a n i u m dev ice s ca n b e m e a s u r e d w i t h the lea kage
t e s t th e s a m e a s t h e s il i c o n devices. D o no t e x c e e d th e
v o lta g e ra ti n g o f t h e d e v i c e as g e r m a n i u m d e v ic e s c u n
b e d a m a g e d q u i te easi ly.
2 2
P N P
B la c k
ICB O a n d
B t o C C apa ci ty
/
R e d
I C E O a n d
*
R ed
\
IBEO an d
B t o E Ca pacity
' B l a c k · * *
E t o C C ap a c it y
N P N
^ R e d - # * .
ICBO an d
B t o C Cap ac ity
B l a c k
4
B l a c k
\
IB E O an d
B t o E Cap acity
x R e d
B l a c k
\
I C E O a n d
E t o C Ca pacity
R ed
- M - r
Red
Leak ag e
- a n d
Ju n c t io n
Cap acity
F ig . 1 5 — C a p a c i ty c o n n e c t i o n s f o r m e a s u r i n g cap a
c i t y o f s ili con j u n c t i o n s . L e a k a g e p a t h s a re f o r b o t h
s i l i c o n a n d g e r m a n i u m t y p e j u n c t i o n s .
B l a c k
2 . Be gi n w i t h t h e A P P L I E D V O L T A G E s w i t c h i n
th e 5 0 V o l t p o s it i o n a n d d e p r e s s the L E A K A G E
b u t to n .
3 . W hile h o l d i n g t h e L E A K A G E b u t t o n , i n c r e a s e
t h e A P P L I E D V O L T A G E s w i t c h o n e s t e p a t a t im e
u n til t h e d i g i t a l di sp l a y shows a lea ka ge r e a d i n g . D o
n o t i nc re as e t h e Vo l ta g e p a s t t h e p o i n t w h e r e t h e
d ig it a l r e a d o u t be g in s t o r e a d . I n c r e a s e d v o l t a g e m ay
ca use t o o m u c h c u r r e n t to f l o w w h ic h m a y r u i n t h e
d i o d e .
I f you g e t a l l t h e w a y to 6 0 0 V o l t s an d t h e r e is st il l n o
r ead in g, t h e d i o d e i s o p e n .
4 . R e le ase t h e L E A K A G E b u t t o n a n d r e v e r s e t h e
co nn e ct io n of t h e r e d a n d black t e s t le a d s .
5 . I n c r e a s e t h e s e t t i n g o f t h e A P P L I E D V O L T A G E
s witch t o t h e 6 00 V ol t po sition .
6 . A g a i n d e p r e s s t h e L E A K A G E b u t t o n a n d ob s e rv e
t h e d i g i t a l r e a d o u t . Th e d i g ita l r e a d o u t s h o u l d s t a y a t
“ 0 0 0 ” . A n y l e a k a g e c u r r e n t i n d i c a t e s t h a t t h e dio de i s
le aky a n d s h o u l d be conside red d ef ect ive .
T E S T IN G S I L I C O N C O N TR O LL E D
R E C T IF IE R S ( SC RS) AND T R IA C S
SC Rs a n d T R I A C s can b e t e s t e d d y n a m i c a l l y o n t h e
“ Z M E T E R ” u s i n g th e leakage f un cti on o f t h e c a p a
c itor t e s t . S C R s a n d T R I A C s c a n b e t e s t e d for t u r n o n
(l a tc h e d ) a n d t u r n o f f (un la tc h ed ) co nd iti on s a n d a t t h e
f u l l r a t e d w o r k i n g vo l ta g e o f t h e d e v i c e u p t o 6 0 0
V o lts .
T E S T I N G HI GH V O L T A G E DIODES
H i g h v o l t a g e di od e s, su ch a s foun d in T V h i g h v o l ta g e
a n d focu s v o l ta g e sect io ns, c a n n o t be t e s t e d o n a con
v e n t i o n a l o h m m e t e r b e c au s e t h e y r e q u i r e V o l t a g e s a s
h ig h a s 2 0 0 Vo lt s be fo re t h e y beg in t o c o n d u c t. A n
o h m m e t e r , which t y p ic a lly su pplies o n ly 2 Vo lt s, w i l l
s i m p l y sho w a n op e n c ir c u it n o m a t t e r h o w t h e lead s
a re c o n n e c t e d .
T h e L e a k a g e t e s t o f t h e L C 5 3 p r o v i d e s s uff ici en t
V o l t a g e t o a ll ow high v o l ta g e diode s t o b e t e s t e d f o r
b o t h f o r w a r d c on du cti on a n d rev e rs e le a k a g e . The
d io d e s h o u ld be t e s t e d f o r forw ard c o n d u c t i o n f i r s t to
c o n fi r m t h a t it i s n o t o p en . T hen, it s h o u l d be t e s t e d fo r
r e v e r s e l eak ag e.
W A R N I N G
T h e fol lowin g p r o c e d u r e s sh o u ld be p e r f o r m e d
o n l y b y a tec h n ica lly qu ali fie d p e r s o n w h o u n d e r
s t a n d s t h e p o t e n t ia l s h o c k h a z a r d of u p to 6 0 0
V o l t s a p p l i e d t o t h e t e s t l e a d s w h e n t h e
L E A K A G E b u t t o n is depre ss ed .
T o t e s t a h i g h V o lt ag e d io d e :
1 . C o n n e c t t h e red le ad o f t h e L C 5 3 t o t h e a n ode ( -
en d) o f t h e d io d e a n d t h e bl ac k l e a d to t h e c a t h o d e ( +
e n d ) .
— - - - - - - - - - - - - - - - - - - - - - W A R N I N G
- - - - - - - - - - - - - - - - - - - - - - - - -
The fo llow ing pr oce dur es s h o u ld b e p e rf o r m e d
o n ly b y a t e c h n ic a ll y qualif ied person w h o u n d e r
s t a n d s t h e p o t e n t i a l sh o ck h a z a r d o f up t o 6 0 0
V o l t s a p p l i e d t o t h e t e s t lea ds w h e n t h e
L E A K A G E b u t t o n i s de pr es se d.
N O T E : A l l t e s t s m u s t b e p e r f o r m e d w i t h t h e de v ic e
o u t -o f- c ir cu it
T E S T I N G S C R S A N D T R IA C S FO R DC L A T C H I N G
Th e follo w ing t e s t w i l l d ete rm in e if th e SCR o r T R I A C
w i l l t u r n on a n d r e m a in la tc he d u n d e r D C c ond ition s.
1 . C onn ec t t h e Re d t e s t c l i p lea d to th e a n o d e o f th e
S C R o r t o t e r m i n a l 2 ( M T 2 ) o f t h e T R I A C . C o n n e c t t h e
B la ck t e s t cl ip t o t h e c a th o d e o f t h e S C R o r to te r m in a l
1 ( M T 1 ) o f t h e T R IA C .
2 . S e t t h e L E A K A G E R A N G E s w i tc h to th e
L A R G E A L U M I N U M E L E C T R O L Y T I C S (1 0 K uA
m a x ) ran ge .
3 . S e t t h e A P P L I E D V O L T A G E sw itch t o th e 1 0
Volt p o s it i o n a n d de p re s s t h e L E A K A G E b u t t o n . The
di spla y s h o u ld s ho w 0 0 0 0 , i n d ic a ti n g n o le ak ag e.
2 3
a . If t h e D i s p l a y show s a n o v e rr a n g e c o n d i t i o n o f
8 8 8 , t h e devi ce u n d e r t e s t is s ho rte d.
N O T E : I f t h e w o r k i n g v o lt a g e i s u n k n o w n , u s e t h e 1 5
V o lt s e t t i n g o f t h e A P P L I E D V O L T A G E sw i tc h .
b . If t h e D i s p l a y sh ow s a r e a d i n g o t h e r t h a n 0 0 0 0 ,
t h e devic e s h o w s exce ssive leakage a n d s h o u l d b e
repla ced .
4 . C o n n e c t a n i n s u l a t e d j u m p e r le ad f ro m t h e g a t e o f
t h e dev ice b e in g t e s t e d to t h e lead c o n n e c t e d t o the
R e d t e s t c l ip (a n o de o r M T 2 ) .
5 . D e p r e s s t h e L E A K A G E b u t t o n . T h e d i s p l a y
s h o u l d sh ow a n o v e r r a n g e c o n d iti o n o f f l a s h i n g 88 8 i f
t h e device i s good or has l at c h ed O N . Re m o v e t h e s h o r t
w i t h t h e L E A K A G E b u t t o n stil l d e p r e s s e d . The
d i s p l a y sh o u ld stil l sh ow f la s h in g 8 8 8 i n d i c a t i n g t h a t
t h e dev ice i s l a t c h e d a n d w i l l r e m a in l a t c h e d u n t i l t h e
v o l t a g e i s r e m o v e d by rel e as in g t h e L E A K A G E
b u t t o n . If t h e device does n o t show t h e f l a s h i n g 8 8 8
w h e n t h e s h o r t is remo ve d, t h e g a t e i s defe cti ve .
6 . Re le as e t h e L E A K A G E b u t t o n . D e p r e s s t h e
L E A K A G E b u t t o n ag a in w i t h o u t t h e s h o r t a pp lie d.
T h e d i s p l a y s h o u ld sh o w 0 0 0 0 . Th is i n d ic a te s t h a t t h e
d e v ic e t u r n e d o f f w he n t h e D C v o lta g e wa s r e m o v e d .
A n y o t h e r r e a d i n g i n d ic a te s a de fective de vi ce.
S C R
R e d T est B l a c k T e st
Cli p C li p
2 . Connect t h e R e d t e s t c l i p to th e a n o d e o f t h e S C R
or to te r m in a l 2 ( M T 2 ) o f t h e T R I A C . C o n n e c t t h e
Black t e s t cl ip t o t h e c a t h o d e o f t h e S C R or to t e r m i n a l
1 ( M T l ) o f t h e T R I A C .
3 . D ep re ss t h e L E A K A G E b u t t o n . Th e d i s p l a y
s ho uld sh o w 000 0, i n d i c a t i n g n o le a ka ge a t t h e r a t e d
vo ltage . A ny l e a k a g e r e a d i n g h er e i n d ic a te s t h a t t h e
devic e i s d e fe c tiv e a n d s hou ld b e re placed.
4 . W h i le d e p r e s s i n g t h e L E A K A G E b u t t o n , s h o r t
th e g a t e o f t h e d e v ic e b e in g t e s t e d to th e l ea d c o n
n e c te d to t h e R e d t e s t c l i p with an i n s u l a te d j u m p e r .
O b s e r v e the W a r n i n g not ice ab o v e. T h e d isp la y s h o u l d
show a n o v e r r a n g e c o nd iti on o f f la s h in g 8 8 8 , i n d i c a t
ing t h e d e v i c e h a s t u r n e d O N . Rem ove th e s h o r t a n d
t h e ov e rra ng e s h o u l d d r o p to 00 0 0 i n j u s t a f e w
se co nd s, i n d i c a t i n g t h a t t he d ev ic e h a s t u r n e d O F F .
N O T E : I f t h e S C R or T R I A C do es n o t sh o w f l a s h i n g
8 8 8 w h e n th e g a t e is s h o r t e d to th e a n o d e o r t e r m i n a l 2
( M T 2 ) o r does n o t d r o p to 0 0 0 0 i n j u s t a few s e c o n d s
w h e n th e s h o r t i s r e m o v e d f r o m th e gate, th e d e v i c e i s
d e f e c t i v e a n d s h o u l d b e r e p l a c e d .
D E TE R M IN IN G T H E LEN GTH OF R F C O A X I A L
CA BL E
S h o r t as I n d ic a te d
i n Pro ced ure s t o Test
f o r P ro pe r Tur n- O n
F i g . 16 — L o a d c o n n e c t i o n s f o r t e s t i n g S C R s a n d
T R I A C s .
T E S T I N G S C R S A N D T R IA C S F O R A C L A TC H A N D
U N L A T C H C O N D I T I O N S
T h e fo llowing t e s t w i l l d e te r m i n e i f the S C R o r T R I A C
w i l l t u r n o n a n d o f f wi th t h e A C v o l ta g e a s i t sh ould.
T h e p u l s a t i n g D C v o l ta g e s o f th e L C 5 3 we re d e s i g n e d
t o m a k e t h i s t e s t so t h a t t he S CR a n d T R I A C w o u l d b e
o p e r a t e d u n d e r n o r m a l o p e r a t i n g cond iti on s, j u s t l i k e
t h e y w oul d be in - ci r cu it .
N O T E : A l l t e s t s m u s t b e p e r f o r m e d w i t h t h e de v ic e
o u t - o f - c i r c u i t ..
1 . S e t t h e A P P L I E D V O L T A G E s w itc h to t h e w o r k
i n g v o l t a g e o f t h e devic e to b e t e s t e d .
Th e ac tual l e n g t h of a p ie c e o f co ax ia l ca b l e or t h e
po in t a t w h er e a b r e a k e x i s t s can b e d e te r m i n e d v e r y
accur atel y w i t h t h e “ Z M E T E R ” . Ea c h t ype o f coax
h as a n om in al a m o u n t of c a p ac i ty per fo o t o f l e n g t h .
S imply m e a s u r e t h e c a p a c i L y o f th e c ab le u n t e r m i n
a t e d a nd d iv id e by th e c a p a c i ty per f o o t to find t h e
l e n g t h o r th e p o i n t o f th e b r e a k i n t h e c a b l e . T h e “ Z
M E T E R ” w i l l m e a s u r e th e b r e a k p o i n t c a p a c i t y
reg ar dle ss i f t h e b r e a k i s i n t h e sh i el d o r the c e n t e r
conductor. Th e b r e a k p o i n t c an b e fou n d b y th e s im p l e
s t e p s b e l o w . If a t a l l po ssi ble, m e a s u r e fr o m b o t h e n d s
o f th e c a b l e t o p i n p o i n t t h e b r ea k m uch c l o s e r .
1 . M eas ur e t h e c a p a c i t y o f t h e cabl e (mus t be op e n
a n d u n t e r m i n a t e d ) w it h th e “ Z M E T E R ” . C on ne c t t h e
re d t e s t c l i p to t h e c e n t e r co n d u c to r a n d th e b l ac k t e s t
c l i p to the sh ield b r ai d.
2 . D iv id e t h e r e a d i n g from th e “ Z M E T E R ” b y t h e
c ab le c a p a c i ty p e r fo o t . T hi s give s t h e d i s t a n c e or
le n g t h o f the ca ble f rom th e m e a s u r i n g p o i n t i n f e et .
N O T E : The a c c u r a c y o f th e m e a s u r e m e n t d e p e n d s
up o n the c a b l e c a p a c i t y tol era nce sinc e the valu e l i s t e d
i s a n o m i n a l f i g u r e a n d ca n v ar y s l i g h t l y wi th m a n u
fa ct u rer . T h e n o r m a l tol erance i s w i t h i n 2 % . I f t h e
c a b l e ha s s e v e r a l lo ca ti on s whe re ther e i s e x c e s s i v e
c r i m p i n g o r c la m p in g , th e c a p a c it y w il l c h a n g e at
th o s e p o i n t s a n d w il l a f f e c t th e overall r e a d i n g . I f t h e
c a b l e i s s h o r t e d o r t e r m in a t e d , th e “ Z M E T E R " wi ll
n o t b e a b l e to read t h e c ap ac ity . T h e fo ll o w i n g s e c t i o n
i n d ic a te s how to lo ca t e a sh o rt .
2 4
R F CO AX IA L C A B L E
5 0 - 5 5 O h m
R G / U C a b l e Type
5 B / U
8 U 5 2 2 9 . 5
8 U F o a m 5 0 2 6
8 A / U 5 2 2 9 . 5
10 A / U 5 2
1 8 A / U
5 8 / U
5 8 / U F o a m
5 8 A / U 5 0 3 0 . 8
58 C /U 5 0 2 9 . 5
58C /U F o a m 5 0 2 6
7 4 A / U 5 2 2 9 . 5
174W 5 0 3 0 - 3 0 . 8
1
7 7 I U
21 2 / U
21 3 / U
2 14 /U 5 0 3 0 . 5
2 15 /U 50 3 0 . 5
2 19 /U 50 3 0
2 25 /U 50 3 0
2 2 4 / U 5 0 3 0
N om in a l
I m p e d a n c e
5 0 2 9 . 5
5 2 2 9 . 5
5 3 . 5
5 0
5 0 3 0
5 0
5 0 3 0 . 5
N o m i n a l
C a p I n pF/F T
2 9 . 5
2 8 . 5
2 6
2 9 . 5
N om ina l
I n d u c t a n c e
C h a r t 4 — C a p a c ity o f t y p i c a l R G C o a x i a l C a b l e .
H O W T O FIN D A S H O R T IN A C O A X I A L C A B L E
R F CO AX IA L C A B L E
7 0 - 7 5 O h m
No mi na l
R G / U C a b l e T y p e
6 A / U 75
6 A /U F o a m
1 1 u
1 1 U F o a m
1 1 A / U
12 A / U
13 A / U
3 4 B / U
3 5 B /U
5 9 / U
5 9/ U F o a m
5 9 / U
D o u b l e S h ie ld
5 9 / B U
164 /U
21 6/U 7 5
82 C h a n n e l
I m p e d a n c e
7 5
75
75
75 2 0 . 5
75
7 4
75 20
75
73
75
75 1 7.3
75
75
7 3
R F C O A X IA L C A B L E
9 0 - 1 2 5 O h m
R G / U C a b l e T y p e
62 /U
62A /U 9 3 1 3 . 5
6 3 B /U 12 5 1 0
7 1 B / U 9 3 1 3 . 5
7 9 B / U 12 5 1 0
N om ina l
I m p e d a n c e
9 3
N om in a l
C a p in pF
2 0
2 0
2 0 5
17.3
2 0 . 5
2 0 . 5
2 0 . 5
2 1
1 7 .3
2 0 . 5
2 0 . 5
2 0 . 5
17. 5
N o m in a l
C a p i n p F
13 .5
No m in a l
I n d u c t a n c e u H / F T
N o m in a l
I n d u c t a n c e u H / F T
A b r e a k in a co axial cabl e m a y b e l o c a t e d w i t h t h e
C a p a c i t y t e s t as i n d ic a te d in t h e p r e v i o u s se c ti o n , A
s h o r t e d c a b l e , how eve r, w i l l n o t r e a d o n t h e C a p a c ity
t e s t . Th e I n d u c t a n c e t e s t sh o u ld b e u s e d to loca te a
s h o r t .
T h e a m o u n t o f i n d u c t a n c e p e r f o o t i s ge n e ra lly n o t
p u b l is h e d b y t h e cabl e m a n u f a c t u r e r . T h i s value m a y
be d e te r m i n e d by u s i n g th e “ Z M E T E R ” t o m ea s u r e a
k n o w n le n g t h o f th e cabl e ( a s e x p la i n e d i n t h e n e x t
sect ion ) b ef o re p e r f o r m i n g the I n d u c t a n c e t e s t . Spac e
h a s bee n le f t in t h e c h a r t s a b ov e f o r t h e i n d u c t a n c e per
f o o t to b e ad de d as you e n c o u n te r d i f f e r e n t c ab l es .
To fin d t h e a p p r o x i m a t e d i s t a n c e t o a s h o rt:
1 . M e as u r e t h e in d u c t a n c e o f t h e s h o r t e d c a b l e . The
re d t e s t c l i p sh o u ld b e c o n ne cte d t o t h e c e n t e r c o n d u c
t o r a n d t h e black t e s t c l i p to t h e s h ie l d brai d.
2 . Div ide th e r e a d i n g o b t a i n e d b y t h e in d u c t a n c e p e r
foo t t h a t y ou h a v e m e a s u r e d to find t h e d i s t a n c e i n fe et
from th e m e a s u r i n g p o i n t to t h e s h o r t .
H O W T O F IN D T H E I N D U C T A N C E PER F O O T O F
C O A X I A L C A B L E
A k n o w n l e n g t h of cable sh ou ld be m e a s u r e d wit h th e
“ Z M E T E R ” to find th e va lu e o f i n d u c t a n c e p e r f o o t .
A l e n g t h of a t l e a s t 2 0 to 2 5 fe et i s r ec om m e nd e d t o
o b t a i n a m or e a c c u r a t e re ad in g . A l e n g t h o f 1 0 f e e t
m a y be t oo s h o r t t o give a g o o d i n d u c t a n c e v a l u e .
1 . C o n n e c t th e kno wn l en gt h of c a b le to th e “ Z
M E T E R ” , t h e c e n te r c on du c to r to t h e r ed t e s t c l i p ,
a n d t h e shie ld br ai d to th e b la c k t e s t c l i p . S h o r t the
c e n t e r c o n d u c t o r to t he shi el d a t t h e o p p o s i t e e n d .
2 . M e a s u r e th e in duc ta nce . D i v i d e t h e rea di ng
o b t a i n e d by t h e l e n g t h o f t he c a b l e . R e c o r d t h i s fi g u re
i n t h e c h a r t fo r f u t u r e r e fe r e n c e .
N O T E : T h e i n d u c t a n c e m a y v a r y s l i g h t l y w i t h th e
s a m e t y p e o f ca b le d u e to th e v a r i a t i o n s i n m a n u f a c
tu r e . T h e m e a s u r i n g to le ra nc e t o t h e p o i n t o f a s h o r t
s h o u l d b e w i t h i n 2% i n m o s t c a s e s . F o r f i n d i n g a sh o rt ,
i t i s r e c o m m e n d e d t h a t th e c a b l e b e m e a s u r e d fro m
b o t h e n d s t o p i n p o i n t th e s h o r t c l o s e r .
2 5
INDU CT OR S
B A L A N C I N G OU T L E A D I N D U C T A N C E
T h e “ Z M E T E R ” m e a s u r e s the a c t u a l i n d u c t a n c e o f
c o i ls u s in g a p a t e n t - p e n d i n g ci rcuit. S i m p l y con ne ct
t h e t e s t le ad s to th e c o i l and d e p r e s s th e V A L U E
b u t t o n a nd read t h e i n d u ct a n ce in u H o r m H o n the
di spl ay .
- - - - - - - - - - - - - - - - - - - - - - - - - - - -
D o n o t co nnect the t e s t le ads to a c i r c u i t h a v in g
po w er a p p li ed . B e s u r e t h e p o w e r is “ O F F ” b y
di sco nn ec tin g th e A C l i n e c o r d t o t h e e q u i p m e n t
u n d e r t es t .
C H E C K IN G IND UC TO RS F O R IN D U C T A N C E
VA LU E
1 . Co nn ec t th e t e s t leads to th e c o i l o r t r a n s f o r m e r t o
be te s t e d .
2 . D e p r e ss th e I n d u c t o r s V A L U E b u t t o n .
3 . Read the va lu e o f i n d u ct a n ce of t h e c o i l or t r a n s
f or m er o n the d ig ita l dis play . T h e L E D w i l l lig h t i n
f r o n t o f uH i f t h e value i s i n m ic r o h e n r y s or in f ro n t o f
t h e m H i f the v al ue i s i n m illi hen ry s.
W A R N I N G
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 . Pl a ce t h e t e s t l eads on t he work a re a in s u c h a way
t h a t t h e y w i l l n o t be mo ved w hen c o n n e c t i n g a c o i l . B e
s u re t h e l e a d s a re n o t o n a m et a l su rf a c e, n e a r A C
power o r a n A C o p e r a t e d d e v i c e . S h o r t t h e t e s t le ad
c li p s t o g e t h e r .
2 . W i t h t h e t e s t l e a d s s h o r t e d , d e p r e s s t h e
I n d u c t a n c e V A L U E b u t t o n a n d a d j u s t t h e L E A D
Z E R O c o n t r o l u n t i l t h e displa y r ea d s 00.0 w i t h th e
n e g a t i v e si g n a p p e a r i n g o cc as ion al ly.
N O T E : A d j u s t th e L E A D Z E R O c o nt ro l s l o w l y as the
L C 5 3 r e q u ir e s a b o u t 2 s e c o n d s b e t w e e n r e a d i n g s w h e n
the t e s t lea ds a r e shorted.
3 . C a r e fu lly c o n n e ct t h e c o i l to th e t e s t lea ds be in g
ca reful n o t to d i s t u r b the p os iti on o f t h e le a ds i f
possible. D e p r e s s th e I n d u c t o r s V A L U E b u t t o n a n d
r e a d t h e i n d u c t a n c e va lu e o n t h e disp lay .
N O T E : A reading o f f l a s h i n g 8 8 8 w i t h a s t e a d y z e r o
i n d i c a t e s an o p e n c i r c u i t . R e c h e c k y o u r l e a d
c o n n e c t i o n s t o m a k e sure y ou are c o n n e c t e d t o the
p r o p e r te rm in als .
T h e above pro cedure provides a c c u r a t e r e a d i n g s o n
i n d u c t o r s over 1 0 0 0 u H . Sm all v a l u e i n d u c t o r s
b e tw e e n 2 u l i an d 1 0 0 0 u H m a y b e o ff s li g h t ly d ue to
th e ind u ct a n ce o f t h e t e s t le a d s . T h i s i n d u c t a n c e m a y
b e balan ce d o u t fo r high a c cur acy r e a d i n g s wi th the
L E A D ZE R O con tr ol.
3 I R S I I N D U C T O R S
I MP ED
( B I N
A L U E I V A L U E R I N G I N G T E S T ( Q )
I
.
i
2 5 V O L T S I S A P P L l
N O T H O L D C AP A C lT Oi
SER V E P O L A R I T Y AN D
i Z E R O
F ig . 17 — S i m p l y c o n n e c t t h e i n d u c t o r t o b e t e s t e d t o
th e t e s t l e a d s , p u s h th e V A L U E b u t t o n a n d read the
i n d u c t a n c e val ue on th e disp l ay . T h e r e i s n o ra ng e
s w i t c h e s o n th e L C 5 3 .
F i g . 18 — T h e i n d u c t a n c e o f th e t e s t l e a d s can b e
bal an ce d o u t f o r ac cu rat e rea di ng s o f s m a l l value
in d u c t o r s .
C H E C K IN G CO IL S BEL OW 2 M IC R O H E N R Y S
Th e “ Z M E T E R ” m a y show a re a d i n g of 00.0 f o r c o i l s
u n d e r 2 u H in v a l u e . Th is i s du e to t h e “ ze ro w i n d o w ”
t h a t is n e c e s s a r y i n t he a u t o r a n g i n g c irc ui t. Val ue s o f
c o i ls bel ow 2 u H ca n b e read b y o f f s e t t i n g th e m e t e r
w it h t h e L E A D Z E R O con tro l.
T o R e a d V al ue o f C o i l s B e lo w 2 uH :
1 . Pl a ce t h e t e s t lea ds o n th e wo rk a re a in s u c h a wa y
t h a t t h e y w i l l n o t b e moved whe n the c o i l i s c o n ne ct e d.
2 6
2 . S h o r t t h e t e s t leads t o g e t h e r . D e p r e ss the
I n d u c t o r s V A L U E b u t t o n a n d a d j u s t th e L E A D
ZERO co n tr o l u n t i l th e d i s p l a y sh o w s a re a d i n g o f 2 . 0
u H .
N O T E : I f th e L E A D Z E R O c o n tr o l i s t u r n e d in the
iv r o n g d i r e c t io n , a n e g a t i v e s i g n w ill ap p ea r in fr o n t o f
the r e a d i n g . A d j u s t th e L E A D Z E R O co nt ro l f o r a
p o s i t i v e r ea di ng .
3 . U n s h o r t t h e t e s t leads a n d ca refully co n n ect the
c o i l t o th e t e s t lea d s w i t h o u t d i s t u r b i n g th eir posi tio n.
4 . Depr ess t h e I n d u c t o r V A L U E b u t t o n a nd o b t a i n a
read in g o n t h e d i g it a l d i s p la y . S u b t r a c t th e 2 u H s e t up
i n step 2 from t h e re a d i n g o n t h e d i sp l a y f o r th e a c tu a l
indu cta nce va lu e o f the c o i l . F o r ex am p le, i f th e di spl ay
s h o w s a r e a d i n g o f 2 . 8 u H , t h e a c t u a l value i s 2 . 8
mi nu s t he 2 . 0 or 0 . 8 uH .
O P E N W I N D I N G I N A C O IL
O p e n wind in gs i n c o i l s are e a s i l y s p o t t e d with th e “ Z
M E T E R ” . J u s t ho ok up th e “ Z M E T E R ” to c he c k the
in du ct a n ce value. If t h e d i s p l a y sh ow s f la s h in g 8 8 8
w ith a s t a t i o n a r y 0 , th en t h e c o i l i s o p e n . C he ck the
l e a d co n n ect io n s to the c o i l t o be su re . If th e c o i l i s a
s m a ll w i r e t y p e , b e sure to c h e c k t h e f i n e w ir e s t h a t g o
to the solder l u g s o n t h e c o i l f o r m . T h e f i n e w ire ca n b e
bro ken eas ily from t e n s io n o r e x t r e m e h e a t a n d c o l d
varia tio ns .
O n la rg e t r a n s f o r m e r s t h a t h a v e several t a p s o r
wi ndings i n ser ies, simply c h e c k fro m t o p to b o t t o m f o r
an o p e n . The a c t u a l ope n can b e is o la te d by m ov ing o n e
l e a d d o w n t h e series o f t a p s u n t il th e “ Z M E T E R ”
gives a n i n d u c t a n c e r ead in g. T h e t a p a b ov e t h is p o i n t
has the open w in di ng .
N O T E : O n m u l t i t a p t r a n s f o r m e r s s u c h as f l y b a c k
t ransfor mers, c h e c k th e t e r m i n a l s t h e t e s t le a d s a r e
co n n e ct e d t o . I f t h e “ Z M E T E R ” s h o w s an op en, y o u
m a y b e c o n n e c t e d t o the w r o n g t e r m i n a l s .
CH EC K IN G IN D U C T A N C E IN- C IR CU IT
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - W A R N I N G - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
D o n o t c o n n e c t th e t e s t l e a d s to a ci rcuit h a v in g
p ow er ap p lie d . B e s u re t h e p o w e r i s “ O F F ” b y
d isc o n n e c ti n g t h e A C li n e c o rd to th e s e t u n d e r
tes t.
Th e “ Z M E T E R ” ca n che ck t h e va lu e o f in d u c t o r s i n -
cir cuit f o r t h e a c t u a l i n d u c t a n c e value. Sim pl y con ne ct
th e t e s t lea d s t o t h e c o i l a n d d e p r e s s t h e I n d u c t o r s
V A L U E b u t t o n a n d r ead t h e i n d u c t a n c e va lu e o n the
dis play . Ci rcui t i m p e d a n c e w il l h a v e some aff ec t o n t h e
ladi ngs. Th e v a lu e s o f r e s i s t o r s t h a t can b e paral lel ed
w ith th e i n d u c t o r a n d d e c re a s e t h e i n d u c t a n c e va lu e by
o n ly 1 0 % a r e a s f o l l o w s :
2 to 9 0 u H — 1 0 0 O hm s
9 0 uH to 9 m i l — 3 0 0 O hm s
9 m H t o 9 0 m i l — I.5 K O h m s
9 0 m i l to 9 0 0 m i l — 5 . K O h m s
9 0 0 m i l to 1 0 II — - 1 O K O h m s
I f t h e value o f r e s i s t o r i s l a r g e r t h a n t h a t lis te d, the
m e a s u r i n g er r or w i l l b e le ss t h a n 1 0 % .
Fig. 19 — I n d u c t a n c e valu es ca n be c h e c k e d in-circuit
w i t h th e LC53 i n d u c t a n c e te s t.
Co ils in a television or tw o-w ay r a d i o ca n b e ch ec k ed
qu i c k l y a nd eas ily f o r v a l u e . If a c o i l i s o p e n an d
s h u n t e d by a re s i s to r ( so m e th in g t h a t m i g h t b e mi ssed
w i t h a n ohmmeter), th e “ Z M E T E R ” w i l l no t read the
c o r r e c t v a l u e , b u t a m u c h h i g h e r val ue. Fo r example,
t h e c o i ls i n a C B tr a n s c e i v e r w i l l n o r m a l ly ru n aro un d
. 2 or . 5 uH . I f th e c o i l i s o p en , t h e “ Z M E T E R ” w i l l
r e a d f la s hi ng 8 8 8 w i t h the s t a t i o n a r y 0 i f t h e r e i s n o
r e s i s t o r s h u n t i n g t h e c o i l . If a I K O hm r e s i s t o r i s
s h u n t i n g th e c o i l , th e “ Z M E T E R ” w i l l r ea d a b o u t 2 . 8
m H .
T E S T I N G IND UC TO RS ON P R IN T E D
C IR C U IT BO AR DS
O n m o s t P C bo a rd s , t h e leads t o a n y c o m p o n e n t s are
v e r y s h o r t whic h m a y m ak e c o n n e c t i o n s d if fi cu lt . The
E - Z
H o o k ® c li p s u s e d w i t h t h e “ Z M E T E R ” w i l l con
n e c t to m a n y o f t h e c o i l s t h a t y o u wish to tes t. W hen
t h e r e i s n o le ad to c o n n e ct to , y ou c a n use t h e Senco re
3 9 G 8 5 To uc h T e s t P ro be (opt ional acc essory) t o m ake
c o n t a c t w i t h t h e l eads o f th e c o i ls . C o n n e c t the 39 G 85
t o t h e “ Z M E T E R " t e s t leads a s f o l l o w s :
1 . Co nne ct th e R e d c l i p of t h e t e s t leads to the I I
p o i n t o n the t o p o f t he 39 G 8 5 . C o n n e c t th e Black c l i p
t o t h e Y p o i n t on th e t o p o f t h e 3 9G 85.
N O T E : T h e s e a r e t h e t w o l o n g e s t p r o b e p o i n t s a n d w il l
m a k e i t easi er t o us e w h e n c h e c k i n g c o i l s .
2 7
F i g . 2 0 — T h e 3 9 0 8 5 { o p t i o n a l a c c e s s o r y ) c a n b e u s e d
w i t h th e “ Z M E T E R ” to c h e c k th e i n d u c t a n c e a n d
r in g in g o f c o i l s t h a t a r e m o u n t e d f l a t t o th e P C b o a r d .
V A L U E R EAD INGS O N H IG H
R E S IS T A N C E COIL S
Co ils w i t h hi gh in te r n a l r e s i s t a n c e w i l l ca use m os t
t y p e s o f in d u c t o r t e s t e r s ( in cl u d in g b r id g e s ) to r ea d t h e
a c t u a l i n d u c t a n c e v al u e slightly of f-value. Th e s p ec ia l
(p at e n t- p e n d in g ) i nd uct an ce t e s t p r o v i d e d b y the ” Z
M E T E R ” c o m p e n s a te s f o r the s e r i e s r e s i s ta n c e o f the
m a j o r i t y o f a l l c o i l s t es t e d . T h e r e a r e , h o w ev er , a f e w
coils whose D C r e s i s ta n c e i s l a r g e r t h a n th e ran ge o f
r e s i s t a n c e c om pe ns a tio n t h a t c a n b e bu i lt int o the “ Z
M E T E R ” w i t h o u t affe cting a c c u r a c y o n s t a n d a r d l o w
r e s i s t a n c e c o i l s .
T h e fo ll o w in g t ab le list s th e D C r e s i s t a n c e ne ces sa ry
t o a f f e c t th e accur acy o f the ” Z M E T E R ” re adi ng .
N o t i c e t h a t ea ch o f t he s i x a u t o - r a n g e d in d u c t a n c e
s c a l e s h a s a diffe rent correc tion f a c t o r app li ed b y the
“ Z M E T E R ” to c om pe ns a te fo r la r g e r r es is ta nc e
v a l u e s on hi ghe r i nd uct an ce c o il s. Th is a s s u r e s th e
h i g h e s t possible a c cur acy f o r t h e m a j o r i t y o f c o i l s
t e s t e d .
C O IL R E S IS T A N C E E F F E C T ON
IN D U C T A N C E VA L U E R E A D I N G
A C C U R A C Y F O R C O I L R E S I S T A N C E
C o il I n d u c t a n c e
2 % o r B e t t e r
2 - 5%
2 . M ak e c o n t a c t t o the p o i n t on th e P C bo a rd f o r o n e
s id e o f th e c o i l to b e t e s t e d w i t h th e Red pr o b e poi nt
a n d app ly s li g h t p r e s s u r e t o hold it i n pl a c e . Th e n
m ak e c o n ta c t to th e o t h e r c o i l p o i n t w it h t h e Y e l l o w
pr o b e p o in t and ap p ly p r e s s u r e to ho ld th e 39G 85 i n
p l a c e .
3 . Depr ess th e In d u c t o r s V A L U E b u t t o n a n d read
t h e i n d u ct a n ce o n th e d ig ita l d i sp l a y .
M UTU AL IN D U C T A N C E
If two o r m or e c o i l s are w o u n d o n t h e same for m and
connected ei t h e r i n te r n al ly or e xte rn all y, the to ta l
in d u ct a n ce m e a s u r e d fro m e n d to end with t h e “ Z
M E T E R ” w i l l n o t b e equal t o t h e m e a s u r e d i n d u c t a n c e
o f th e indi vid ua l wi ndings. T h e m e a s u r e d value m ay b e
hi g h er o r l o w e r t h a n t h e m e a s u r e d value o f the
indi vidual w in d in g s d ue to t h e m u t u a l in d u c t a n c e o f
t h e c o i l s . T he m e a s u r e d va lu e of t h e t o t a l w i l l be a ffe c t
e d by the s p a c i n g b e tw e en t h e wi ndings, t h e t y p e o f
windings us ed , a n d t h e co r e m a t e r i a l us ed to wind t h e
c o i l s o n . Th e a c t u a l va lue c a n n o t b e p re- de ter mi ne d b y
si mp ly lo oki ng a t th e c o i l s . T h e “ Z M E T E R ” w i l l
m ea su re the a c t u a l i n d u c t a n c e of t h e c o m b in a tio n o f
c o i ls j u s t as t h e c ir c u it wo ul d se e i t .
1 u H - 9 0 u H
1 0 0 u H - 9 0 0 u H
1 m H - 9 m H
1 0 m H · 9 0 m H
1 0 0 mH *9 00 m H
1 0 0 0 mH - 9 0 0 0 m H
4 Ohms o r le s s
4 0 Ohms or le s s
4 0 Ohms or le s s
1 7 0 Ohms o r l e s s
5 0 0 O hm s or le s s
1 5 0 0 Ohms or l e s s
4 -1 0 Ohms
4 0 - 1 0 0 Ohm s
4 0 -1 00 Ohm s
17 0- 4 0 0 Oh m
5 0 0 · 2 0 0 0 Ohms
1 5 0 0 -600 0 O hm s
C h a r t s — A c c u r a c y o f L C 5 3 v e r s u s r e s i s t a n c e o f c o i l .
IN D U C T O R CO DI NG
I n d u c t o r s can be f o u n d w ith s e v e r a l di ff e re n t c o l o r
c o d e s o f w h ic h th e tw o mo st c o m m o n a re show n h e r e .
T h e s t r i p c o d e o n th e p o s ta g e s t a m p c o i ls ma y al so b e a
s e r i e s o f dots. Th e two c o d e s s h o w n h er e are b y n o
m e a n s a l l th e co d es t h a t ma y b e e n c o u n te r e d . W h en a
s t r a n g e c o d e i s f o u n d , c on su lt t h e m a n u f a c t u r e r ’ s
se rv i c e l i t e r a t u r e f o r t he v a l u e s .
Ch ar ts on fo ll o w i n g p a g e .
T 100 0 u H T T 1 0 O O u H j | _ 1 0 0 G u H j J 1 0 0 0 u H j
2 2 8 0 u H
( W h e n Mut ual I n d u c t a n c e Adds )
j t
{ W h e n M u t u a l I n d u c t a n c e
1 8 7 0 u H
S u b tr ac ts )
I
F i g . 2 1 — Th e i n d u c t a n c e r e a d i n g s o f th e “ Z M E T E R "
will sh ow th e a c t u a l i n d u c t a n c e o f two c o i ls w i t h
m u t u a l i n d u ct a n c e . M u t u a l i n d u c t a n c e c a n e it h e r a d d
or s u b t r a c t for th e i n d i v i d u a l r e a d in g s o f the wi nd in gs .
28
TUB U LA R E N C A P S U L A T E D R F C H O K E S
Back
M il Sp ec. I n d e n t.
T o l e r a n c e
; Π
H
1 s t Fig. ( r e d )
E x a m p l e s h o w n i s f o r 27 0 u H 10 % cho k e
C o l o r F i g u r e M u l t i p l i e r T o l e r a n c e
B la c k
B r o w n 1
R e d 2
O ran ge 3 1,0 0 0
Yellow 4
Gr een
B lu e 6
Vi ole t 7
G r a y 8
W h ite 9
Non e
S ilv er 1 0 %
G o ld 5 %
M u l t i p li e r i s th e f a c t o r b y w h ic h th e t w o c o l o r f igu res are
m u l t i p li e d to o b t a i n th e i n d u c t a n c e va lu e o f th e c h o k e c o it i n u H .
Mult.
(b ro w n )
0
5
2nd F i t j .
( v io l e t )
1
1 0
1 0 0
2 0 %
Ch a r t 6 — T y p i c a l I n d u c t o r co lo r c o d e s .
$ 1
f 2
C O
1 3
“ PO ST A G E S T A M P ” F IX E D INDUC TOR S
1 st Digit 2 nd D ig i t
C ol o r
B la c k o r (B la n k ) 0 0 1
B r o w n
R ed 2 2
Ora nge 3 3 1,000
Yello w 4 4 10,000
G reen 5 5 10 0,00 0
B lu e
Violet 7 7
G r a y
W h it e
G o ld
S t i v e r
V alues wi ll b e in u H .
1s t Strip 2 nd S tr ip
1 1 1 0
6 6
8 8
9 9
Mul ti pl ie r
3 r d Stri p
10 0
X . 1
X . 0 1
C H E C K IN G IN D U C T O R S FOR GO O D O R B A D
W I T H THE R I N G I N G T E S T
Th e p a t e n t e d H i n g i n g t e s t a l lo w s y o u to d e te r m i n e i f a
c o i l ( wi tho ut an ir o n c o r e ) i s g o o d o r b a d w it h a n a c c u
ra t e b u t e a s y t o p e r f o r m t e s t o f t h e q u a l i t y o r “ Q ”
f a c t o r . A s p e c i a l i m p e d a n c e m a t c h i n g c i r c u i t
e s t a b l i s h e s a ref e re n c e fo r a l l c o i l s lar g e r t h a n 1 0 uH. A
go o d c o i l s h o u ld s ho w a r e a d i n g o f 1 0 or more o n t h e
di g ita l d isp la y. A b a d c o i l w i l l sh ow le ss t h a n 1 0 r i n g
i n g c y c l e s .
Th e R i n g in g t e s t m e a s u r e s t h e “ Q ” f a c t o r b y a p p ly i n g
a re fer en ce p u l s e to t h e c o i l a n d th en d ig it al l y c o u n t i n g
th e n u m b e r o f r i n g i n g cycl es p ro du ced u n t il t h e sig n al
i s d a m p e d to a p r e s e t le v e l . A s h o r t e d t u r n i n a c o i l w i l l
lo w e r its Q a n d c a u s e th e ri n g i n g to d a m p e n f a s t e r
t h a n i n a good c o i l . A n ope n c o i l w i l l show n o ri nging.
/ h e p a t e n t e d S e n c o r e R i n g i n g t e s t i s b a s e d o n the Q o f
th e c o i l , b u t t h e r e a d i n g s o n t h e “ Z M E T E R ” w i l l n o t
ag re e w ith t h o s e o b t a i n e d w i t h a b rid ge or a Q m et e r.
The r ea s o n is s i m p l y t h a t t h e Q t e s t h as been sim pl i
f i e d to m a k e t h e n u m b e r 1 0 a refe re nce poi nt.
I M P E D A N C E M A T C H
( B I N G I N G T E S T O N L Y )
H ° M s < $
F ig . 22 - T h e I M P E D A N C E M A T C H s w i t c h i s
d i v i d e d i n to t w o s e ct io n s, t h e f o u r p o s i t i o n s i n re d f o r
T V y o k e s a n d f l y b a c k s , o r a ll s i x p o s i t i o n s f o r o t h er
t y p e c o i ls a n d tr a n s f o r m e r s .
Th e R i n g in g T e s t I M P E D A N C E M A T C H sw itc h i s
di vided in to tw o s ecti ons . T h e f our po sit io ns m ar k e d i n
red a r e t he on ly p o s it i o n s t h a t sh o u ld b e used fo r t e s t
ing television yoke s a n d f ly b a c k s . Th e s e n s i t iv i ty o f
t h e R i n g in g t e s t c ir c u it s in t h e s e po s it i o n s i s m at c he d
2 9
to t h e i m p e d a n c e a n d f r e q u e n c y spe ci fications o f th e s e
s p e c ia l c o i l s .
A l l s i x p o s i t i o n s s h o u ld be u s e d f o r t e s t i n g o t h e r ty p e s
o f c o i l s . T h e tw o p o s i t i o n s m a r k e d i n b lu e ha v e a d d i
ti on al s e n s i t i v i t y t o allow s ma ll value c o i l s to b e t e s t e d
a c c u r a te l y . T h e four r e d p o s it i o n s w i l l m a t c h prop erl y
t o la rg e v a lu e c o i l s .
S P E C I A L N O T E S
1 . T h e R i n g i n g t e s t s h o u ld be n o t b e u s e d o n c o i l s
and t r a n s f o r m e r s h a v i n g l a m in a t e d ir o n core s suc h a s
power t r a n s f o r m e r s , a u d i o o u t p u t t ra n s fo r m e r s , a n d
fi lt er cho ke s. T h e iro n c ore in th es e t y p es o f t r a n s f o r m
er s a n d c o i ls a b s o r b s t h e r in g i n g energy o f t h e c o i l a n d
r e s u l t s i n l o w r e a d i n g s t h a t are un re li a b le .
2 . Good c oi ls bel ow 1 0 u H i n value m ay n o t r in g 1 0
c y c l e s . T h e lo w i n d u c t a n c e o f t h e s e c o i l s g en era lly
a ll ow s on ly a b o u t 2 to 4 c y c l e s . A co m p a ris o n t e s t
shou ld b e m a d e on a k n o w n g o o d c o i l to se e i f th e Q
fac to r r e s u l t s a r e co rr e c t.
3 . So m e c o i ls a b o v e 1 0 u H m a y n o t show 1 0 or m o re
r in g s d u e to t h e n a t u r e o f th e c o n s t r u c t i o n o r core
m a t e r i a l u s e d in t h e c o i l . T h e s e m a y sh ow 8 o r 9 r in g s
and s til l be go od. T h e q u a l i t y o f t h e s e c o i ls m a y b e
c on fir me d b y a d d i n g a “ s h o r t e d t u r n ” a n d r ec h e c k in g
the r i n g i n g o f t h e c o i l . I f t h e c o i l is ba d, t h e n u m b e r o f
r in g s w i l l n o t c h a n g e o r c h a n g e v e ry li tt le , i n d ic a ti n g
th e c o i l a l r e a d y h a s a s h o r t e d tu rn . If t h e n u m b e r o f
r in g s d r o p s off d r a s t i c a l l y , t hen t h e c o i l i s g o o d . A
go od “ s h o r t e d t u r n ” c a n be m ad e fro m a p ie c e o f sold er
w r a p p e d a r o u n d t h e c o i l t i g h t l y a n d t w i st e d t o g e t h e r
a t t h e e n d s . Sm all d i a m e t e r w ir e or s t r a n d e d w i r e does
n o t g iv e t h e s a m e a f f e c t an d c ou ld g iv e m is le a d in g
r e s u l ts . Be s u re to u s e so ld er o r a h ea vy g a u g e so li d
w i r e f or t h e “ s h o r t e d t u r n ” .
T o T e s t t h e Q u a l i t y o f a C o i l w it h t h e Ri ng in g Te st:
1 . C o n n e c t t h e t e s t l e a d s t o th e i n d u c t o r to be tes te d .
2 . D e p r e s s t h e R I N G I N G T E S T b u t t o n . Ho ld the
b u t t o n do wn a n d r o t a t e t h e I M P E D A N C E M A T C H
s w itc h t h r o u g h al l 6 p o s i t i o n s f o r r e g u l a r in d u c t o r s o r
t h r o u g h t he l a s t 4 p os it i o n s for T V y o k e s a nd fly b ac k s.
3 . I f a r e a d i n g o f 1 0 or m o r e a p p e a r s o n t he disp la y i n
on e or mor e pos ition s o f t h e I M P E D A N C E M A TC H
swit ch, th e i n d u c t o r i s go od. I f a r e a d i n g o f l e s s t h a n
1 0 i s d is p l a y e d o n a l l p o s i t i o n s of t h e s wi tc h, the i n d u c
t o r is d ef ect ive . R ef er t o t h e I n d u c t o r T e s t i n g A p p l i
ca tio ns a n d t h e section on t e s t i n g yo ke s a n d flyba ck s
f o r f u r t h e r in forma tion.
N O T E : Th e “ Z M E T E R ” m a y s h o w a c o n t i n u o u s l y
c h a n g in g rea di ng wh en u s i n g t h e t w o m o s t s e n s i t i v e
p o s i t i o n s o f th e I M P E D A N C E M A T C H s w i t c h i n th e
p r e se n c e o f h i g h A C p o w e r r ad ia ti on . T h i s c a n occur i f :
1 . } T he c o i l i s op e n an d n e a r a s o u r c e o f h ig h lev el A C
p o w e r ra di ati on , 2 . } T h e l e a d s a r e n o t c o n n e c t e d p r o
p e r l y or c o n n e c t e d t o t h e w r o n g t e r m i n a l o r no t m a k i n g
p r o p e r c o n ta c t a n d p i c k i n g u p A C radiation, 3 . ) T o u c h
i n g th e R e d t e s t c l i p a n d i n j e c t i n g A C i nt o th e “Z
M E T E R ” , a n d 4 . ) D e p r e s s i n g t h e R i n g i n g T e s t b u t t o n
w i t h th e leads n o t c o n n e c t e d to a n y t h i n g a n d near a
sourc e o f h i g h level A C p o w e r rad iation. I f th e con
t i n u o u s l y c h a n g in g re a d in g occur s, m o v e th e c o i l being
t e s t e d t o a locati on a w a y f r o m th e s ou rce o f A C radia
tion a n d c he ck th e c o n n e c t i o n s to the c oi l I f y o u
s u s p e c t t h a t th e c o i l m a y be o p e n or the le a d s n o t
c o n n e c t e d p ro p e rly , m e r e l y r e ch e c k the i n d u c t a n c e
v a l u e . I f th e r ea do ut s h o w s a f l a s h i n g 8 8 8 w i t h a
s t a t i o n a r y 0 , th e c o i l is o p e n o r t h e le a d s a r e n o t co n
n e c te d p ro p erly.
IN D U C T O R TES TING
APPLI CATIO NS TIPS
T h e p a t e n t e d R i n g i n g t e s t on t h e S e nc or e “ Z
M E T E R ” h a s b e e n d e s i g n e d to t e s t c o i l s and t r a n s
formers f o r a n indication of g o o d o r b ad . Th e rin gi ng
t e s t can b e m ad e in- circu it a s w e l l a s o u t o f circuit f o r
f a s t t r o u bl e sh oo tin g. T h e fo llowing ap pl ic at io n tips
co v er sp ec ia l s i t u a t i o n s y o u m a y en c o u n te r w h e n
t e s t i n g i n - c ir c u i t. R ev ie w t h e s e n o t e s car efully b e f o r e
m a k i n g a n y i n - c ir c u i t t e s t s . T h e a p p li c a t i o n s t ip s are
divi ded i n to tw o secti ons , on e o n ge neral c o i l s a nd
t r a n s f o r m e r s a nd the o t h e r d e v o t e d to T V fly b ac k
t r a n s f o r m e r s a n d y o k e s.
F i g . 2 3 — A n i n d u c t o r ca n b e c h e c k e d for q u a l i t y by
s i m p l y c o n n e c t i n g t h e i n d u c t o r t o th e t e s t le a d s, d e
p r e s s i n g t h e R I N G I N G T E S T b u t t o n a n d r o ta t i n g t h e
I M P E D A N C E M A T C H s w i t c h a n d w a t c h i n g t h e
d i s p l a y f o r t h e n u m b e r o f r in g i n g c y c le s .
QU A LI T Y TE ST ING ON G E N E R A L CO ILS
AND T R A N S F O R M E R S
P E A K IN G C O IL S
C o i l s wou nd o n r e s i s to r s ( p ea ki ng c o i l s ) m ay no t giv e a
go od ind icatio n o n the R i n g i n g t e s t du e to the d a m p i n g
action o f the res istor. T h e lower th e v a l u e o f the r e s i s
to r, th e lo w e r th e R in gi ng t e s t w i l l r ea d. F o r exam ple, a
1 . 0 0 0 u H c o i l woun d on a 1 0 K O h m re s is to r w i l l j u s t
m ak e 1 0 ring s. Th e a cti on of t h e r e s i s t o r i s to da m p e n
o u t t h e os cillatio ns o r r i n g i n g i n t h e ci rcuit a nd it w i l
d o th e s a m e o n th e R i n gi ng t e s t .
3 0
C O I L S IN M E T A L S H IE L D S
C o il s a n d t r a n s f o r m e r s t h a t a re s hi el de d w i t h a m e t a l
sh iel d m a y n o t s ho w go od o n th e R i n g in g t e s t . The
' n e t a l shie ld m a y a b s o r b the r in g i n g energy d e p e n d i n g
o n ho w c l o se t h e sh ie ld i s to th e c o i l . You s h o u ld
c o n s i d e r a shiel de d c o i l g o o d i f it show s 1 0 o r more
r in g s . I f t h e c o i l sh ow s l e s s t h a n 1 0 r in g s in all p o s i
ti o n s o f t h e I M P E D A N C E MATCH s w i t c h , yo u
s h o u l d e it h e r r e m o v e th e sh ie ld a n d r e p e a t t h e t e s t o r
m a k e a c o m p a r is o n t e s t o n a k no wn go od s h ie l d e d c o i l .
B e s u r e th e c o i l i s ident ical to t h e o n e i n t h e c i r c u i t
b e in g t e s t e d fo r a c c u r a t e re s u lts .
F E R R I T E C O R E T R A N S F O R M E R S A N D C O IL S
T U B E S O L I D - S T A T E
R e d L e a d
F ig . 24 — T h e “ Z M E T E R ” ca n b e c o n n e c t e d f o r a
quick- in-c ircu it r i n g i n g t e s t in t u b e o r solid -s tat e.
C o il s a n d t r a n s f o r m e r s t h a t u se fer rit e c o re s w ill n o r
m a l ly s h o w go o d r in g i n g i f th e c o i l i s g o o d . T h e v a lu e
o f t h e c o i l o r t r a n s f o r m e r m u s t b e a b ov e 1 0 u H t o sho w
a r i n g i n g t e s t o f 1 0 o r mor e j u s t l i k e r eg u la r co i ls .
T E S T I N G T V F L YB A C K T R A N S F O R M E R S AN D
Y O K E S W I T H TH E R INGIN G TE ST
T h e p a t e n t e d Senc ore R i n g in g t e s t al lo w s t h e t e s t i n g
o f y o k e s a n d f ly ba ck s i n - o r ou t- of- cir cui t. Si m p l y
c o n n e c t t h e yo k e o r flyb ack to th e t e s t l ead s, d e p r e s s
t h e R I N G I N G T E S T p u s h b u t t o n a n d r o t a t e t h e
I M P E D A N C E M A T C H s w itc h th r o u g h t h e f o u r yoke
a n d f ly ba c k p o s it i o n s (ma rked i n r e d ) . A d i s p l a y o f 1 0
or m o r e o n a n y one o f t h e fo ur p o s it i o n s i n d i c a t e s a
goo d yo ke or fl yback. If t h e r e a d i n g i s less t h a n 1 0 i n
d l f ou r p o s it i o n s o f t h e I M P E D A N C E M A T C H
s w i t c h , t h e R i n g i n g t e s t w i l l he l p loca te t h e c a u s e o f
t h e low re a d i n g , a s h o r t e d t u r n or a circ uit l o a d i n g t h e
y o k e o r f ly ba c k do w n.
- - - - - - - - - - - - - - - - - - - - - - - - - - - — W A R N I N G - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Do n o t c o n n e ct t h e “ Z M E T E R ” t e s t l e a d s t o t h e
y o k e o r f ly b a c k i n th e s e t u n til A L L p o w e r t o t h e
s e t h a s be en r em ov ed . F o r y o u r s a f e t y , d i s c o n
n e c t th e AC l i n e co rd to th e receiver f r o m t h e A C
o u t l e t .
3 . I f the s e t h a s a h i g h v o l ta g e rec tif ier tub e , r e m o v e
i t a s th e f i l a m e n t s m a y a c t a s a s h o r t an d cause t h e “ Z
M E T E R " t o g i v e a false r e a d i n g of l e s s t h a n 1 0 .
4 . D ep re ss t h e R I N G I N G T E S T p u s h b u t t o n a n d
hold it d o w n w h il e r o t a t i n g t he I M P E D A N C E
M A T C H s w i t c h t h r o u g h th e f ou r yo ke and fly b a c k
po s iti o n s m a r k e d in re d . I f t h e m e t e r re a ds 1 0 or more
i n on e o r m or e p o s i t i o n s o f t h e swi tch , the flyb ac k i s
g o o d . If the d i s p l a y sh o w s less t h a n 1 0 i n a l l four p o s i
tio n s o f th e s w i t c h , a s h o r t o r loa d o n the fly ba ck i s
indicated.
N O T E : The f i r s t f o u r s t e p s will i d e n t i f y a . g o o d f l y b a c k .
I f a re ading o f l e s s t h a n 1 0 i s in dicated, th e f l y b a c k
m a y s til l b e g o o d b u t a c ir c ui t c o u ld b e l oa din g i t Use
t h e r e m a i n in g s t e p s t o locate th e d ef ect .
5 . If the t e s t r e s u l t s in t h e p r ev io us s te p s r e s u l t i n a
r e a d o u t o f less t h a n 1 0 in a l l four pos itions, u n p l u g o r
u n s o ld e r t h e y o k e l e a d s fro m t h e horizo nt al w i n d i n g s
a n d re p e a t t h e t e s t .
6 . If the r e a d o u t is s ti l l l e s s t h a n 1 0 o n a s o li d s t a t e
set , disc on ne c t o n e e n d of t h e d a m p e r d io d e a n d r e p e a t
t h e R i n gi ng t e s t .
7 . I f the r e a d o u t is stil l le ss t h a n 1 0 , u n pl ug t h e c o n
vergence c o i l s a n d r e p e a t t h e R in g i n g tes t.
I N - C I R C U I T Q U IC K T E S T
1 . C o n n e c t t h e red c l i p t o :
a . P l a t e c a p o f a t u b e se t.
b . Collector or i n p u t to t h e t r i p le r o f a s o l i d - s t a t e
set.
2 . C o n n e c t t h e bl ac k c l i p t o :
a . T h e c a t h o d e o f th e d a m p e r t u b e or a n o d e of t h e
b o o s t e d b o o s t rect ifier or s imilar lo c a t io n s t h a t i s
DC c o n n e c t e d to th e p l a t e cap t h r o u g h t h e w i n d
i n g s o f t h e fly b ac k fo r a t u b e se t.
b . Th e B + i n p u t to t h e ho riz on tal o u t p u t t r a n
s i s t o r o r to g r o u n d . If t h e s e t us es a n i s o l a t e d
g r o u n d , c o n n e c t to t h e B + i n p u t p o i n t onl y.
8 . If the r e a d o u t is stil l le ss t h a n 1 0 , s t a r t d i s c o n
n e c ti n g the o t h e r c o il s fro m t h e flyback ( s u c h a s t h e
AG C w in d in g ) on e a t a time. P e r f o r m t h e R i n g i n g t e s t
e ach ti m e a l o a d is di sc o n n e c te d u n til you e it h e r f i n d :
1 . ) th e flyba ck b e g i n s to r e a d g o o d , o r 2 . ) a l l t h e le a d s
ha v e b e e n r e m o v e d f ro m t h e fly ba ck a n d it sti ll t e s t s
ba d. If a l l t h e l e a d s h a v e been rem ov ed a n d th e d i s p l a y
s t il l show s less t h a n J O in a l l f ou r po sitions, t h e fly
b a c k is defective. I f , o n th e o t h e r ha nd, th e f l y b a c k
b e g in s to r e a d g o o d a f t e r a lo a d h a s bee n r em ove d, t h e
fly b a c k itse lf is go od. T h e l a s t l oad to b e d i s c o n n e c te d
s ho uld b e t e s t e d a s t h e r e i s a s h o r t wh ich i s l oa di ng th e
r in g i n g ci rc u it . T h e fl y b a c k m a y b e t e s t e d o u t o f c i r
c u it us in g t h e s a m e pr oce dur e.
N O T E : T h e f l y b a c k will t e s t “ b a d ” i f : 1 . ) the c oi l u n d e r
t e s t i s op en , 2 . } t h e co i l u n d e r t e s t h a s o ne or m o r e
s h o r t e d tu r n s, o r 3 . ) a n y o t h e r coil i n e i t h e r the p r i m a r y
o r th e s e c o n d a r y o f t h e t r a n s f o r m e r has o ne or m o r e
3 1
s h o r t e d turn s. T h i s t h ir d p o i n t i s tr u e b e c a u s e a
s h o r t e d t u r n i n a n y c o i l w il l lowe r th e Q o f a ll t h e o t h e r
c o i ls t h r o u g h m u t u a l in ductance.
c a n n o t be checked d i r e c t l y w it h t h e R in gi ng t e s t . T h e
flybac k m u s t be c h e c k e d fro m th e p r i m a r y w in di ng s to
d e te r m i n e i f it i s g o o d o r bad.
A c o i l in t h e s e c o n d a r y m ay oc ca sio na lly o p e n r a t h e r
t h a n s h o r t . T h i s t y p e o f fail ur e w i l l on ly a ff e c t t h e c o i l
t h a t i s op e n a n d w i l l n o t aff ec t t h e o th er c oi ls . I f t h e
o p e r a t i o n of t h e rec ei ver i n d ic a te s th e p o s s ib i li ty of a n
open w in d i n g , t h e r e a re two ways to t e s t e a ch
i n d iv i d u a l wi nding. F i rs t , y o u c a n rin g eac h c o i l s e p
a r a t e l y . Se co n d a n d f a s t e r p ro c e d u r e i s to le a v e t h e “ Z
M E T E R ” c o n n e ct e d to t h e p r im a r y w inding a n d a p p l y
a s h o r t c i r c u i t to eac h o f t h e o t h e r w i n d in g s in t h e
t r a n s f o r m e r .
A n e x t e r n a l l y ap pli ed s h o r t w i l l l o w e r the Q of all t h e
o t h e r wi n d i n g s , j u s t l i k e an in te r n a l sh ort. S i m p l y n o t e
t h e n u m b e r o f r in g i n g c y c l e s d is p l a y e d w it h n o e x t e r
na l s h o r t ap plie d. T h e n use a small j u m p e r t o s h o r t o u t
t h e s e c o n d a r y you wish to t e s t . R e p e a t t h e R i n g i n g
t e s t w i t h t h e e x t e r n a l s h o r t appl ied. Y o u d o n o t n e e d to
r o t a t e t h e I M P E D A N C E M A T C H switch fo r t h e s e
a d d i t i o n a l t e s t s . Simp ly le av e it i n t h e p o s it i o n t h a t
g a v e t h e h i g h e s t n u m b e r o f r in g s w hen t h e c o i l w a s
t e s t e d w i t h o u t t h e e x te r n a l s h o rt .
I f t h e s e c o n d a r y c o i l you a re t e s t i n g is o p e n , y o u w i l l
n o t see a n y c h a n g e i n t h e r e a d i n g when y ou d e p r e s s t h e
R I N G I N G T E S T p u s h b u t t o n when th e e x t e r n a l s h o r t
i s a pp lie d. I f , o n t h e o t h e r h a n d , t h e c o i l is go od , yo u
w i l l see fe we r r in g i n g c y cl es disp layed. R e p e a t t h i s t e s t
o n a l l t h e s e c o n d a r y c o i l s .
N O T E : I f t h e t r a n s f o r m e r has se ve ra l c o i l s c o n n e c t e d
in se r ie s, s i m p l y c o n n e c t acr os s th e e nds o f t h e se ri e s
c o n n e c t e d c o i l s . A n op en in a n y c o i l w il l r e s u l t in n o
c h a n g e i n t h e n u m b e r o f r in g i n g cy cle s d i s p la y e d ,
S P E C I A L N O T E S :
A f e w of t h e newe r yoke s a nd flybac ks h a v e be en
d e s i g n e d w i t h v ery l o w i n d u c t a n c e f o r use in c e r t a i n
s o l i d - s t a t e receivers. Th es e y o k e s an d f l y b a c k s m a y
n o t r i n g 1 0 o r more tim es b u t m a y s h o w o n l y 8 o r 9
r i n g s e v e n w h e n g o o d . Th e q u e s t i o n o f go od o r b a d ca n
b e a n s w e r e d q u ic k ly b y a d d i n g a ‘ ‘ s h o rt e d t u r n ” a n d
r e c h e c k i n g t h e n u m b e r o f ring s. If t h e n u m b e r of r i n g s
does n o t c h a n g e or c h a n g es only slig ht ly, t h e n t h e y o k e
or t r a n s f o r m e r r l r e a d y h a s a s h o r t e d t u r n . I f , t h e
n u m b e r of r i n g s d r o p s o f f d r as tic a lly , th en t h e y o k e o r
f l y b a c k i s go od . T h is m e t h o d can be us ed on a n y
s u s p e c t e d yoke, fly bac k, or ind uct or .
A s im p l e “ s h o r t e d t u r n ” i s a p ie c e o f so l d e r. S i m p l y
form i t i n t o a loo p a nd p r e s s it c l o s e to the w i n d i n g s o f
t h e y o k e or w r a p i t a r o u n d t h e co r e or w in d i n g s of t h e
flyback. D o n o t u se a f i n e w ire o r s tr a n d e d wire a s t h e y
do n o t g iv e t h e s a m e af fect an d c o u l d g iv e m i s l e a d i n g
r e s u l t s . Be s u r e to use solder or a he av y g a u g e s ol id
w ir e fo r t h e “ s h o r t e d t u r n ” .
So m e of t h e ne w e r fly backs a re b e in g made w i t h t h e
H i g h V o l t a g e rec tif ier diod es b u ilt r i g h t in to t h e fly
b a c k its elf. T h e Di odes are inc luded as p a r t of t h e
t r a n s f o r m e r w i n d i n g . B e c a u s e of t h e r e v e r s e
b r e a k d o w n o f t h e d io d e s , t h e high v o lta g e w i n d i n g
I f th ere is a la ck of h i g h v o l ta g e a n d th e fly b ac k sh o w s
g oo d ring ing , on e of t h e diode s is o p e n . I f th e h i g h
v o lta ge is se ver al t h o u s a n d v ol ts l o w a nd t h e fly b a c k
show s good r in g i n g , on e of th e di od es i s sho rted . In
b o t h cas es, t h e f l y b a c k m u s t b e r e pl a ce d as th e d i o d e s
a re n o t repl ac eab le .
R i n g
R in g
F ig , 2 5 — K i n g o n l y t h e p r i m a r y a n d th e i n d i v i d u a l
w i n d i n g s o f th e t r a n s f o r m e r s w i t h bui lt- in hig h v o l t a g e
r ec tif ie r s. T h e h i g h v o l t a g e w i n d i n g ca n n o t b e r u n g
be cause o f th e b r e a k d o w n p o t e n t i a l o f the d io d e s .
TE S T IN G Y O K E S W I T H THE R IN G IN G T E S T
If the flyba ck c h e c k e d ba d an d t h e n c h e c k e d good
w h e n t h e yok e w a s d i sc o n n e c te d o r t h e s y m p t o m s on
th e screen i n d ic a te a poss ibl e b a d y o k e , the y o k e
sh ou ld b e t e s t e d w i t h t h e Ri ng in g t e s t to b e s u r e .
- - - - - - - - - - - - - - - - - - - - - - - - - W A R N I N G - - - - - - - - - - - - - - - - - - - - - - - - - -
D o n o t c o n n e ct t h e “ Z M E T E R ” to t h e yo k e o r
f ly b a c k i n t h e s e t u n t i l A L L pow er to th e s e t h a s
be en di sc o n n e c te d . F o r y o u r s a f e t y , re mo ve th e
A C l i n e co rd of t h e rec eiv er from t h e A C ou tlet.
S P E C I A L N O T E :
Th e yoke s hou ld be t e s t e d w h ile i t is sti ll m o u n te d on
t he C R T . Occ as iona lly, th e r e i s a s h o r t ca u s ed b y t h e
p r e s s u r e o f th e m o u n t i n g of t h e yo ke. Rem oving t h e
yo ke from th e C R T w i l l r e lie v e t h e pr es s ur e a n d t h e
s h o r t m a y d i s a p p e a r . Th e r e s u l t s i f the yoke i s
rem ov ed b ef ore i t is t e s t e d i s a yok e t h a t i s bad when
m o un te d, b u t t e s t s go od w hen o f f t h e C R T .
T E S T IN G H O R I Z O N T A L Y O K E W I N D I N G S
FOR G O O D O R BAD
1 . D i s c on ne c t t h e yo k e le ads f ro m t h e ci rc u i t. O n s e t s
w it h a yoke plug, s i m p l y p u ll th e plug. I f th e le ad s a re
sold ere d to th e fly b a c k or P C boa rd, car efu ll y u n s o ld e r
th em n o t in g wh e re t h e y were connected.
2 . Connect t h e t e s t leads fro m t h e “ Z M E T E R ” to
th e h o riz on ta l w i n d i n g s o f th e y o k e . D ep re ss t h e
R I N G I N G T E S T p u s h b u t t o n an d h o ld d o w n . R o t a t e
th e I M P E D A N C E M A T C H s w i tc h th r o u g h t h e f ou r
3 2
p o s iti on s fo r yok e a n d flybac ks ( m a r k e d in r e d ) . A
d i sp l a y o f 1 0 o r mor e o n a ny o n e o f t h e f o u r po sit io ns
in d ic a te s a g o o d yoke w in d in g . A d i s p l a y o f le ss t h an
1 0 o n a l l four po sitio ns of t h e s w itc h i n d i c a t e s a d e f e c -
; v e y o k e .
N O T E : T h e h or izo nt al w i n d i n g s o f t h e y o k e ca n check
g o o d an d s t i l l h a v e a b ad y o k e i f th e v e r t i c a l w i n d i n g s
a r e b a d . B e su re t o check b o th th e v e r t i c a l a n d th e h o ri
z o n t a l w i n d i n g s o f th e y o k e w i t h th e R i n g i n g tes t.
T E S T I N G V E R T I C A L YOKE W I N D I N G S F O R
G O OD OR B AD
1 . Di sc on nec t th e yoke fro m th e cir c u it . On s e t s w ith
a yo k e pl ug , simp ly p u ll th e p lu g . If t h e l e a d s a re sold
er ed to t h e ve rti cal o u t p u t t r a n s f o r m e r or th e PC
b o a r d , u n s o l d e r t h e m n o t i n g w h e r e t h e y were
con ne cte d so t h a t t h e y m ay b e r e c o n n e c t e d o r t h e n e w
yok e con ne cte d to t h e p r o p e r poin ts,
2 . C he ck t h e yok e f o r d a m p i n g r e s i s t o r s . So m e yokes
use a d a m p i n g r e s i s t o r acros s t h e v e r t i c a l wind ing s.
The se shou ld b e d i s c o n n e c te d a t one e n d a s t h e y w i l l
s w a m p o u t t h e r i n g i n g t e s t a n d p o s s i b l y give
erro n eo u s r es u lts .
3 . Co nn ec t th e t e s t leads fro m t h e “ Z M E T E R ” t o
t h e v e rt i c a l w in d i n g s of the y o k e . D e p r e s s t h e
R I N G I N G T E S T b u t t o n a n d re a d t h e n u m b e r o f r i n g
ing cy cl es o n the di splay. A re a d i n g of 1 0 or mo re rings
i n a n y o f th e four po s iti o n s of t h e I M P E D A N C E
A A T C H switch f o r yoke s a n d f l y b a c k s ( m a r k ed i n r e d )
i n d ic a te s t h a t t h e yo ke is g o o d . A d i s p l a y o f le ss t h a n
1 0 i n a l l four p os iti on s indi ca tes a d e f e c t i v e yoke.
N O T E : O n se r ie s c o n n e c t e d v e r t i c a l y o k e wi n di ng s,
t h e w i n d i n g s s h o u l d b e t e s t e d i n d i v i d u a l l y . I f ther e i s
a n im b a l a n ce o f mo re t h a n 3 ring s or t h e i n d u c t a n c e i s
m o r e th a n 1 0 % d i f f e r e n t be tw e e n t h e t w o w i n d i n g s , th e
y o k e w il l g i v e trou ble i n th e r e c e i v e r . A g o o d y o k e w ill
g i v e a l m o s t i d en ti ca l re a d in g s o n b o t h w i n d i n g s .
33
M A I N T E N A N C E
- - - - - - - - - - - - - - - - - - - - - - - -
T h e s e servi cing i n s t r u c t i o n s a r e f o r u s e by q u a l
i f ie d personnel o n ly . To avo id e le c tri c sho ck, d o
n o t p e rf o r m a n y s e r v i c i n g o t h e r t h a n t h a t
co n ta i n e d i n the o p e r a t in g i n s t r u c t i o n s u nl ess
you a re qu al ifi ed to d o s o .
W A R N I N G
- - - - - - - - - - - - - - - - - - - - - - - - - -
INTRODU CTI ON
T h i s M a in t e n a n c e and Servi ce se cti on o f t h e m a n u a l
w il l help you m a i n t a i n y o u r L C 5 3 w i t h i n t h e p u b l is h e d
s pe ci fic a tio ns . Th e sch ema tic, p a r t s li s t , a n d boa rd
l a y - o u t s are in c lu de d o n s e p a r a t e sh eets.
C H E C K IN G T H E L C 5 3 A C C U R A C Y
T h e a c c u r a c y o f th e L C 5 3 s ho uld be c h e c k e d a g a i n s t
l a b t y p e s t a n d a r d s to i nsu re t h a t t h e a c c u r a c y i s c o r -
r e c t . If lab t y p e s t a n d a r d s a re n o t a v a il a b l e , u se s ta b l e
t y p e c a p a c i to r s t h a t have been m e a s u r e d w i t h th e “ Z
M E T E R ” w he n i t w a s new a n d c o m p a r e t h e m o n a
a n n u a l or sem i- ann ual sch e du le . D o n o t u s e a lu m in u m
e l e c t r o l y t i c c a p ac ito rs as a re fe re nc e. T h e s e w i l l cha ng e
w i t h ag e a n d th e c ap aci ty w i l l n o t be c o n s i s t a n t . Po ly
p r o p y l e n e o r p o ly st y r en e are r e c o m m e n d e d a s t h e y w i l l
h a v e t h e b e s t t e m p e r a t u r e c h a r a c t e r i s t i c s .
N O T E : T h i s i s r e c o m m e n d e d only a s a c h e c k a n d n o t
a s a s t a n d a r d t o b e u s e d f o r c a l ib ra ti o n .
A C C E S S / D I S A S S E M B L Y
See W a r n i n g o n page 3 7 !
A c c e s s to th e int erior o f t h e L C S 3 for re c a li b r a t i o n
a n d / o r ser vi ce m a y b e o b t a i n e d u s i n g t h e fo l lo w in g
pr o c e d u r e .
1 . U n p l u g th e un i t fro m t h e A C l i n e .
2 . Re m ov e t h e fo u r scre ws ( t w o o n e a c h s i d e ) a t the
r e a r o f t h e i n s t r u m e n t.
3 . Place the u n i t o n e nd w i t h th e h a n d l e a n d f ro n t
p a n e l p o i n t i n g up wa rd. Pull g e n tl y on t h e h a n d le w h i l e
h o l d i n g t h e bac k po rti o n o f th e c a s e . T h e c a s e w i l l n o w
s li p from t h e ch ass is a n d r e a r p o r t i o n e x p o s in g t h e
p r i n t e d circu it bo a rd s an d a l l t h e c a li b r a t io n con trols .
T h e r e is n o nee d to fu rt h e r d i s a s s e m b l e t h e u n i t unless
a c c e s s t o b o t h s i d e s o f a p r in t e d c i r c u i t b o a rd is r e
q u i r e d fo r s e r v i c e . If this i s th e c a s e, t h e n proceed a s
f o l l o w s :
4 . U n p l u g a l l the c on ne cto rs fr o m b o t h b o a rd s . There
a r e sev eral si n g le term ina l c o n ne cto rs t h a t m u s t a l s o
be disc on ne c te d.
b ly and p u ll a w a y fro m the f ro nt o f the u n i t. T h e tw o
PC bo a rd s w il l come o u t a s a n a s se m b ly fr o m t h e unit.
7 . T o s e p a r a t e t h e tw o P C bo a rd s , remo ve t h e tw o
sc r e w s a t t h e r e a r o f th e as se m bl y. C are fu ll y li ft the
t op P C b o a r d from the b o t to m boa rd. L if t c a re f u ll y s o
t h a t th e p i n s o f t h e pl ug co n n e ct in g t he t wo b o a r d s are
n o t d a m a g e d .
8 . T o r e a s s e m b l e , rev er se t h e or d er o f t h e p ro ce du re .
E Q U IP M E N T RE Q UI RE D F O R C A L IB R A T I O N
Th e following e q u i p m e n t i s r ec om m e nd e d fo r use i n
c a li b r a t in g t h e ” Z M E T E R ” . T h e s e ar e h i g h a c c u r a c y
s t a n d a r d s a n d w i l l a l l o w th e c a lib ra tio n o f t h e m e t e r to
th e sp e ci f ic a ti o n s in t he f ro nt of t h e m an ua l. L o w e r
accu ra cy s t a n d a r d s w i l l reduce th e accu ra cy of th e ” Z
M E T E R ” . I f c a p a c i t o r s a n d i n d u c t o r s o f k n o w n value s
a re av ailab le, t h e y m ay be use d f o r c ali bra tio n.
i f know n v a l u e s o f c a pa c ito rs a n d i n d u c t o r s o r the
fo l l o w i n g e q u i p m e n t i s not ava ila ble, the m e t e r m a y b e
r e t u r n e d t o t h e Senco re S e rv i c e D e p a r t m e n t fo r ch e c k
o u t and r e c a l i b r a t i o n f o r a s m al l ser v ic e ch arge.
/ ο ι · ·
G e nR ad m o d el I4 91 G S t a n d a r d I n d u c t o r (c ov ers a l l
r a n g e s e x c e p t the 1 0 0 u H ran ge o f t h e “ Z
M E T E R ” ) .
H e w le t t P a c k a r d m o d e l H P 1 6 4 8 1 A 5 6 u H S t a n d a r d
I n d u c t o r . 0 R » i u ; ;
H e w l e t t P a c k a r d mo d e l 444 0B S t a n d a r d C a p a c it o r
Deca de ( covers a l l ran ge s ex c ep t the 8 0 0 u F fo r the
to p r a n g e of t h e “ Z M E T E R ” ) .
8 0 0 u F film t y p e c a pa c ito r ( c a n b e made u p of 2 0 - 2 5
u F fi lm c a p a c i t o r s a n d t he n chec ked o u t by a ca li
b r a t i o n la b ) .
Dig ital V o l t m e t e r suc h as t he DVM 37 or DV M 38 .
Vol tag e s o u r c e ca pab le o f o u t p u t s o f . 0 9 a n d . 9 V o lts
D C .
1 0 0 0 H e r t z sine wave sign al sourc e v a r i a b l e to 4 . 0
Volts pe ak -to -pe ak .
C a li b r a te d Scope su ch a s t he PS 29 or P S 1 6 3 to
m e a s u r e t h e a m p l i t u d e o f th e 1 0 0 0 H e r tz signal.
M E T E R C A L IB R A T I O N
S e e W a r n i n g on p a g e 3 7 !
T he i n t e r n a l m e t e r ( r e a d o u t ) c a lib ra tio n s h o u ld b e
ch ec k ed a n d a d j u s t e d i f ne ces sa ry b e f o re c a l i b r a t i o n o f
a ny o f t h e r a n g e s o f t he ” Z M E T E R ” .
N O T E : D o n o t d ep t' es s a n y o f th e p u s h b u t t o n s o n the
” Z M E T E R w h e n a d j u s t i n g th e m e t e r zero o n the
r e a r o r t h e m e t e r ca libration co n t ro ls .
1 . T u r n t h e ” Z M E T E R ” 0 1 1 a n d a l l o w a 1 0 to 1 5
minut e w a r m - u p p er io d .
5 . Re m ov e th e fo u r screw s ( o n e a t eac h co rn er ) o f t he
t o p p r i n t e d b o ar d .
6 . Ca refully l i f t t he rear o f th e p r i n t e d b o a r d a s s e m
2 . If t h e r e a d o u t d o e s n o t sh o w 0 0 0 w ith t h e n e g a ti v e
si gn a p p e a r i n g occ a sio n a lly , a d j u s t the r e a r p an el
meter zero c o n tr o l unt il th e n e g a ti v e si gn i s j u s t o f f o r
a p p e ar s i n t e r m i t t e n t l y .
3 4
S e e W a r n i n g o n p a g e 3 7 1
3 . With th e o u t p u t co ntr ol o f t h e I) C su p p ly s e t to
minimum , c o n n e ct t h e p o s it i v e lead to th e u n g ro u n d ed
en d o f R 1 0 8 2 . Co nn ec t t h e n e g a t i v e le a d to the
gr ou nd ed end o f I I I 0 8 2 . C o n n e c t a D VM su ch a s the
VM37 o r DV M3 8 to the s a m e p o in ts . A d j u s t t h e
pow er s up ply f o r a rea d in g o f 0.9 Vo lt s D C across
R 1 0 8 2 .
4 . A d j u s t R1 03 5 o n th e “ Z M E T E R ” fo r a r e a d o u t o f
9 0 0 o n th e disp lay .
5 . R ed uce t h e pow er s up ply o u t p u t to 0 . 0 9 Volts D C
and a d j u s t R 1 0 3 1 f o r a r e a d o u t of 089 on th e dis play.
6 . R e p e a t s t e p s 3 , 4 , and 5 tw o o r th re e t im e s a s t h e
co n tr o l s w i l l ha v e some i n t e r a c t i o n .
IN PU T P R O T E C T I O N R E L A Y T R IP
PO IN T A D J U S T M E N T ^ > i o m O
Th e i n p u t p r o te c ti o n r e la y t r i p p o i n t a d j u s t m e n t
s ho ul d b e m ad e be fo re c a l i b r a t i n g t h e o t h e r r a n g e s o f
the L C 5 3 . Th e fo l lo w in g p r o c e d u r e s e ts up th e t r i p
p o i n t a t w h ic h th e re lay w i l l o p e n t h e i n p u t to th e L C 5 3
when an e x te r n a l v o lta g e i s a p p l i e d to th e t e s t l e a d s .
1 . C onnect a D V M to t h e s i x t h pin fro m t h e f ro n t
pa ne l o n th e L E A K A G E p u s h b u t t o n , on th e si d e o f the
sw i tc h cl ose st to t h e ou tsi d e of t h e i n s t r u m e n t . This i s
ac ce ssi ble fro m t h e si d e o f t h e i n s t r u m e n t .
5 . S h o r t t h e t e s t lea ds t o g e t h e r, d e p r e s s t h e V A L U E
b u t t o n a n d a d j u s t th e front p a n e l L E A D ZE R O
c o n tr o l f o r a re a d o u t o f 0 0 0 w i t h t h e n e g a tiv e si gn
a p p e a r i n g o cc a si o n a lly .
6 . C o n n e c t t he t e s t leads to a s t a n d a r d 8 0 u H c o i l .
^ j A d j u s t R 1019 f o r a r e a d o u t o f 8 0 . 0 u H .
i t )
C , 7 . C o n n e c t th e t e s t leads to a s t a n d a r d 8 0 0 uH c o i l .
U S '
> , , A d j u s t R 1 0 2 1 f o r a r e a d o u t o f 8 0 0 u H .
8 . C o n n e c t th e t e s t leads to a s t a n d a r d 8 m H c o i l .
A d j u s t R10 23 fo r a r e a d o u t o f 8 . 0 0 m H .
9 . C o n n e c t th e t e s t l ea ds to a s t a n d a r d 8 0 0 m H c o i l .
A d j u s t R10 27 for a r e a d o u t o f 8 0 0 m H .
1 0 . C o n n e c t t h e t e s t leads to a s t a n d a r d 8 H e n r y c o i l .
A d j u s t R 1029 f o r a r e a d o u t o f 80 0 0 m H .
R INGING T E S T C A LI B R A T IO N
T h e c a li b r a t io n o f th e R i ng in g t e s t i s d e p e n d e n t upon
t h e a c c u r a c y o f t h e sco p e us ed t o m e a s u r e th e 1 0 0 0
H e r t z sine w av e i n p u t o n t h e s e c o n d ha lf o f the
p ro c e d u r e .
1 . S h o r t t h e t e s t l e a d s t o g e t h e r a n d s e t the
I M P E D A N C E M A T C H sw itc h t o a n y o n e o f th e
B L U E p o s iti on s.
2 . Connect a po we r su p p ly s e t t o 7 V o l t s D C c ap ab le
■ f de livering 2 5 0 m A o f c u r r e n t to th e t e s t le ad s.
Co nn ec t t h e po sit iv e l e a d to t h e r e d t e s t l e a d , t h e n e g
a t i v e to th e bl ack t e s t l e a d .
3 . A d j u s t R 11 07 c o u n te r c l o c k w i s e s o t h a t t h e DVM
r e a d s plus 7 V o lt s D C . S lo w ly r o t a t e R 1 X 0 7 cl o c k w i se
u n t il the re lay o p en s a n d t h e D V M r ea d s 0 Volts. T h e n
a d j u s t R 1 1 0 7 c ou n te rc lo c k w is e u n t i l t h e v o lta g e j u s t
r e t u r n s .
I N D U C T A N C E C A L I B R A T I O N
Th e f o l l o w i n g pr oc e du re r e q u i r e s t h e u se o f s t a n d a r d
in d u c t o r s or i n d u c t o r s o f k n o w n value. Th e i n d u c t o r s
o f know n value m u s t be cl ose t o t h e v alu es sh ow n i n
t he pro ced ur e to i n su r e t h a t t h e p r o p e r r a n g e i s cali
b r a t e d . E a c h t im e a c on tro l is t o be a d j u s t e d , t h e
V A L U E p u s h b u t t o n m u s t be d e p r e s s e d o n t h e f ro n t
p an el .
^ 0 /
1 . S e t a l l i n d u c t a n c e c a l p o t s t o m id r a n g e ( R 1 0 1 9 ,
R 1 02 5, R 1 0 2 3 , R I 0 2 7 , 1 U 0 2 9 , a n d R 1 0 7 0 ) .
2 . Co nn ec t th e t e s t leads t o a s t a n d a r d 8 0 m H c o i l .
A d j u s t R 1 0 2 5 f o r a r e a d o u t o f 8 0 .0 .
3 . Connect t h e t e s t leads to a s t a n d a r d 1 0 m H c o i l .
\ d j u s t R 1 07 0 f o r a r e a d o u t of 1 0 . 0 .
4 . R e p e a t s t e p s 2 a n d 3 a t l e a s t t w o to th re e t im e s as
t h e con tro ls w i l l i n t e r a c t w i t h e a c h o t h e r . This s e t s t h e
lin e a ri ty o f a l l t h e i n d u c t a n c e r a n g e s o f t h e “ Z
M E T E R ” a n d c a li b r a t e th e 1 0 -1 0 0 m H range.
2 . C o n n e c t a DVM to th e coll ec tor o f TR 217 .
3 . D e p r e s s t h e R I N G I N G T E S T b u t t o n a n d a d j u s t
R10 8 1 fo r a 6 . 0 to 6 . 5 VDC read ing .
4 . U n s h o r t t h e t e s t le ad s. S e t t h e I M P E D A N C E
M A T C H s w i tc h to a n y o n e o f t h e R E D { Y o k e &
F l y b a c k ) po sit io ns . Co nne ct t he v e r t i c a l i n p u t fr o m a
sc o p e a n d t h e o u t p u t o f a n a ud io g e n e r a t o r t o th e in p u t
of t h e “ Z M E T E R ” . T he i n p u t of t h e scope a n d the ho t
l ea d of t h e g e n e r a t o r a re co nn e ct e d t o t h e r ed t e s t c l i p
a n d t h e g r o u n d leads to t h e black t e s t c l i p .
5 . S e t t h e au dio g e n e r a t o r to sin e w a v e a n d th e fre
q u e n c y t o 1 0 0 0 Hertz.
6 . D e p r e s s th e R I N G I N G T E S T b u t t o n a n d a d j u s t
t h e o u t p u t o f t h e au dio g e n e r a t o r for 3 . 6 Vo lt s p e a k - t o -
pe a k .
7 . A d j u s t R1 05 4 w ith t h e R I N G I N G T E S T b u t t o n
d e p r e s s e d s o t he f r o n t pa ne l d i s p l a y o n the “ Z
M E T E R ” i s cou nti ng. S lo w ly b a c k off u n til th e c o u n t
i n g a p p e a r s t o be i n t e r m i t t e n t o r t h e r e a d o u t sho ws
s o m e n u m b e r . Th e a c tu a l n u m b e r is m e a n i n g le s s a n d
o n l y sh o w s t h a t y ou ha ve r eac he d t h e p r o p e r t ri p p o i n t
in t h e r i n g i n g ci rc u it . C arefully c h e c k t h a t t h e p o i n t i s
t h e c o r r e c t on e by a d j u s t i n g t h e c o n t r o l abov e a n d
be lo w t h e p o i n t to s e e t h a t th e c o u n t i n g s t a r t s a nd
s t o p s .
35
I n d u c t a n c e
C a l
P o t s
w y R i * .
- C D -
N e g a t i v e l e a d of pow er su p pl y
a n d D V M f or m e te r c ai .
δ δ δ δ ΰ δ δ δ δ δ ί ό δ ό δ δ ό ό ό ό
P o s i t i v e l e a d o f P o w e r S u p p l y a n d
D V M f o r M e t e r C a l .
C a p a c i t o r
C a l
C o n t r o l s
M e t e r C a l
C o n t r o l s
f R i n g i n g T e i t f
A d j u s t m e n t s
P ig , 26 — C o m p o n e n t view o f t h e 10 0 0 b o a r d , 43B149 s h o w i n g t h e l o c a t i o n o f the cali br ati on c o n tr o l s a n d th e p o i n t o f
c o n n e c t i n g th e D V M f o r th e i n p u t rela y tr ip p o i n t a d j u s t m e n t .
C A P A C IT O R C AL IB R A TI O N
U s e o f th e s t a n d a r d s li st e d i n t h e b e g in n i n g o f th e p r o
c ed ure are reco mm end ed. If c a l i b r a t i o n m u s t b e do n e
wit h kn o w n va lue ca p ac ito rs , be s u re t h a t the th re e
t h e n e g a t i v e sig n a p p e a r i n g o cc asionally. D o n o t to u c h
t h e f r o n t pa nel L E A D Z E R O a g a in u n t i l a f t e r th e n e x t
s te p .
c a p a c i to r s a re cl o s e i n v al ue t o t h e o ne s rec omm end ed.
Ca lib ra te th e m et e r to read t h e v a l u e o f th e ca p ac ito r
us e d re ga rd le s s o f th e v a lu e l i s t e d f o r th e m o s t
a c c u r a t e readi ngs .
2 . Open the t e s t le ads an d d e p r e s s th e V A L U 1 C
b u t t o n un d e r C A P A C I T O R S a n d a d j u s t the internal
c a p a c i t y - i n d u c t a n c e balance c o nt r ol R 1 3 3 un til th e
r e a d o u t shows 0 0 0 with t he n e g a t i v e sign a p p e a r in g
1 . Sh or t t h e t e s t le a d s t o g e t h e r a n d d ep res s the
V A L U E b u t t o n un de r I N D U C T A N C E . C h e c k to s e e
t h a t th e m e t e r i s z e r o e d . If n o t , r e s e t t h e f ro n t pane l
oc c asi on all y. Thi s p u t s the i n d u c t a n c e a n d c a pa c ita nc e
l ea d ze r o a t th e s a m e po in t o n t h e f r o n t pan el L I C A D
Z E R O con tro l.
L E A D ZE R O con tr ol un ti l t h e r e a d o u t shows 0 0 0 wit h
3 . C on ne c t a s t a n d a r d 8 0 0 0 p F c a p a c i t o r to th e t e s t
l e a d s a n d d e p r e s s t h e V A L U E b u t t o n u n d e r
C A P A C I T O R S .
4 . A d j u s t R 1 0 8 3 f o r a r e a d o u t of 80 00 pF .
5 . C on ne c t a s t a n d a r d 0 . 8 uF c a p a c i t o r to th e t e s t
l e a d s a n d d e p r e s s t h e V A L U E b u t t o n u n d e r
ϋ 4 * Λ K
_ j y
■ • i f v
:
■ C l 5
C R 3 6
h .
_ _ I ^
1 Θ
U J
, V I C 2 7
: w ® 0 * 2
f y
I C 2 2 ,
R 3 5 ^
W :
C R 2 4
U
C A P A C I T O R S .
1
- -
£ . 4 7
^ F ro nt o f
C 3 5 l C I 9 ' ‘
0 * * -
c « S 2
C I S IC 26 y
P i g . 27 — C o m p o n e n t vie w o f t h e corn er o f the 1 0 0
bo ar d s h o w i n g th e loc ation o f t h e lead ze r o b a la n c e
co n tr o l R 1 3 3 a n d i n d i c a t i n g t h e f r o n t o f th e u n i t o r
d i s p l a y boa rd fo r a r e f e r e n c e .
; C 2 8 '
6 . A d j u s t R10 8 8 fo r a r e a d o u t of . 8 0 0 uF.
7 . C o nn e c t a s t a n d a r d 8 0 0 u F c a p a c i t o r to th e t e s t
l e a d s a n d d e p r e s s t h e V A L U E b u t t o n u n d e r
C A P A C I T O R S .
8 . A d j u s t R109 0 f o r a r e a d o u t of 8 0 0 uF.
3 6
N o t e s
- - - - - - - - - - - - - - - - - - - - - - - - -
Av oi d s ho c k h a za rd when the case is r em o v ed .
R aw A C li n e v o l t a g e i s pres ent i n some a r e a s a n d
v o l t a g e s t o 6 0 0 V o l t s i n oth er s. A vo id cont act
w it h : 1 . A l l t er m in a ls of th e A pp li ed L eak ag e
sw itc h, 2 . The m o d u l e of t he L ea k a g e pu s hb utt on
located b e h in d t h e m a in s w it c h as sem bl y, 3 . A ll
w iri ng on t h e b a c k p an e l, especially t h os e co v er ed
with t h e pl as tic sh i e l d , and 4 . W ir in g co nnecting
to t h e A C p ow e r s w i t c h . M ak e c e r ta in t h a t t h e
pl a s ti c s h i e l d o n t h e ba c k p a n el is i n p la ce b e fo r e
the i n s tr u m e n t i s r e * a s se m b le d .
W A R N I N G - - - - - - - - - - - - - - - - - - - - - - - - - -
3 7
A P P E N D I X
CAP AC IT O R T HE O RY AN D T H E
“ Z M E T E R ”
The c a p a c i to r i s o n e o f t h e m o s t co m m o n c o m p o n e n ts
used i n electr on ics , b u t les s is kn own a b o u t it t h a n the
o t h e r c o m p o n e n t i n ele c tro n ic s. T h e f o l lo w in g is a b ri e f
e x p la n a ti o n of t h e c a p a c i t o r , ho w it wo rks , a n d h o w
the "Z M E T E R ” m e a s u r e s t h e i m p o r t a n t p a r a m e t e r s
o f the c a p ac ito r.
Th e b a si c c a p a c i t o r is a p a i r of m e t a l p l a t e s s e p a r a t e d
b y an i n s u l a t i n g m a t e r i a l ca lle d th e di e le c tr i c . Th e s i z e
o f the p l at e s , t h e t y p e o f di ele ctr ic, an d th e t h ic k n e s s o f
the die lec tric d e t e r m i n e s t h e ca p ac ity . T o inc rea se
c ap aci ty, y ou ca n i n c r e a s e t h e s i z e of th e p la te s ,
inc rease t h e n u m b e r o f p l a t e s , u se a diffe rent die le c tri c
o r a t h i n n e r die lec tri c. T h e cl oser th e p l at e s , or the
t h in ne r t h e die lec tri c, t h e l a r g e r th e c a p a c i t y f o r a
given si ze p l a t e . B e c a u s e f la t p l a t e s a r e r a t h e r
imp ra ctic al , c a p a c i t o r s a r e g e n e ra ll y m ad e b y p u t t i n g
an i n s u l a t i n g m a t e r i a l b e t w e e n tw o f o i l s t r i p s and
ro l li n g th e c o m b i n a ti o n i n t o a t i g h t p a c k a g e o r r o l l .
s t o r e d i n th e dielectric m at e ri a l. W h e n th e c a p a c i to r i s
di sc h a r g ed , t he el ect ric d ip o le s b e c o m e r e or ien ted i n a
r a n d o m fa sh io n , d i s c h a r g in g t h e i r s t o r e d energy.
1
| 1
Η H
C H A R G E D
C A P A C I T O R
F ig . 29 — W h en a p o t e n t i a l is a p p l i e d t o a c a p a c i to r,
th e die lectric dip oles i n t h e d i e l e c t r i c li n e u p i n th e
d i r e c tio n o f th e ap p l ie d p o t e n t i a l . W h e n the cap acitor
i s di scharged, th e dip oles r e t u r n to a r a n d o m order and
a r e n o t lin e d u p .
W h e n a c a p a c i to r i s c o n n e c t e d t o a v o lta ge so u r c e , it
d oes n o t b eco m e f u l ly c h a r g e d i n s t a n t a n e o u s l y , b u t
t a k e s a de finite a m o u n t o f tim e. T h e tim e r eq ui red f o r
t h e c a pa c ito r to c h a rg e i s d e t e r m i n e d by th e s i z e o r
c a p a c i t y o f th e c a pa c ito r an d t h e r e s i s t o r i n ser ies w it h
th e c a pa c ito r or its ow n i n t e r n a l s e ri e s res is ta nc e. T h is
i s ca ll e d R C t im e a n d i s c a p a c i t y i n F a r a d s time s
r e s i s t a n c e i n O h m s e qua ls t i m e i n sec onds. Th e curv e
o f t he c h a rg e o f th e c a p a c i to r i s t h e R C c h a rg e cu r v e .
U N C H A R G E D
C A P A C I T O R
F i g . 2 8 — M o s t c a p a c ito r s are m a d e u p o f lay ers o f fo il
se p a ra t e d b y a d iel ec tri c a n d t h e n r o ll ed i n to a t i g h t
p ac ka ge.
The o l d e x p la n a ti o n o f h o w a c a p a c i t o r wor ks h a d t h e
elect ro ns p i lin g u p o n on e p l a t e forcin g t h e ele ctrons
o f f o f th e o t h e r t o c h a rg e a c a p a c i to r . Th is m ad e it d if
fi cu lt to e x p l a i n o t h e r a c t i o n s o f t h e capa citor.
F a r a d a y ’ s t h e o r y mor e clo se ly a p p r o a c h e s th e wa y a
c a p a c i to r rea lly works. H e s t a t e d t h a t t h e c h a r g e i s i n
t he die lec tri c m a t e r i a l a n d n o t o n th e p l a t e s of th e
c apacitor. I n s i d e t h e c a p a c i t o r ’ s die lec tri c m ater ial,
t h e r e are t in y elec tric di poles. W h e n a v o l ta g e i s a p
p l i e d to t h e p l a t e s of t h e c a p a c i to r , th e dipo les ar e
s t r e s s e d a n d fo rc ed t o li n e u p i n row s c r e a t i n g s to r e d
energy i n t h e die lec tri c. T h e die lectric h a s u n d e rg o n e a
ph ysical c h a n g e s imilar to t h a t o f s o ft ir o n wh en e x
pose d to c u r r e n t t h r o u g h a n i n d u c t o r w hen it beco m es
a m ag n e t . 1 f w e w e re a b le t o re m o v e th e die lec tri c o f a
c h a rg e d c a p a c i t o r a n d t h e n m e a s u r e th e v o l ta g e o n the
p la te s o f t h e c a p a c i to r , w e wo ul d fi n d n o volt age .
R e i n s e r t in g t h e diele ctric a n d t h e n m e a s u r i n g th e
pl ate s, w e wo ul d fi n d t h e v o l ta g e t h a t th e ca p ac ito r
had b ee n c h a r g e d t o b efo re w e ha d re m o v e d th e
d ie le c tr i c. T h e c h a rg e o f t h e c a p a c i to r i s ac tua lly
F ig . 3 0 — A ca p ac ito r do es n o t c h a r g e up “ i n s t a n t -
e o u s l y ” , i t requires t i m e . T h e t i m e a n d rate o f th e
ch arg e i s th e R C charg e t i m e w h o s e c u r v e i s s h o w n
h e r e .
Th e “ Z M E T E R ” m akes us e of t h i s c h a rg e curv e to
m e a s u r e th e c a p a c i t y o f a c a p a c i t o r . By a p p ly i n g a
3 8
p u l s a t i n g DC v o l t a g e to the c a p a c i t o r un d er t e s t a n d
m e a s u r i n g t h e t i m e on i t s R C c h a rg e c ur ve , t h e c a p a
c i t y of t h e c a p a c i t o r c a n b e d e t e r m i n e d v e r y
a c c u r a t e l y .
P a p e r a n d m ic a wer e f o r y e a rs th e s t a n d a r d d ie l e c t r ic
m a t e r i a l s for c a p a c i t o r s . C eramic b e cam e p o p u l a r d u e
to i ts s t a b i l i t y a n d co ntrolled c h a r a c t e r i s t i c s a nd lowe r
c o s t o v e r m ica. T o d a y , th ere a re m a n y n e w d i el e ct r ic s
w it h d i f f e r e n t r a t i n g s a n d uses i n c a p ac i to r s . P a p e r i s
s ti ll u s e d t o d a y . I t i s i m p r e g n a t e d w ith a w ax or
special o i l t o r ed u c e th e air p o c k e ts a nd the m o i s t u r e
a b s o r p t i o n o f t h e p a p e r.
P l a s t i c fil ms of P o l y e s t e r , Po l y c a r b o n a te , P o l y s t y r e n e ,
P o l y p r o p y l e n e , a n d Polys ulfo ne are u s e d i n m a n y o f
th e n e w e r l a r g e v alu e, small s i z e ca p ac ito rs . E a c h film
ha s i t s own s p e c i a l c h a r a c t e r i s t i c s a n d i s chosen t o be
us e d in t h e c i r c u i t fo r t h i s sp ec ia l fea ture. S om e of t h e
p l a s t i c films a r e a lso m et a liz ed b y v a c u u m p l a t i n g t h e
fi lm w i t h a m e t a l . T h e s e a re gene ral ly ca ll e d s e l f -
h e a l i n g t y p e c a p a c i t o r s a n d s ho uld n o t b e r e p l a c e d
w i t h a n y o t h e r t y p e .
C e r a m ic d i e l e c t r ic is t h e m o s t v e rs a t il e o f a l l . M a n y
v a r i a t i o n s of c a p a c i t y c a n b e c r e a t e d b y a l t e r i n g t h e
c e ra m i c m a t e r i a l . C a p a c it o rs t h a t in cr ea se, s t a y t h e
s a m e v a lu e , or d e c re a s e v a lu e w i t h t e m p e r a t u r e
c h a n g e s c a n be m a d e . I f a cera mic disc i s m a r k e d w i t h
a l e t t e r P s u c h a s P100, t h e n t h e va lu e o f the c a p a c i t o r
w i l l i n c r e a s e 1 0 0 p a r t s per m il li on p e r degree c e n t i
g r a d e i n c r e a s e i n t e m p e r a t u r e . If t h e c a p a c i t o r i s
n a r k e d N P O or C OG . t h e n t h e value o f c a p a c i t y w il l
r e m a i n c o n s t a n t w i t h an in cr e as e i n t h e t e m p e r a t u r e .
i m p o r t a n t i n m a n y c i r c u i t s s u c h a s t h e t u n e d c irc ui ts
o f th e radio a nd t e l e v i s i o n IF. T h e t e m p e r a t u r e co ef
fi c ie n t o f a n i n d u c t o r i s po s it i v e an d the in d u c t a n c e
w i l l incre ase as t h e t e m p e r a t u r e r i s e s . If t h e t u n i n g
c a p a c i to r acros s t he co i l i s a n e g a t i v e c o e f f i c ie n t, t h e n
th e ne t r e s u l t w i l l be a zero or v e r y lit tle ch ang e.
5 5 4 5 3 5 2 ‘ ) 5 5 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 5 115 11 5
T E M P E R A T U R E C
F i g . 3 2 ~ T e m p e r a t u r e c h a n g e v e r s u s ca p a c it y change
o f N 75 0 t o N 56 00 T e m p e r a t u r e c o m p e n s a t e d ce ra mi c
disc ca p a ci to rs .
Gene ral t y p e cera mic d i s c s a re o f te n m a r k e d wit h s uc h
l e t t e r s a s Z 5 U , Z5F, Y 5 V, X 5 V, a n d s o for th . Thi s
i n d ic a te s t h e t y p e o f t e m p e r a t u r e c u rv e f o r t h a t p a r t i
c ula r cap aci tor . C e r a m i c c a p a c i t o r s t h a t are no t N P O
o r r a t e d w i t h N o r P t y p e c h a r a c t e r i s t i c s w i l l ha ve
wider t e m p e r a t u r e v a r i a t i o n s a n d ca n v a ry b o t h p os i
tiv e a n d n e g a ti v e w i t h t e m p e r a t u r e changes. The Z5U
p r o b a b l y h a s th e g r e a t e s t c h a n g e a n d w i l l o n ly b e
foun d in non-c ritical a p p l i c a t i o n s su ch a s b y p a s s i n g of
B + po i n ts . Th es e t y p e o f c a p a c i t o r s sh ou ld no t b e
u s e d in crit ical a p p l i c a t i o n s s u c h a s os cillator a n d
t im in g circ uit s.
T E M P E R A T U R E " C
F i g . 3 1 — T e m p e r a t u r e ch a n g e v e r s u s c a p a c ity c h a n g e
j f P I 0 0 to N 7 5 0 T e m p e r a t u r e c o m p e n s a t e d c e ra m ic
d i s c ca p a cit or s.
C e r a m i c d i s c c a p a c i t o r s m a r k e d w i t h a n N s u c h a s
N 1 5 0 0 w il l d e c r e a s e in c a p a c i t y a s t h e t e m p e r a t u r e
i n c r e a s e s . T h e n e g a t i v e t e m p e r a t u r e coefficient is
A cera mic c a p a c i t o r m a r k e d G M V m ea n s t h a t t he
m a r k e d v a lu e o n t h e c a p a c i t o r i s t h e G u a r a n t e e d M in i
m u m V alu e o f c a p a c i t y a t r o o m t e m p e r a t u r e . Th e
a c tu a l va lu e of th e c a p a c i t o r c a n be much h ig h e r. Thi s
t y p e o f c a p a c i t o r i s u s e d in b y p a s s a p p lic at io ns w h ere
th e a c tu a l va lu e of c a p a c i t y i s n o t cr iti cal .
C eramic c a p a c i t o r s h a v e be e n t h e m o s t po p u l ar c a p a
c it o r s i n ele ctronics b e c a u s e o f t h e v e r s a t i l i t y o f t h e
d iff ere nt t e m p e r a t u r e coe fficient s a n d t h e cos t. W hen
rep la ci ng a cera mic d i s c c a p a c i to r , be s ure to re pla ce
t h e de fec tiv e c a p a c i t o r w i t h o n e h a v i n g t he same c h a r
a c te r i s ti c s a n d v o l t a g e r a t i n g .
T h e a l u m i n u m e le c tr o l y ti c c a p a c i t o r or “ L y t i c ” i s a
ve ry p o p u l a r c o m p o n e n t . A la r g e va lu e c a p a c i ty i n a
small case c a n be o b t a i n e d q u i t e eas ily . Th e alu m in um
lytic i s u s e d in po w e r s u p p l y fi ltering, aud io, a n d vide o
co upling a n d in b y p a s s a p p li c a t i o n s . A n yw he re a large
3 9
U J
T E M P E R A T U R E * c S T A B L E T Y P E S
L U
t e m p e r a t u r e - c S E M I - S T A B L E T Y P E S
T E M P E R A T U R E ° C
F i g . 33 — T e m p e r a t u r e ch a n g e v e rs u s c a p a c it y c h a n g e o f N o n - T e m p e r a t u r e c o m p e n s a t e d ce ra m ic d i sc c a p a c i to r s .
va lu e o f c a p a c i t y i s re q u i r ed w ith a small spa ce a v a i l
abil ity , t h e l y tic fit s r i g h t i n .
Th e a l u m i n u m lytic i s m a d e b y u s i n g a p u r e a l u m i n u m
f o i l w o u n d w i t h a p a p e r s oa ked i n a liqu id e le c tr o ly te .
W h e n a v o l t a g e i s a p p li e d to t h e com bi na tio n, a t h i n
lay er of o x id e f i l m f o rm s o n t h e p u r e a l u m i n u m
fo r m in g t h e di electric. A s lo ng a s th e e le c tr o l y te
r e m a in s liqu id, t h e c a p a c i to r is good or c a n be
ref o r m e d a f t e r s i t t i n g f o r a w h i l e . W h e n th e e le c tr o l y te
d r y s ou t, t h e l e a k a g e go es up a nd t h e c a p ac ito r loses
c a p a c i ty . T h i s ca n h a p p e n to alu m in u m ly tic s j u s t s i t
t i n g o n t h e sh el f. W h e n an a l u m i n u m ly ti c s t a r t s
d r y i n g o u t , t h e c a p a c i t o r begins t o sho w d iel ect ric
a b s o r p t i o n .
A l t h o u g h t h e a l u m i n u m ele ctrolytic i s v e ry p o p u l a r ,
th e t a n t a l u m ly tic i s g a i n i n g g ro un d. J u s t a s h o r t t i m e
a g o , t h e t a n t a l u m ly tic wa s ve ry high i n c o s t c o m p a r e d
to t h e a l u m i n u m lyt ic, b u t m a s s p r o d u c t i o n t e c h n o lo g y
ha s b r o u g h t t h e c o s t down o n t a n t a l u m lyt ics. T h e
le a k a g e in t h e a l u m i n u m ly ti c i s very high due to t h e
n a t u r e o f i t s c o n s t r u c t i o n . Th e t a n t a l u m , on t h e o t h e r
hand, i s v e r y l o w i n le a k a g e and can b e c o n s t r u c t e d
w i t h m u c h t i g h t e r to le r a n c e s t h a n th e a l u m in u m ly tic.
T h e t a n t a l u m i s als o m u c h smaller in s i z e f o r th e s a m e
c a p a c i t y a n d w o r k i n g v o l ta g e t h a n an a l u m in u m lyt ic .
T a n t a l u m l y t i c s h a v e b eco m e very p o p u l a r i n t i m i n g
c ir c u it s a n d for c ri t ic a l co upling where high c a p a c i t y i s
r e q u i r e d w i t h lo w lea k a g e . Th e c a p a c i t y o f t h e
t a n t a l u m l y t i c i s l im it e d a n d f o r e x tr e m e l y la rge v a lu e s
o f c a p a c i t y fo r p o w e r s u p p ly fi lteri ng, t h e a l u m i n u m
lyt ic i s stil l t h e f i r s t c h o i ce .
G E N E R A L P U R P O S E T Y P E S
T h e re are m a n y d i f f e r e n t t y p e s of capac ito rs , usin g
diffe rent t y p es o f di el e ct r ic s , e ach with its o w n best
capability. W hen r e p l a c i n g c a p a c i to r s , i t i s b e s t to
re place with a c a p a c i t o r h a v i n g not o n ly th e same
c a p a c i ty an d to lerance, b u t th e s a m e ty pe o f diel ec tri c
an d t e m p e r a t u r e c h a r a c t e r i s t i c s as w e l l . T hi s w i l l
insure o f con tin ue d p e r f o r m a n c e eq ua l to the o r i g in a l .
t
F i g . 3 4 — T he t a n t a l u m l y t i c , s h o w n o n the r ig h t , i s
m u c h sm aller i n si ze t h a n t h e a l u m i n u m l y t i c fo r the
sa me c a p a c ity a nd w o r k i n g voltag e.
Th e “ Z M E T E R ” w i l l m e a s u r e l ea ka ge i n th e d ie le c tr ic
o f a c a pa c ito r a nd w i l l a ls o show die lectric ab so rp tio n.
The D C leakage i s m e a s u r e d i n t w o ran ge s w i t h the
va lu e disp la ye d o n t h e d i g i t a l r e a d o u t i n m icroamps.
4 0
D ie le c tri c a b s o r p t i o n w i l l sh ow up m o st l y in l y t i c s as a
c h a n g i n g c a p a c i t o r v a l u e , if t h e c a p a c i to r is ch ecked
f o r l e a k a g e a n d t h e n ch ec ked f o r va l u e , t h e m e t e r w i l l
sho w a lo we r v a lu e c a pac ito r a t f i r s t a n d t h e n t h e re ad -
i g w i l l i n c r e a s e sl o w l y up ward. Th is i n d i c a t e s t h a t the
e lec tri c d ip o le s in the die lectric are r e s i s t i n g the
d i s c h a r g e o f t h e c a p ac ito r a nd r em a in in g p o l a r i z e d i n
t h e d i e l e c t r i c . T h i s i s d i e l e c t r i c a b s o r p t i o n a n d
s o m e t i m e s ca ll e d c a p ac ito r memory. I t c a n a lso b e
r e f e rr e d t o a s b a t t e r y action o f a c a p a c i to r . W h a t i s
a c t u a l l y h a p p e n i n g i s t h a t th e small v o l t a g e fro m the
d i e l e c t r ic a b s o r p t i o n i s c h a n g i n g t h e EC c h a r g e cu rv e
a n d m a k i n g t h e m e t e r s e e a s m a lle r value of c a p a c i to r .
As t h e t e s t c on tin ue s , th e die lectric c h a rg e o r m e m o r y
i s slo w ly d i s s i p a t e d i n th e c h a r g e a nd r e c h a r g e o f the
c a p a c i t o r , i n c r e a s i n g t h e l e n g t h o f th e R C c h a r g e cu rv e
a n d a ll o w i n g t h e m ete r to rea d a higher a n d h ig h er
v a l u e c a p a c i t o r . This i n d ic a te s t h a t th e e l e c t r o l y t e i s
d r y i n g o u t i n an ele ctrolytic c a p a c i to r w h i c h w i l l
i n d i c a t e a f u t u r e pr ob lem with t h i s c o m p o n e n t . D iel ec
tri c a b s o r p t i o n w i l l no t n o r m a l ly sh ow u p in f i lm o r
c e r a m i c c a p a c i t o r s , b u t i f it doe s sh ow u p w i t h t h e “ Z
M E T E R " , t h e n t h e c a pa c ito r i s a su s p e c t . T h i s w i l l
g e n e r a ll y be a s s o c i a t e d with a h i g h lea ka ge a s w e l l .
C a p a c i t o r s c a n c h a n g e va lu e. On so m e m u lt i- la y e r f o i l
c a p a c i t o r s , po or wel ding o r so ld e r in g o f t h e f o i l t o t h e
l e a d s ca n c a u s e a n op en to one o f th e f o i l s a t a l a t e r
d a t e d u e t o s t r e s s o f v o lta g e o r t e m p e r a t u r e . T h e s e
t y p e c a n lose a l m o s t o n e - h a lf o f t h ei r r a t e d o r m a r k e d
c a p a c i t y . C e ra mi c d i s c c a p a c i to r s ca n a ls o c h a n g e
v a l u e b y a sma ll valu e o r a lar ge value d e p e n d i n g u p o n
h e re a f is s u re or crack i s lo cated. Sm all f i s s u r e s o r
c r a c k s i n t h e c e ra m ic i n s u l a t i n g m a t e r i a l c a n b e
c r e a t e d b y t h e r m a l s t r e s s o r e x p o s u re t o h e a t a n d c o l d .
S o m e t i m e s v e ry small fissu res c a n be c r e a t e d a n d t h e n
n o t e ff e c t t h e c a pa c i to r u n til m u c h la ter. N o t e t h a t t h e
c r a c k w i l l r ed u c e th e c a p a c i t o r to a s m a l l e r val ue.
A l t h o u g h t h e ceramic i s stil l c o n n e ct e d t o t h e lea ds,
th e a c t u a l va lu e o f c a p a c i ty coul d be a v e r y sma ll
p o r t i o n of t h e o ri ginal va lu e d e p e n d in g u p o n w h e r e t h e
c r a c k o cc u rs. Th e “ Z M E T E R ” w i l l le t y o u k n o w w h a t
t h e v a l u e o f t h e c a p a c i to r is r e g a r d le s s o f i t s m a r k e d
value .
□ O P E N S
C
F i g . 36 — O n m u l t i- la y e r fo il c a p a ci to rs , a br ea k in o n e
o f the fo il c o n n e c t i o n s t o the le a d can c a u s e a , r e d a c t i o n
o f c ap ac it y.
O u t e r C o a t i n g
C e r a m i c
D i e l e c t r i c
C a p a c i t o r
Pla te
C r a c k
( F i s s u r e )
Le a d s o l d e r e d
t o c a p a c i t o r
plat e
F i g . 3 5 — A c era m ic d i sc i s m a d e u p o f t h e cera mi c
diel ectric c o a t e d w i t h sil v e r f o r the p l a t e s a n d , t hen
; ) ve re d w i t h a p r o t e c t i v e co at in g. S o m e t i m e s a cr ac k
o r f i s s u r e can occur i n th e dielec tric m a t e r i a l la rg e
e n o u g h to re duce t h e va lu e o f cap a ci ty.
4 1
Co lor
R a t e d
Volta ge
C a p a c
1 s t
Figu re
P ic o
Dip ped T an ta lu m Ca pa cit or s
t an ce i n
a ra d s
2nd
F ig u r e M u l t i p l i e r
B lac k
Brown
R e d
O ra n g e
Y e ll o w
Gre en
Blu e
V io le t 5 0 7 7
Gr a y
W h it e
4
6
1 0
1 5 3
2 0 4
2 5 5
3 5
_
. „
. . . . 9 ’
0
1
2 2
6
8 8
~
. . .
9
0
1
3
4
5 1 0 0 ,0 0 0
6 1 ,0 0 0 ,0 00
. . .
.
—
—
—
—
1 0 ,0 0 0
1 0, 00 0, 000
~
—
C e r a m i c D i s c Capacitors
M a n u f a c t u r e r ’ s
C ode
Cap acit y
V a lu e
T o le ra n c e
‘ W o rk in g
V o lt a g e
T e m p e r a t u r e
Rang e
Low
Temp.
+ 1 0 ° C Z + 45 ° C
-3 0 °C
• 5 5 “ C X + 85 °C
Le tte r
S ymb ol
Hig h
Te m p .
Y + 6 5 °C 4
+ 105 a C
+ 1 2 5 X 7 ± 4 . 7 % E
T e m p e r a t u r e R a n g e Id e n tif ic at io n of
C e ra m ic Di sc C apa citors
T y p i c a l C e r a m i c D i s c C a p a c it o r M a rk in g s
5 F 1 0 0 J
Nu m eric al
Sy mb ol
2 + 1 . 0 % A
5 ± 1 . 1 % C
6 ± 3.3 % D
M a x . Capa c.
Change Ove r
Te m p . Ran ge
± 1 .5 %
±7 .5% , F
± 1 0 .0 % P
± 15. 0% R
± 22 .0% S
+ 2 2 % , - 3 3 % T
+ 2 2 % , - 5 6 % U
+ 2 2 % , - 8 2 % V
I f N o Vo lt a g e M ar k ed ,
G e n er a lly 5 00 VD C
Le tter
Symbol
B
1s t & 2nd
Fig. o f
C a pa ci ta nc e
I
M u l t i p l i e r
1 ,00 0 3
1 0,0 00 4
100,000 5
. 0 1 8
. 1 9
N u m e r ic a l
1 0
1 0 1
1 0 0
S ymb ol
2
—
—
C a p a c i t y V a l u e a nd T o le ra n c e o f
Tol e ra n ce o n
C a pa c it an c e
± 5 % J
± 1 0 %
± 2 0 %
+ 10 0 % ,- 0 % P
+ 8 0 % , - 2 0 % Z
Le t te r
S y m bo l
K
M
4 2
F ilm T y p e Capacitors
Ce ram ic F e e d T hr oug h C a p a c ito r s
M u l t ip l i e r
T o l e r a n c e
MULTIPLIER
F o r th e
Numb er Mu ltiplier
0 1
1
2
1 0 0 D
3 1 ,0 00
4 10 ,0 0 0
5
10 0,0 00 H
T O L E R A N C E O F C A P A C I T O R
Le tte r 1 0 pF or L e s s
B
1 0 C
p
± 0 . 1 p F
± .25 p F
± 0 .5 p F
± 1. 0 p F
G ± 2.0 p F ± 2 %
J
8 0 . 0 1
9 0 . 1 M
EX A MP LES :
1 52K = 1 5 x 1 0 0 = 1500 pF o r .001 5 uF, ± 1 0 %
7 5 9 J = 7 5 x 0 . 1 = 7.5 p F , ± 5 %
K
O v e r 1 0 p F
±
1 %
± 3 %
± 5 %
± 1 0 %
± 2 0 %
S i g n i f i c a n t f 1 s t
f i g u r e \ 2 nd
Sig nif i- T oleranc e
C o lo r
Bi a ck
B r o w n
R e d
O ra n g e
Y e l lo w
Gree n
Blue
V io le t 7
Gra y 8 0 . 0 0 1 0. 025 pF
W h i t e
G ol d
S il ve r
c ant
F ig u re Mu ltiplier
0
1
2
3
4
5
6
9
_ _
— — — —
1 , 0 0 0
1 0 ,0 0 0
0 . 1
1 0 pF
o r L e s s
1 1 0 2 pF
0 . 1 pF
1 0 0
_ _
— — - - -
_
5 p F
1 P F
_
T e m p e r a t u r e
c o e f f i c i e n t
Ov er
1 0 p F
20% 1 % 0
2%
2.5%
5 %
_
- - -
1 0 % + 1 2 0 t o -7 5 0
_
T e m p e r a tu re
Co eff ici en t
N30
N6 0
N1 50
N2 20
N3 30
N4 70
N7 50
P 3 0
( R E T M A )
+ 500 t o -3 3 0 (JAN)
P 1 00
B y p a s s o r c o u p l i n g
NOTE : The let te r “ R ” m a y be us ed a t time s to signify a de cim al
po in t ; a s I n : 2 R 2 = 2.2 ( p F o r u F ) .
Po s ta g e S t a m p Mica C a p a c i t o r s
M ica ca p a c it o rs -B la ck
( A W S p ap e r cap aci tor s-
sil ver)
C ha ra c te ri st ic
A W S and J A N f i x e d c a p a c it o r s
(F i r s t d o t si lve r o r b l a c k )
Firs t
si gn ifi ca nt fi gu re
S c e o n il
sig n ifi ca nt fi gu re
Fi rs t
sig n if i c a n t fi g u re I
( N o t si lve r -
o r b i a c k ) c
V o l t a g e rating
J
o o o
F i r s t
s i g n i f i c a n t fi g u r e
S e c o n d
s i g n i f i c a n t f i g u r e
D e c i m a l m u l t i p l i e r
T o l e r a n c e
D e c i m a l
m u l t i p l i e r
S e c o n d
s i g n i f i c a n t f i g u r e
T h i r d
o
s i g n i f i c a n t fi g u r e
*
i — D e c i m a l m u l t i p l i e r
T o l e r a n c e
C o lo r
B lack
B ro w n
R e d 2
O ran g e 3
Y e ll o w 4
Gre en 5
Blu e 6
V io le t
Gray 8 1 00 ,0 0 0 ,0 0 0
W h it e 9
Gold
Silv er - 0 . 0 1
No c o l o r
S i g n i f i c a n t
F ig u r e M u l t i p l i e r
0 1
1
7
1, 0 0 0 ,0 0 0 ,0 0 0 9 9 0 0
-
~
1 0 0 2 2 0 0
1 ,0 0 0 3 3 0 0
1 0 ,0 0 0
1 0 0 ,0 0 0 5 5 00
1 , 0 0 0 ,0 0 0 6 6 00
10 ,0 0 0 , 0 0 0
0 . 1 5 1 0 0 0
—
Tolerance V o l t a g e
( % )
„
1 0 1 1 0 0
4
7
8
1 0 2 0 0 0
2 0 5 0 0
R a ti n g
—
4 00
7 0 0
8 0 0
4 3
S t a nd a rd Button M ic a
1 s t DOT
Iden tifie r
2n d a n d 3
C a p a c i t a r
r d DO T S
i c e i n p F
1s t & 2n d
B la c k B la c k
N O T E :
I d e n t i f i e r i s
o m i t t e d i f
c a p a c i t a n c e
m u s t b e
s p e c i f i e d t o
t h r e e
s i g n i f i c a n t
f i g u r e s .
C olor
B r o w n
R ed
O r a n g e
Y e l l o w
G re en
Bl u e
V io le t
Gray
W h i t e
G o ld
S il v e r
S ig . Fi gs .
0
1
2
3
4
5
6
7
8
9
Ra di al o r A y ia ! Le a d C e r a m ic C a p a c it o r s
( 6 D o t o r B a n d S y s t e m )
4t h D O T 5t h DO T
M ultiplie r
C a p a c i t a n c e
T o l e r a n c e
Per cen t
1
1 0
1 0 0
1000
± 2 0 %
± 1%
± 2% o r ± 1 p F
± 3 %
0 . 1
± 5 % J
± 1 0 % K
T e m p e r a t u r e c o e f f i c i e n t
6 th DOT
Tem p.
Char ac ter istic
Let ter
Symbol
F
F
G o r B
H
+ 1 0 0
- 2 0 P P M / ° C
ab ov e 50 pF
± 1 0 0 P P M / ° C
b e lo w 5 0 pF
5 Dot or Ba nd C e r a m ic C a p a c it o rs
A - F l r s t si g n if ic a n t fi g u r e
8-S econd s i g n i fi c a n t figu re
C De c im a l m u l t i p l i e r
□ C a p ac it an ce to l e r a n c e
T e m p . C o e f f i c i e n t
T. C.
C o to r
P 1 0 0
P 0 3 0
NP O
N 0 3 0
N 0 8 0
N 1 5 0
N 2 2 0
N 3 3 0
N 4 7 0
N 7 5 0
N 1 5 0 0
N2 20 0
N3 300
N 4 2 0 0
N 4 7 0 0
N 5 60 0
N3 30
± 500 W h i t e
N7 50
± 10 00 G r a y
N 3 3 0 0
i. 2 5 0 0 G r a y
R e d
G r e e n
B l a c k
B r a w n
Rer t
O r a n g e
Y e l l o w
Gre s; n
B l u e
V i o i i i t
O r a n g e
Y e l l o w
G r e e n
G r e e n
B ii iO
G f e e n
D O TS O R
BA N D S
N o m i n a l C a p a c i t a n c e
C a p a c i t a n c e
2n d
C o lo r
V i o l e t
B l u e
O r a n g e
O r a n g e
O r a n g e
G r e e n
O r a n g e
B i a c k
1 s t a n d
2 n d S tg.
M u l t i
F ig .
p l i e r
0
1
2
100
3
1,0 00
4 5 10 ,0 00 Y e l l o w
6
7
. 0 1 . 1 G ra y
8
9
C o lo r
1 1 0 B l a c k
B r o w n
Re d
O r a n g e
G r e e n ± 0 . 5 p F
B l u e
V i o l e t
W h i t e
1s t
T o ) e r a n e e
1 0 p F
o r L e s s
± 2 . 0 p F
± 0 . 1 p F
± 0. 2 5 p F + 8 0 % - 2 0 %
± 1.0 p F ± 1 0 %
O v e r
t o pF
± 20 %
± 1 %
± . 2 %
:t 3 ‘ it
+ 1 0 0 % - 0 % Y e l l o w
± 5 % G r e e n
C o lo r
B l a c k
B r o w n
R e d
O ra n cje
B l u e
V i o l e t
G r a y
W h i t e
Co lor
B la c k
B r o w n
Re d
O r a n g e
Y e l lo w
G re en
B lu e
V i o l e t
G ray
W h i t e
B l a c k
F i x e d c e rm i c ca p a c it o rs , 5 d o t o r b au d s y s t e m
C o lo r C o d e for C e ra m ic C a p a c it o rs
Ca pa c it a n c e
1s t & 2n d
Sig ni fi ca nt
Figu re M ultiplie r
0
1
2 10 0
3 10 00
4
5
6
7
8 0 . 0 1
9 0 . 1
1 ± 2 0 %
1 0 ± 1 %
Tole ran ce
Ov er
10 p F
± 2%
± 5 %
± 1 0 %
. . . -
1 0 p F
o r Le ss
2 .0 p F
0 .5 p F
0.25 pF P 3 0
1 . 0 pF
- - - - - -
Temp .
C oe ff.
0
N 30
N 8 0
N 1 5 0
N22 0
N330
N 470
N 750
P 5 0 0
4 4
N o t e s
G L O S S A R Y
Ag in g — o p e r a t in g a c o m p o n e n t or i n s t r u m e n t a t con
tr ol le d co nd iti on s f o r t im e a n d t e m p e r a t u r e to screen
o u t w ea k o r defe ctiv e u n i t s a n d , a t t h e s a m e time,
st abilize th e go od u n its .
Ano de — t h e p o s it i v e e lec tro de of a cap acito r.
Cap a c ita n ce ~ ~ t h e m e a s u r e o f t h e s i z e o f a cap acito r.
U sually ex p re s s e d i n m i c r o f a r a d s a n d p icof arads.
D e te rm ine d b y the s i z e o f t h e p l a t e s , a n d th e die le c tri c
material.
Capa citive re a c ta n c e — t he o p p o s i t i o n to t h e f l o w o f a
p u l s a t i n g D C v o l ta g e o r AC v o l ta g e . M e as u r e d i n
oh ms.
C a pa c ito r — a n el ect ron ic c o m p o n e n t c o n s is t in g o f two
m e t a l pl at e s s e p a r a t e d b y a die le ct ric . C a n s to re a n d
re lease e le ct ri c al e ne rgy , b l o ck t h e f l o w o f D C c u r r e n t
or fi lt er o u t o r b y p a s s A C c u r r e n t s .
C a t h o d e — t h e n e g a ti v e e l e c tr o d e o f a cap acito r.
Ch a rg e — th e q u a n t i t y o f e le c tr i c a l e n e rg y s to r e d o r
h e l d i n a capacitor.
Clearing — th e r em o v a l o f a f la w or weak s p o t i n the
die lec tri c o f a m eta liz ed c a p a c i t o r . Th e s to r e d e ne rgy
i n t h e c ap aci tor va porizes t h e m a t e r i a l i n t h e i m m e
d i a t e vic in it y o f th e f l a w . A l s o cal led se l f- h ea l in g o r
s e l f - c l e a r i n g .
COG — s am e as NPO. V e ry s m a l l c a p a c i ty c h a rg e f o r
la r g e t e m p e r a t u r e changes.
C o i l — a n in d u c t o r w ound in a spiral or cir cu lar
fa shi on. Ca n b e wound o n a f o r m or w i t h o u t a for m
suc h as an a ir c o i l .
D i s c c a p a c i t o r — a sm all si n g le l a y e r ceramic cap a
c i t o r c o n s i s t i n g o f d is c o f ceramic i n s u l a t o r wit h s i l v e i
d e p o s i t e d o n b o t h si des as t h e p l a t e . T h e ce ra m ic
m a t e r i a l can b e o f diffe rent c o m p o s i t i o n s to give dif
f e r e n t t e m p e r a t u r e c ur ve s to t h e c a p a c i t o r .
D i s s i p a t i o n f a c t o r ( D F ) — t he r a t i o o f t h e e f fe ct iv e
s e r i e s r e s i s ta n c e o f a c a p a c i t o r c o m p a r e d to it s
r e a c t a n c e a t a give n freq uen cy, g e n e ra ll y give n i n
p e r c e n t .
E l e c t r o l y t e — a c u r r e n t c o n d u c t i n g liqu id or s o l i d
b e t w e e n t h e p l a t e s or e lec tro de s o f a c a p a c i t o r w it h a t
l e a s t one of t h e pl a t e s h a v in g a n ox id e or die le c tri c
fi lm .
E l e c t r o l y t i c c a p a c i t o r ( a lu m in um ) — a c a p a c i t o r
c o n s i s t i n g o f t w o c o n d u c t i n g e l e c t r o d e s o f pu re
a l u m i n u m , t h e a nod e h a v in g a n o x i d e f i l m w h ic h a c ts
a s t h e d ie le c tr ic . T he ele ctr ol yte s e p a r a t e s th e pl ate s.
E q u i v a l e n t ser ie s re s i s ta n c e (E S R ) — u s e d i n c a pa c i to r
c a l c u la t io n s . A l l in te r n a l se ri es r e s i s t a n c e s o f a c a p a
c i t o r a r e lu m pe d into o n e r e s i s t o r a n d t r e a t e d a s o n e
r e s i s t o r a t o n e p o i n t i n t h e c a pa c i to r .
F a r a d — ■ th e m ea s ur e o r uni t o f c a p a c i t y . T o o la rge f o r
e l e c tr o n i c use a nd i s ge nerally m e a s u r e d i n micro
f a r a d s or pic ofarads.
F i s s u r e s — cracks i n t h e cer am ic di e l e c t r ic m at e ri a l o f
d i s c c a pa c i to r , m o s t often ca us e d by t h e r m a l s h o c k .
S o m e s m a ll fis su res m a y n o t c a u s e f ai lu re fo r a perio d
o f t i m e u n t il expo sed to g r e a t t h e r m a l shoc k o r mech
a n ic a l v i b r a t i o n f o r a period o f tim e.
F i x e d c a p a c i t o r — a c ap aci tor d e s i g n e d w i t h a s p e c i f i c
v a l u e o f c a p a c i ta n c e t h a t c a n n o t b e c h a n g e d .
C V p r o d u c t — t h e c a p a c i t a n c e of a c a p a c i t o r
mu ltiplied b y i t s wo rk in g v o l t a g e . Us e d when d e t e r
m in i n g t he leakage allow able in e le c tro ly tic c ap aci tor s.
T h e C V p r o d u c t i s also e q u a l t o t h e c ha rge t h a t a
c ap aci tor can s to re a t i ts m a x i m u m vo lt ag e.
D ie le ct ric — th e i n s u l a t i n g o r n o n - co n d u c t in g m a t e ri a l
be tw e en th e p l a t e s o f a c a p a c i to r . T ypi ca l dielectrics
include a i r , i m p r e g n a t e d p a p e r, p l a s t i c f i l m s , o i l , m i c a ,
a n d c e r a m i c .
D ie le ct ri c a b s o rp t io n — t h e m e a s u r e of th e re lu c ta n c e
o f a c a pa c ito r to co mple tely d i s c h a r g e . Th e c h a r g e t h a t
r e m a in s a ft e r a d e te r m in e d d i s c h a r g e time i s e x p re s s e d
in a pe rc e n ta g e o f t h e orig in al cha rge . C an also b e
cal le d “ Ca pa c ito r M e m o r y " or “ B a t t e r y A c t i o n ” .
D ie le ct ric c o n s t a n t — t h e r a t i o of c a p ac ita n c e betw een
a ca p ac ito r h a v in g a d ry a i r d iel ect ric an d th e given
m ate ria l. A fi gu re f o r d e t e r m i n i n g th e e f f i c i e n c y o f a
g i v e n d ie le c tr i c m at e ria l. Th e l a r g e r th e die le c tri c con
s t a n t , t h e g r e a t e r t h e c a p a c i ty w i t h a give n s i z e plat e.
G i m m i c k — a c a pa c ito r fo r m ed b y t w o w ir e s o r ot her
c o n d u c t i n g m a t e ri a ls tw i st e d t o g e t h e r or b r o u g h t int o
c lo s e p r o x i m i t y o f each othe r.
G M V — G u a r a n t e e d M in im um Val ue . Th e s m a l le s t
v a l u e t h is ceramic c a pa c ito r w i l l ha v e . I t s val ue c o u l d
b e m u c h highe r.
H e n r y — Th e u n i t o f t h e m ea s ur e of in d u ct a n ce . A ls o
e x p r e s s e d i n mic ro he nr y a nd m ill ih en ry.
I n d u c t o r — - a d ev ic e c o n s is t in g o f on e or mor e wind
i n g s w it h or w i t h o u t a m a g n e t i c m a t e r i a l co r e o r
i n t r o d u c i n g in d u c t a n c e into a cir cu it.
I n d u c t a n c e — th e p r o p e r t y o f a c o i l or t r a n s f o r m e r
w h i c h in du ces a n e le c tr o m ag n e t ic fo rc e i n t h a t circ uit
or a n e ig h b o r i n g circ uit up o n a p p l i c a t i o n o f an a l t e r
n a t i n g c ur r e n t.
I n d u c t i v e r e a c ta n c e — th e o p p o s it i o n o f a n in d u c t o r to
a n a l t e r n a t i n g o r p u l s a t i n g c u rr e n t.
4 6
I m p e d a n c e — t h e t o t a l o p p o s it i o n o f a c ir c u it to the
f l o w o f a n a l t e r n a t i n g or p u l s a t i n g cu rrent.
I n s u l a ti o n r e s i s t a n c e — t h e r a t i o o f t h e D C work ing
> l t a g e a n d t h e r e s u l t i n g le a k a g e c u r r e n t t h r o u g h th e
A i i e c t r i c . G e n e r a l l y a m i n i m u m va lu e i s s p e c if i e d ,
us ua lly i n t he s e v e r a l t h o u s a n d megoh ms range.
Ir o n co r e — th e c e n t r a l p o r t i o n o f a c o i i or t ra n s fo r m e r .
C a n be a p o w d e r e d iro n core as i n sm al l c o i ls u s e d in
RF to th e la rge iro n s h e e t s u s e d i n p o w e r t ra n s fo r m e r s .
T i m e c o n s t a n t — t he n u m b e r of s e c o n d s r equ ir ed f o r a
c a p a c i to r to re ach 6 3 . 2 % of i t s fu l l charge a f t e r a
v o l ta g e i s a p p li ed . T he t im e c o n s t a n t i s the c a p a c i t y i n
f a r a d s t im e s th e r e s i s ta n c e in o h m s is eq u al to se conds
( T = R C ) .
T r im m e r — a l o w v al ue v a r i a b l e c a p a c i to r p la c e d i n
para lle l w i t h a fi x e d c a p a c i t o r of h i g h e r value s o t h a t
t h e t o t a l c a p a c i ty of the c i r c u i t m a y b e a d j u s t e d to a
gi v en v a l u e .
L e a k a g e c u r r e n t — s t r a y d i r e c t c u r r e n t fl ow in g
t h r o u g h t h e d i e l e c t r ic or a r o u n d it i n a c a p a c i t o r w h e n
a v o l ta g e i s a p p li e d to i t s te r m in a ls .
Meta lize d c a p a c i t o r — o ne in wh ich a th in f i l m o f m etal
h as b e e n v a c u u m p l a t e d o n th e di e le c tr i c . When a
br ea kd ow n occ urs , t h e m e t a l f i l m a r o u n d i t i m m ed i
a te ly b u r n s a w a y . S o m e t i m e s c a l l e d a s el f- he al in g
capac ito r.
Monolithic c e r a m i c c a p a c i t o r — a small ca p ac ito r
m a d e u p o f s e v e r a l l a y e r s o f c e ra m i c d i e l e c t r ic
s e p a r a t e d b y p r e c i o u s m e t a l el ec tr od es .
M u tu a l i n d u c t a n c e — t h e co mmo n p r o p e r t y o f tw o
in d u c t o r s w h e r e b y t h e i n d u c e d v o lta g e from o n e i s
i nduced in to t h e o t h e r . T h e m a g n i t u d e i s d e p e n d e n t
up on t h e s pa cin g.
N P O — an u l t r a s t a b l e t e m p e r a t u r e coeffi cie nt i n a
' r a m i e disc c a p a c i t o r . D e r iv e d f ro m “ n e g a ti v e -
^ o s i t i v e - z e r o ” . D o e s n o t c h a n g e c a p a c i t y w i t h
t e m p e r a t u r e c h a n g e s .
P a d d e r — a h i g h c a p a c i t y v a r i a b l e c a p a c i to r plac ed i n
ser ies wit h a fixe d c a p a c i t o r to v a r y t h e t o t a l c a p ac i ty
o f t h e circ uit by a s m a l l a m o u n t .
Var iable c a p a c i to r — a c a p a c i t o r t h a t ca n b e ch a ng ed
i n value by v a r y i n g the d i s t a n c e b e tw e en t h e p l a t e s o r
t h e useful area o f i t s pla tes.
Vo lt ag e r a t i n g - - s e e w o r k i n g v o l t a g e .
W e t ( s l u g ) t a n t a l u m c a p a c i t o r — an ele ctrolytic
c a p a c i t o r h a v in g a li q u id c a t h o d e .
W o r k i n g v o l ta g e — t he m a x i m u m DC vol tage t h a t can
b e applied to a c a pa c i to r for c o n t i n u o u s o p e ra tio n a t
t h e m a x i m u m r a t e d t e m p e r a t u r e .
Po w er f a c t o r — t h e r a t i o o f t h e ef fe ct iv e r e s i s t a n c e o f a
c a p a c i to r to i t s i m p e d a n c e .
R e a c ta n c e — t h e o p p o s i t i o n o f a c a p ac ito r or in d u ct o r
t o t h e f l o w o f a n A C c u r r e n t or a p u l s a t i n g D C c u rr e n t.
S e l f - h e a l i n g — t e r m u s e d w i t h m e t a l i z e d fo il
ca p ac ito rs .
S o li d t a n t a l u m c a p a c i t o r — a n ele ctrolytic c a p a c i to r
w ith a s o l i d t a n t a l u m e le c t r o l y t e i n s t e a d o f a l i q u id .
A lso c a ll e d a solid e l e c t r o l y t e t a n t a l u m c a p ac ito r .
S u r g e v o lta g e — t h e m a x i m u m s af e v o l ta g e in p e a k s t o
w h ic h a c a p a c i t o r c a n be s u b je c t e d to a n d re m a in
wit h in th e o p e r a t i n g sp eci fic ati on s. T h is i s n o t th e
w o r k in g v o l t a g e of t h e c a p a c i to r .
T e m p e r a t u r e c o e f f i c i e n t ( T C ) — t h e c h a n g e s in
c a p a c i t y per d e g r e e c h a n g e in t e m p e r a t u r e . I t ca n b e
os iti v e, n e g a t i v e , or z er o. E x p r e s s e d in p a r t s p e r
m i l l i o n pe r d e g r e e c e n t i g r a d e fo r linea r ty p e s . F o r n o n
line ar t y p e s , i t is e x p r e s s e d a s a p e r c e n t o f ro om
t e m p e r a t u r e .
4 7
N o t e s