U C 1 0 *
_ J B U ~
A n a l v * e r
M a i n t e n a n c e M a n u a l
O p e r a t i o n
S Q g f s j Q O R E C C 1 0 2 AU TO -Z C A P f t C l T O B - i N O U C T O R A N A L Y Z E R
r
« ■ .
♦
c k w i w .
¥
* O W £ B
i o n , App lication- a n d
CO MPO NE NT TYPE
i Μ > υ β ν ι
|
< . r n c s ·
* Ι ί *
* U 0 » H W 1 I
c m
C A W * '· \ . > i ‘ M f r · ·
* \
■ ■ « « * * · · · $
γ - ι . τ Μ β κ * j
%
- -
C O M F C N W P A ft A M E T E ^ S
K
|
r w < r . M « «
S > I W « i W W i .
t f t t t M t r f t S
TE ST I E AD „Ε Λ Ο ZE R O L E A K A G E
l ·
1
j
3
6 7
5
■
■
!
# Λ ' ' ”’ ' t ; i
h j ■ tf
' s h o r t
A
■ ■ ■
P F μ : Ρ
+ %
B
c u * |
: · μ ϋ · ■ ]
/ . L W A R N I N G f l a s h i n g f i g m t n i J i C 3 4 u s 2 5 - 1 0 9 Q V
S T O P T E S T I N G P- re te e « of l· c i r c u i t 0 4 f u s * is
•
' ■ . F
. .. . %
^ I
t r i M
· '. ; W : ' ■
3 p p i » e i t e t e K t l e a d s w h e n t e a k s t j e t n r t i o n t s p r e s s e d
o p e r t C a o a e t t o r i e s t e c i m a y i> * c h a r g e d
•
i m c c - T f l f c ·
Λ ί β & Λ Ρ ■
1
- i e O i ^ r t t W v
j
v M i U f · ·
%
- · : · ■
VOLTS
. t E A X ' f t O . * "
C A M g t t W *
3 2 0 0 S e n c o r e D r i v e , S l o u *
Fai ls, S ou th D a k o t a 5 7 1 0 7
T A B L E O F C O N T E N T S
S A F E T Y P R E C A U T I O N S
S I M P L I F I E D O P E R A T I O N S ...... ....... ....... ...... ....... ...... . 4
D E S C R I P T I O N
I ntr od uc tio n ....... ...... ....... ...... ....... ...... ....... ...... ... . . 6
F e a t u r e s ........... ............ ............ . . . .... ... ... ... ... ... ... ... ... ...
S p e c if ic a t io n s . ......... ....... ...... ....... ....... . . ...... ............ .....6
C o n t r o ls . .. .. .. .. .. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . - ......... ....... ...... 8
R e a r P a n e i F e a t u r e s
S up p lie d A c c e s s o r i e s ...... ...... ....... ...... ....... ...... .. 1 0 a
O p t io n a l A c c e s s o r i e s
O P E R A T I O N
I nt ro d uc ti o n
A C P ow er Ope ra tio n ......... . . . .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
B a tt e ry O p e r a t i o n ............ ........... ............ ............ ...... 1 2
Ba tt e ry T e s t . .. ... ... ... ... ... ... ... .. ... ... ... ... ... ... ... ... ... ... .
Re cha rg ing the B a t t e r y ........... ............ ... . . 1 4
A ut o O f f
S T O P TE ST I NG I n d ic a t io n . ...... ....... ....... ...... ....... ..... 1 4
T e s t L e a d s ...... ....... ...... ....... ...... ....... ...... .... . . 1 4
T e s t Lead Mountin g C l i p
T e s t Le ad A d a p t e r ...... ...... ....... ....... .. . . .. .. .. .. .. .. .. ..
T e s t Lead F u s e ............ ........... ............ ............ .... 1 5
L e ad Z e r o i n g ........... ............ ............ ........... ......... 1 6
E nt e rin g Co m p o n e n t D a ta . ...... ....... ....... ...... ....... ..... 1 6
Error C o d e s ...... ....... ...... ....... ...... ....... ....... ...... . . . 1 8
C a p a c it o r T es ting . ...... ....... ...... . . . . . . . . . . . .
Ca pa ci ta nc e M e a s u r e m e n t A c c u r a c y . . . . . . . . . 1 9
Me a s ur in g Small C a p a c it a n c e V a l u e s i n
N ois y E nv ir o n m e n ts . . .
C a p a c it o r Pa ra m et e r T e s t i n g ............ ........... ........... 2 0
Me a s ur in g C a p a c it o r V a l u e
Me as uring C a p a c it o r D ie le c t r ic A b s o rp t io n . . . . 20
Me asuring C a p a c it o r L e a k a g e (M ic ro am ps ) . . . 2 1
L ea ka ge Ch arts . . . . . . . . . . . . . .... ... ... ... ... ... ..
Me as uring C a p a c it o r L e a k a g e (o h m s ) ............ .24
Me asuring C a p a c it o r E S R ............ ............ .......... 2 5
C a p a c it o r A u t o m a t ic G O O D / B A D T e s t i n g
I ndu cto r T e s t i n g ...... ...... . . . . . . . . . . . . . .. .... ...... ....... ...... .... 2 9
Ba lanc ing Out Le ad I n d u c t a n c e
I ndu ctor Valu e T e s t in g ............ ............ .....
I n d u c to r A ut o m a tic G O O D /B A D T e s t in g
Ch ecking I n d u c to rs w ith t h e R in g e r T e s t
G O OD /B A D I n d u ct o r V a l u e T e s t i n g
.... ... ... ... ... ... ... ... ... ... ... ... . . . .. .. .. .. .. .. .. .. .. ..
. .. .. .. .. .. .. .. .. .. .. .. .. .. . . .... ...... ....... ...... ....... . - 1 4
Pa pe r, Mica a n d Film C a p a c i t o r
Ce ram ic C a p a c i t o r s
Aluminum E le c tr o ly ti c s . . .
Ta nt a lu m E le c tr o ly t ic s . ..
No n- po la riz e d E le c t r o ly t ic s
A lu m in um E le c tr o ly t ic s ............ ........... ........... 2 3
Ta nt a lu m E le c tr o ly t ic s - . . ...... ....... .... . . .. .. .. .. .. .. ..
...... ....... I n s i d e F r o n t C o v e r
... .. .. .. .. .. .. .. . . ...... ....... ....... ...... . 1 0
... ... ... ... ... ... ... ... ... ... ..
...... ....... ....... ...... ....... ... 1 5
...... ....... .... . . .. .. .. .. .. ..
... .. .. .. .. .. .. .. . . . . . . . . . . . . . .
.. .. .. .. .. . . . ...... ....... ....... ...... . 22
.... ... ... ... ... ... ... ... ... ...
. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .
.... .. .. .. ..
.... .. .. .. .. .. .. .. ..
.... ...... ....... .. 22
.. .. .. .. .. .. .. .. .. .. .. .. .. .
. . .. .. .. .. .. .. ..
.... ... ... ... ... ... ... .
. . . . . . . . .. 30
...... ....... ...... 3 1
1 0b
1 2
20
......... .... 26
. . . . . . . . .
. . . . . . . .
1 2
1 3
1 5
1 9
20
22
29
30
3 0
6
2 2
2 2
22
24
I E E E 4 8 8 B U S S O P ER A T I O N
C o n n e c t in g th e L C 102 fo r I EEE O p e r a t i o n ....... ......3 1
S e n d in g D a ta to th e L C 1 0 2
C o m p o n e n t Typ e C o m m a n d s ............ ............ .... 3 3
V a l u e M u lt ip lie rs
T e s t F u nc ti o n C o m m a n d s . ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..
G e n e r a l C o m m a n d s . .... ...... ....... ...... ....... ...... ...... 3 5
R e a d in g D a ta fro m th e L C 1 0 2
D a t a F o r m a t . ........ .. .. .. .. .. ..
S e p a r a t i n g Da ta Fi el ds
A d v a n c e d P ro g r a m m in g I dea s ........... ............ ....... 3 7
E r r o r T e s t in g ............ ... . . .... ... ... ... ... ... ... ... ... ... ... ...
G O O D / B A D R e s u l t s
S h o r t e d C a p a c it o rs . ...... ....... ....... ...... ....... ...... ..... 3 8
O p e n I n d u c to rs ...... ....... ...... ....... ....... ...... ....... ..... 3 8
M a k in g Le a k a ge T e sts wit h I E E E
M a k in g ESR T e s t s w ith I E E E ............ ........... ..... 3 8
P r o g r a m m in g E x a m p l e s
S e n d in g L is te n e r C o d e s ............ ........... ............ . 3 9
S e n d in g T a lk e r C o d e s
S a m p le P ro gr am s
A P P L I C A T I O N S
I n t r o d u c t io n . .
I n d e n t if y in g C a p a c it o r T y p e s
A l u m in u m E le ctr oly tic s
T a n t a lu m E l e c t r o l y t i c s
Do ub le L a y e r E l e c t r o l y t i c s ...... ....... ....... ...... ....... . 4 6
C e r a m i c C a p a c i t o r s ...... ....... ...... ....... ...... ....... ..... 4 6
A H O t h e r C a pa c ito rs ...... ....... .... .. 4 7
I d e n t if y in g I n d u c to r T y p e s . ................. ............ .......47
Y o k e s and F ly b a c ks
S w it c h in g T r a n s f o r m e r s
C o il s . ..
I d e n ti fy U n kno wn C o m p o n e n t s ....... ....... ...... ....... ... 4 8
C a p a c i t o r T e s ti n g A p p li c a ti o n s ....... ...... ....... ...... .... 4 9
I n te rp re ti n g C a p a c it o r Va lu e R e a d i n g s
D ie le c t r ic S t r e s s ........... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C h e c k i n g L e a ka ge i n M u lt i- S e ct io n L y ti c s . . . . 4 9
I n t e r m i tt e n t C a p a c it o rs
C h e c k i n g C e ra m ic Te m p er at u re
C h e c k i n g C a p a c it a n c e of Silicon D io d e s
T e s t in g High V ol ta g e D i o d e s ........... ............ ....... 5 1
R e f o r m in g E le c tr o ly t ic s
I n d u c t o r Te s ti n g A p p l i c a t i o n s ....... ...... ....... ....... ...... . 5 2
T e s t in g I nd uc tors I n - C i r c u i t ...... ....... ...... ....... ...... 5 2
M u tu a l I n du cta nc e . ...... ....... ....... ...... ....... ...... ....... 5 2
R in g in g Pe aking C o i l s
R in g in g Metal S h ie ld e d Coils
R in g in g Fly b a c k T ra n s fo rm e r s ............ ............ .. 5 3
R in g in g De fle ct io n Y o k e s ............ ........... ........... 5 4
N o te on So li d S tate Y o k e s & F l y b a c k s ............ .55
...... ....... ....... ...... ....... ...... ....... ...... ....... ....... . 4 8
C h a r a c t e r i s t i c s ...... ....... ....... ...... ....... ...... ....... ..... 5 0
and T r a n s is to r s ...... ....... ...... .... . . .... ... ... ... ... ... ... .
. . . . . . . . . . ................. .... . . 3 3
................. ............ ........... ............ ....... 4 4
. .. .. .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. . .. .. .. .. ..
...... ............ ........... .......36
.. .. .. .. .. .. .. .. .. .. .. .. . . . . . . . . . . . . .
... ... ... ... ... ... ... ... ... ... ... ... ... ... ..
.. ... ... ... ... ... ... ... ... ... ... ... ... ... .
......... ....... ...... ....... .......
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ..
...... ....... ....... ...... ....... . 4 4
. . . . . . . .
.. .. .. .. .. .. .. .. .. .. .. .. .. .. .
...... ....... ....... ...... ....... ...... . 4 5
.... ... ... ... ... ... ... ... ... ... ... ... ... ..
...... ....... ....... ...... ....... ..... 4 7
...... ....... ....... ...... ....... ..... 5 0
...... ....... ....... ...... ....... ..... 5 1
. . . . . . . . . . .. ... ... ... ... ... ... ... ... ...
.. .. .. .. .. .. .. .. .. .. .. .. . ..
. . . . . . . . . . . .
. .. .. .. .. .. .. .. .. .. ..
. . . . . . . . . . . .
....
32
3 4
3 5
3 6
3 7
3 7
3 8
3 9
3 9
4 0
4 5
4 7
4 9
4 9
5 0
5 2
5 3
2
Ca ble T e s t in g A p p li c a t io n s
T es ting C o ax ia l C a b i e
D e te rm in in g the D is t a n c e t o O p e n
Loca tin g a Sho rt i n C o a x i a l Cab le ...... ....... .. 56
De ter m in ing C a p a c it a n c e & I nduc tan ce
p er f o o t ....... ....... ...... ....... ...... ....... ...... ....... .... 57
U sin g th e LC 102 to F in d A g i n g Cab le ....... ..5 7
H i Potent ial T e s t i n g ...... ....... ...... ....... ...... ....... ...... .... 5 7
M easuri ng R e s is to r to 1 G ig o h m . . .
A p p lic a tio n s o f th e L ea ka ge P o w e r S u p p l y
M A I N T E N A N C E
I ntr od uc ti o n
R e cal ibra tio n an d Serv ice . ...... ....... ....... ...... ....... ..... 5 9
C irc uit D e s c rip tio n a n d C a li b r a t io n P ro c ed u re s . . . 5 9
R e pl ace m ent L e a d s ....... ....... ...... ....... ...... ....... ...... ... 59
“ Sp a re ” B u t t o n
T e st Le ad Fuse ....... ...... .. . . ......... ....... ... . . . . . . . . . . . . . . . . . .
F use R e p l a c e m e n t
D isplay T e s t ...... ....... ....... ...... ....... ...... ... . . . . . . . . . . . . . . . . . .
A P P E N D I X
C a p a c it o r T h e o r y an d th e A U T O - Z
C a p a c it o r T y p e s
C e ra m ic s
A lu m in u m E le ctr oly tic s . ... ... ... ... ... ... ... ... . .. . . . . . . . . . .
T a n t a lu m E le c tr o ly t ic s . ......... ....... ... . ...... ...... ....... 62
A C a p a c it o r i s m or e t ha n a C a p a c i t o r ...... ..... .. 63
L e a k a g e
D ie le c tr ic A b s o r p t i o n
E ffe c tiv e S er ie s R e s i s t a n c e
V a lu e C h a n g e
.... ...... ....... ...... ....... ...... ....... ...... ....... ..... 5 9
. . . . . . . . . . . . ... .. .. .. .. .. .. .. .. ..
.. .. .. .. .. .. .. .. .. .. .. . . . .... ...... ....... ...... .. 5 9
... ... ... ... ... ... ... ... ... ... ... ... .. .. . . . . . . . . . . . . . .
...... ....... ....... ...... ....... ...... ....... ...... ....... .. 6 1
.. .. .. .. .. .. .. .. .. .. .. .. . . . .. ... ... ... ... ... ... ... .. .. 63
. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
.... ...... ....... ...... ....... ...... 5 5
.... ... ... ... ... ... ... ... ... ... ... ... ...
...... ....... .. 55
.... ...... ....... ...... .. 5 8
. . . . . . . . . .
...... ....... ....... ... 5 9
... ... ... ... ... ... ...
.. .. .. .. .. .. . ..
... ... ... ... ... ... ... ... ...
. . . . . . . . . . .
.. ... ... ... ... ... ...
5 5
5 8
5 9
59
, 60
6 1
62
63
64
6 4
3
S IM PL IF IE D O P E R A T IO N S
C a p a c ito r P a ra m e te r T e s ts
7 . R ea d VAL UE o f c a p ac it o r 9 . R e a d % o f 1 3 . R e a d LEAKAGE i n
i n p F , u F , o r F o n di s pl a y D /A o n d i s p la y / u A or m A o n d i s p la y
1 5 . R e a d E S R i n
o hm s o n dis p la y
• 6 . P u s h b ut to n
- 1 2 . P u s h b u tt o n
* 8 . P u s h b ut to n
1 4 . P u s h b ut to n
1 . Open t e s t leads
3 . S h o r t t e s t lea ds
2 . Mo m enta rily h o i
5 . C o n n e c t c a p a c i to r to tes t le ad s s w it c h to O P E N
p o s it io n 4 . M om e nt ar il y h old s witch
I nd uc to r Para me te r T e s ts
5 . R e a d V A L U E o f in d u c to r i n
u H , m H or H o n d is p la y
8 . R e a d I n d u c to r R in g e r t e s t o n d is p la y
1 0 . Ent er ra te d vo lta g e
of cap ac it o r
1 1 . S e le c t CU RRENT posi tion
to SH O R T po s iti o n
R e a d i n g of 1 0 or m o re ind ic at e s g o o d c o m p o n e n t
4 . P u s h b u t t o n
6 . Sele ct I n duc to r typ e
1 . S h 5 rt t e s t le a d s
3 . Con nec t ind uct or
7 . P u s h b u t t o n
! . Mo m en ta ril y h o l d s w it ch t o
SHO RT p o s i t i o n
4
D E S C R I P T I O N
I n t r o d u c t i o n
Γ -m s ri t n r a nd in du ct or u sag e is e x t e n s i v e , e n co m p a s
s i n g a T L T t s o f in d u s tr ia l and cons ume r ele ctr on ics .
V e r y f L c ? r c u . t s lac k e i t h e r o f th e s e co m p o n en t s. A s
th e t n n s i s t o r g a v e w a y to the I C , and t h e I C g a v e w a y
t n t h o I S T C s o cap acitor a nd i nd uc to r usage cont inues
o i n c r e a s e r a p id l y s in ce n e it h e r o f th es e c o m po n en ts
c a n be p h y s i c a l ly in corporated i n t o I C s on a bro ad b a s i s .
T h m i i A t h e v ha ve chang ed so m e m p h y s i c a l s i z e ,
c a n ac ft or s s t i l l p erf or m th e sam e bas ic fu nctions. B u t
• ? A * . v n i i t s more th an e v e r befo re, th e to le r an ce s
a n d p a r a m e t e r s o f c a p a c i to r s and ind uc to rs a r e c r it ic a l
t o p ro p er c ir c u i t o p er a t io n .
A u t o m a t i c l e a d z e r o i n g b a l a n c e s o u t t e s t l e a d c a p a c i
t a n c e , r e s i s t a n c e , a n d i n d u c t a n c e f o r a c c u r a t e r e a d i n g s
on s m a l l c a p a c i t o r s a n d i n d u c t o r s . T h e L C 1 0 2 i s p r o
t e c t e d f r o m e x t e r n a l v o l t a g e s a p p l i e d t o t h e t e s t l e a d s
b y a f u s e i n t h e T E S T L E A D J A C K an d a s p e c i a l s to p
t e s t i n g c i r c u i t r y w h i c h lo ck s o u t a l l t e s t b ut to ns w h e n
v o l t a g e i s s e n s e d o n t h e t e s t le ad s.
i n g f r o m i n d u s t r i a l equ ip m en t t o avion ics to cable f a u l t
u u - ι υ ι ; a t i o n tr ou b le s h o ot in g i n a l l ty p es o f s e r v ic
loca ti ng . A n o p t io n a l SC R2 5 0 S C R & T R I A C T E S T
A C C E S S O R Y ex te n ds th e LC102 t e s t c a p a b il it ie s t o
p r o v i d e a fa st, acc ur ate t e s t o f the se c o m p o n e n t s . T h e
L C 1 G 2 m a y b e i n t e r f a c e d in t o a n y co m p u t er i n t e r f a c e
sys tem f o r f u l l y aut om ati c, co mp ut er controlled t e s t i n g
i n a l a b o r a to r y o r in c o m in g ins pec ti on a re a .
_ _ r . v w . y p U l ' L a -
S P E C I F I C A T I O N S
T h e S e n c o re L C 1 0 2 A U T O - Z t a k e s t h e g u e s s w o r k ou t
r in d u ct o r t e s t i n g . I t p r o v i d e s a u t o m a t i c
e , t s ο _ p , - I n d u c t o r s a r e a u t o m a t i c a l l y
a n a f y e d f b r v a T u e a * d q u a l i t y w i t h p a t e n t e d t e s t s . T h e
T P i n o i o o P o m O le t e, a u t o m a t i c , m ie r o p r o c e s s o r- c o n -
, n j c - + n r a n d i n d u c t o r a n a l y z e r . I t s f e a t u r e s
" , Γ ΰ ‘ su it ed f o r b oth s i n g l e c o m p o n e n t
a n a l y z i n g i n s e r v i c e o r m a i n t e n a n c e w o r k o r f o r l a r g e
v o l u m e , b a tc h t e s t i n g in a l a b o r i n c o m i n g in s p e c t i o n .
S k v a l n e , l e a k a g e , E S E , a n d a p a t e n t e d
F e a t u r e s
Q c , „ r r , y p L C 10 2 A U T O - Z is a dyn am ic, por table ,
aut om ati c ca pac itor a n d inductor tes te r. I t is de si g ne d
t o a u i c k l v i d e n t i f y d e fe c ti v e co mp on ent s b y s i m p l y c o n -
+ · X „ s m » r i t o r o r indu ct or to t h e t e s t le a d s and
pu sh i ^ a t e s f b u t t o n . T h e t e s t r e s u l t is r e a d i l y d is -
β T f n r e a d o u t i n c om m o n t e r m s . A l l
S a e c t o r n and in d u c t o r t e s t res ul ts m a y al s o be d i s -
D la ved a s GOOD /BAD co mp ar ed to standa rds ad op ted
b v th e E l e c t r o n i c I n d u s t r i e s · A s s o c i a t i o n ( E I A ) . U s e r
d e fi n e d H m it s m a y a ls o b e p r o g r a m m e d i n t o t h e LC1 02
f o r t h e GOOD/BAD c o m p a r i s o n .
I n a d d it io n to
D I G I T A L R E A D O U T
T Y P E : , 4 5 ” , 6 d i g i t , 7 se gm e nt L C D
R E A D I N G S : F u l l y a u to r an g e d w i t h a u t o d e ci m al
plac em en t. O n e o r t w o place ho lding z er o s ad d e d a s
neede d t o p r o v i d e stan dard v a lu e re a d ou t s o f p F , u F ,
F , u H o r m H .
A N N U N C I A T O R S : pF , u F , F , u H , m H , H , uA , m A, % ,
V , k f t , M f t , a , R I N G S , SH O R T , O P E N , W A I T ,
GO OD , B A D
C A P A C I T O R S ( O u t o f c i r c u i t )
C A P A C I T O R V A L U E
D y n am ic t e s t o f c a p a c i ty v a lu e i s de te rm ine d by
m e a s u r i n g one R C t i m e cons tant a s cap acitor is ch ar g ed
to + 5 V throug h:
1 , 5 M ego hm s f o r 0 - . 0 0 2 uF
1 5 K i l o h m s f o r . 0 0 2 u F - 2 u F
V a lu e s ab ove 2 u F a r e ch ar g ed w i t h a co n s ta n t cu r re n t
o f :
6 0 m A for 2 u F - 2 00 0u F
4 1 6 m A f o r 2 0 0 0 u F - 1 9 . 9 9 F
M a x im u m v o l t a g e a c r o s s ca pa cit or s l a r g e r than 2 u F
l i m it e d to 1 . 7 5 V .
Ά & Μ " u p t t 0 T T O l t s ; E S R
U 1 J a n a te n te d t e s t , a n d a n a u t o m a t i c ,
c h e c k e d w i , ca pa ci t o r d i e l e c t r i c a b s o r p t i o n . A
p a t e n t e d _ e v a j ; U e t e s t p r o v i d e s a f a s t , a c c u r a t e
p a te n t e d indu ctan ce v g
t e s t o f t r u e > f d u c ‘ ^ w i t c h m g p o w e r L p p ly t r a n s f e r
e e s , d e f l e c t o n y o k e ^ f e s
m er s , a n d o t h e r n o n
r e l i a b l e GO OD/BAD q u a h tv te s t .
A C C U R A C Y : + / — 1 % + / — l p F 4 7 - 1 d i g i t for v al u e s
to 1 9 9 0 uF . + / — 5 % + / - . 1 % o f r a n g e f u l l scale f o r
va lu e s 2 00 0u F t o 1 9 . 9 9 F .
R E S O L U T I O N A N D R A N G E S : 1 . 0 pF t o 1 9 . 9 9 F , f u l l y
au to ra ng ed
. 1 p F 1 . 0 p F t o 1 9 9 . 9 pF
l p F 2 0 0 p F to 1 9 9 9 pF
. 0 0 0 0 1 u F 0 . 0 0 2 0 0 u F to 0 . 0 1 9 9 9 u F
. 0 0 0 1 u F 0 .0 2 0 0 u F t o 0 . 1 9 9 9 u F
. 0 0 1 uF
. 0 1 u F
. l u F
l u F
1 0 uF
1 0 0 uF
. 0 01 F 0 . 2 0 0 F t o
. 01F
0 . 2 0 0 u F t o 1 . 9 9 9 u F
2 . 0 0 u F t o 1 9 . 9 9 u F
2 0 . 0 uF t o 1 9 9 . 9 u F
2 0 0 uF t o 1 , 9 9 9 uF
2 , 0 0 0 uF t o
2 0 , 0 0 0 uF t o 1 9 9 , 9 0 0 uF
2 . 0 0 F to
1 9 , 9 9 0 u F
1 . 9 9 9 F
1 9 . 9 9 F
C A P A C I T O R L E A K A G E
R E A D O U T . : U s e r selectable be tween l e a k a g e current
a nd resis tance
A C C U R A C Y : + / - 5 % + / - 1 - d i g i t
A P P L I E D V O L T A G E : K e y b o a rd e n tr y ; 1 . 0 to 9 9 9 . 9
v o l t s in . 1 v o l t s t e p s ; a cc u ra cy + 0 - 5 % . S h or t ci rcu it
c u r re n t l i m it e d to 90 0 m A , powe r l i m it e d to 6 wat ts.
R E S O L U T I O N A N D R A N G E S : . O l u A t o 2 0 m A , f u l l y
au to ra nge d
. O l u A 0 . 0 1 u A t o 1 9 . 9 9 u A
. l u A 2 0 . 0 u A t o 1 9 9 . 9 u A
1 u A 2 0 0 u A t o 1 9 9 9 u A
. 0 1 m A 2 . 0 0 m A to 1 9 . 9 9 m A
C A P A C I T O R E S R
( T e s t p a t e n t e d )
A C C U R A C Y : + / - 5 % + / - 1 d i g i t
C A P A C I T O R R A N G E : 1 u F to 1 9 . 9 9 F
R E S O L U T I O N A N D R A N G E S : . 1 0 ohm to 2 0 0 0
o h m s , f u l l y auto ran ged
. 0 1 o h m O. lOohm sto 1 . 9 9 - o h m s
. l o h m 2 . 0 o h m s t o 1 9 . 9 o h m s
1 o h m 2 0 o h m s to 1 9 9 9 o h m s
C A P A C I T O R D / A
( U . S . P a t e n t # 4 , 2 6 7 , 5 0 3 )
A C C U R A C Y : + / - 5 % o f r e a d in g + / — 1 co unt
R A N G E : 1 to 1 0 0 %
C A P A C I T O R R A N G E : . 0 1 uF to 1 9 . 9 9 F
I N D U C T O R S ( I n o r o u t o f c i r c u i t )
0 1 m H
. 1 m H
I m H
.0 0 1 H
. 0 1 H
2 . 0 0 m H t o 1 9 . 9 9 m H
2 0 . 0 m H t o
2 0 0 m H t o 9 9 9 m H
1 . 0 0 0 H t o
2 . 0 0 H t o 1 9 . 9 9 H
1 9 9 . 9 m H
1 . 9 9 9 H
R I N G I N G T E S T
( U . S . P a t e n t # 3 , 9 9 0 , 0 0 2 )
A dy namic te st o f ind uc tor q u a l it y dete rmin ed b y a p p l y
i n g a n e x c i t i n g pu ls e to th e ind uc tor a n d cou nting the
number o f cycles th e ind uct or r in g s befo re re a ch in g a
pre se t d am p in g p o in t.
I N D U C T O R R A N G E : 1 0 uH a n d la r g e r , n o n -i ro n co re
A C C U R A C Y : - f / — 1 c o u n t o n rea di n gs between 8 a nd
1 3 R in g s
R E S O L U T I O N : + / - 1 c o u n t
E X C I T I N G P U L S E : 5 v ol ts p e a k ; 6 0 H z rat e
G E N E R A L
T E M P E R A T U R E : o p e r a t i n g r a n g e : 3 2 ° t o 1 0 4 C F ( 0 °
t o 4 G ° C ) r a n g e f o r s p e c i f i e d a c c u r a c y ( a f t e r 1 0
mi nu te w ar m u p ): 5 0 ° to 8 6 ° F ( 1 0 ° to 3 0 ° C )
P O W E R : 1 0 5 -1 3 0 V A C , 6 0 H z , 2 4 w at ts wi th su pplie d
PA 2 5 1 p o w e r a d a p t er . B a t t e r y o pe ra ti o n w i t h o p
ti o n a l B Y 2 3 4 r ec h a rg e a b le b a tte r y. 2 1 0 - 2 3 0 V A C o p
e ra ti o n w i t h op tio na l P A 2 5 2 P o w e r Ad apter.
A U T O OF F: Re m o ve s pow er d ur ing b a tt e r y op e ra tio n
i f un it sits id l e lo n g e r than 1 5 - 2 0 m i n u t e s .
B A T T E R Y L I F E : 8 h o u r s ty p ic a l in d u ct or te s tin g ; 7
h o u r s t y p i c a l capacitor test ing .
SIZE: 6 ” x 9" x 1 1 . 5 ” ( 1 5 . 2 c m x 2 2 . 9 x 2 9 . 1 c m ) H W D
W E I G H T : 6 l b s . (2 .7 k g ) wit h ou t b at te ry , 7 . 6 l b s (3 .4kg )
w i t h b a t t e r y
GO OD/ BAD I N D I C A T I O N : Fu n cti on s o n a ll t e s t s . R e
quir es u ser inp ut o f c o m p o n e n t typ e a n d v a lu e , o r
input o f d e si r e d limits.
IE E E : R e q u ir e s th e u s e o f S en c o r e IB 7 2 B u s I n t e r f a c e
A cce ss ory .
T h e f o l l o w i n g in t er fa c e c o d e s a p p ly : S H I , A H 1 , T 8 ,
L 4 , SR O , R L O , P P O , DC O , DTC, C O . A l l rea di n gs
are te st accu rac y + / — 1 c o u n t .
Spe c if ic a tio n s s u b je c t t o ch ang e wi th ou t n o t i c e
I N D U C T A N C E V A L U E
( U . S . P a t e n t # 4 , 2 5 8 , 3 1 5 )
A dyn am ic te st o f va lu e d ete rm in ed by m e a s u r i n g the
E M F p r od u ce d when a c ha n gi n g c ur re nt is a p p lie d t o
th e coil und er t e s t .
C U R R E N T R A T E S : au to m a ti c a ll y s el ect ed
5 0 m A / u S e c
5 m A / u S e c
. 5 m A / u S e c
5 0 m A / m S e c
5 m A / m S e c
. 5 m A / m S e c
0 5 m A / m S e c
A C C U R A C Y : + / - 2 % + / - 1 d i g i t
R E S O L U T I O N A N D R A N G E S : . 1 0 uH to 2 0 H, f u l ly
aut or an g e d
. 0 1 uH 0 . 1 0 u H t o
. 1 uH
l u H
. 0 0 1 mH 1 . 0 0 0 mH t o
O u H t o
1 8 uH t o 1 8 0 u H
1 8 0 uH t o
1 . 8 mH t o 1 8 m H
1 8 m H to
1 8 0 m H t o
1 . 8 H t o
2 0 . 0 uH t o
2 0 0 uH t o
1 8 u H
1 . 8 m H
1 8 0 m H
1 . 8 H
1 9 . 9 9 H
1 9 . 9 9 u H
1 9 9 . 9 u H
9 9 9 u H
1 . 9 9 9 m H
A C C E S S O R I E S
S U P P L I E D :
3 9 G 2 1 9 T e s t Leads
3 9 G 1 4 4 T e s t L e a d A d a p te r
3 9 G 2 0 1 T e s t B ut to n Ho ld Do wn R o d
6 4 G 3 7 T e s t L e a d M ou n ti n g C lip
PA 2 5 1 A C P o w e r Ada pter/Recharger
O P T I O N A L :
3 9 G 8 5 Touc h T e s t Pro b e
F C 2 2 1 F i e l d C a li b r a t o r
B Y 2 3 4 R e c h a r g e a b l e L e a d A c i d B a tt e r y
S C R 2 5 0 S CR/ Tr ia c T e s t A cce ss or y
C C 2 5 4 C a r r y i n g C a s e
C H 2 5 5 C om pon ent H o ld e r
CH 2 56 Chip Co mponent T e s t Lea d
IB 72 B u s I n t e r f a c e Acc essory
P A 2 5 2 2 20V A C P o w e r A da pt er/ Re cha rg er
7
C o n t r o l s
1 . C O M P O N E N T T Y P E se le c t b u t t o n s . Use w it h
T E S T b u t t o n s (4) , a n d C O M P O N E N T P A R A M E T E R S
b u t t o n s ( 6 ) fo r c o m po n en t l i m i t te s ti n g .
a . - e. c a pa ci to r ty p e b u t t o n s - U s e w i t h other be ig e
c o lo r c o d e d ca pacitor b u tt on s (4a - d ) a n d (6 m - o ) .
f . S P A R E - P r o v id e s a sp a re button to all o w for
fu tu re co m p o n e n t typ es and i n t e r n a l memory u p
d a t e s .
g . - i. In du ct o r ty p e bu tt on s - U s e w i t h other b lu e
c o lo r c o d e d in du cto r b u tt on s (4e - f) a n d ( 6 s - u ) .
2 . L C D D I S P L A Y
2a. S H O R T - In dica tes th a t t e s t l e a d s , or c o m p o n e n t
c o n n e c t e d to te st l e a d s , a r e sh orted when L E A D
ZER O O P E N but ton (9 a) o r C A P A C I T O R V A L U E
T E S T b u tt on (4a) is p u s h e d .
2b. O P E N - Ind ica tes th a t t e s t l ea d s, or c o m p o n e n t
c o n n e c t e d to te st l ea ds , a r e op en when L E A D
Z ERO S H O R T b u tt on (9 b) or I N D U C T O R V A L U E
T E S T b u tt on (4 e ) is p u s h e d .
2c . W A I T - Indicates in t e r n a l ci rcu it s are discharg
i n g after C A P A C I T O R L E A K A G E T E S T b u t t o n
(4c ) i s re leased. A l s o in d ic at e s e x t e r n a l v o l t a g e o n
tes t l e a d s . A l l tests are lock ed o u t w h i l e W A I T
indicato r i s o n .
2d. D I G I T A L R E A D O U T - In d ic a te s v a l u e o f te st
r e s u l t . L a s t tw o d i g i t s are p la c e h old er s a n d i n d i
cat e 0 o n l a r g e rea dings. D is p l a y s er r or m e s s a g e
i f er ro r co nd iti on ex is ts .
2e. R E A D I N G A N N U N C I A T O R S - A u t o m a t ic a ll y
l i g h t t o q u a l i f y th e r e a d i n g d is p la y e d in th e D I G I
T A L R E A D O U T (2 d ) .
2 f. G O O D - In dica tes t h a t compo ne nt me ets p r e - d e -
flned tole ran ce s f o r th e t e s t s e le c te d b y T E S T b u t
t on ( 4 ) .
2 g. B A D - Ind icat es th a t th e co mp on en t d o e s n o t
m ee t the pre-d efme d to le r an ce s f o r the tes t
s el e ct ed b y T E S T bu tton (4 ).
3 . A P P L I E D V O L T A G E L C D D I S P L A Y - D ispla ys
th e a m o u n t o f le a k a g e v o l t a g e to b e ap p lie d t o th e T E S T
L E A D ( 1 0 ) w he n th e C A P A C I T O R L E A K A G E b u t t o n
(4b) i s p r e s s e d . V o l t a g e is selected us in g C O M P O N E N T
P A R A M E T E R S keyp ad (6a -l & 6r ).
4 . T E S T b u t t o n s
a . C A P A C I T O R V A L U E - Depre ss to tes t ca pa ci to r
va lu e.
b . D I E L E C T R I C A B S O R P - Depres s to read pe r
centa ge o f d ie le c t r ic a bso rpt io n.
c . C A P A C I T O R L E A K A G E - De pr es s t o te st
ca pa ci to r le a k a g e a f t e r th e c ap aci tor w o r k in g v o l
t a g e is enter ed w i t h t h e C O M P O N E N T
P A R A M E T E R S k e yp ad ( 6 ).
d . C A P A C I T O R E S R - Depres s to te st capa cit or
ES R .
e. I N D U C T O R V A L U E - Depres s to te st in d u c t o r
v a lu e.
f . I N D U C T O R R I N G E R - Depr ess f o r r i n g i n g ( q u a l
i t y ) te s t o n c o i ls , yok es /f ly ba ck s a n d sw itc hi n g
tran sfor me rs a f t e r s e le c ti n g ind uctor ty p e w i t h
C O M P O N E N T T Y P E sw itch es ( l g - i ) .
5 A . C A U T I O N I N D I C A T O R L E D - B li n k s a s a w a r n
i n g w h e n l e a k a g e v o lt a g e i s se t to 2 5 v o l t s o r h igher,
a s in d i c a te d o n A P P L I E D V O L T A G E L C D D I S P L A Y
(3). V o l t a g e is on ly p res en t a t te s t le a ds w h e n
C A P A C I T O R L E A K A G E te st b u tt on (4 c) is d e p r e s s e d .
5B . P R O T E C T I O N C I R C U I T O R F U S E O P E N
A L A R M - A f la s h in g L E D alo ng w it h a n a u d ib le ala rm
w i l l a c t i v a t e when e i th e r the te st le ad input f u s e o p e n s
or th e pro te cti on circ uit s e n s e s 1 0 v ol ts or g re at e r.
6 . C O M P O N E N T P A R A M E T E R S k e ypa d - U se t o
e n t e r pa ra m e te rs for l i m i t t e s t i n g . .
a ~ k . N U M E R I C I N P U T - Use t o e n te r num eric al
v a l u e portion o f para mete rs. U se w i t h C O M P O
N E N T P A R A M E T E R S b u t t o n s (m -u ) .
1 . C L R - P u sh o n c e t o c l e a r N U M E R I C I N P U T en try .
P u s h tw ic e to c le ar a l l par am ete rs and C O M P O
N E N T T Y P E swi tch es ( 1 ).
m - o . C A P A C I T O R V A L U E M U L T I P L I E R - U s e
a f t e r N U M E R I C I N P U T e n t r y (6a -k ) t o e nt er
c ap ac ito r value. P u s h t o re c a ll e n te r e d valu e.
p - q . P E R C E N T A G E b u t t o n s - U se af te r
N U M E R I C I N P U T e n t r y (6a- k) t o e n te r c o m p o
n e n t tole ran ce . P u sh t o r e c a ll e nt e re d va lue.
r . V O L T S - Use w i t h N U M E R I C I N P U T (6a- k) t o
s e le c t de si red te st v o l t a g e f o r ca pac itor le a k a g e
tes ts .
s-u . I N D U C T O R V A L U E M U L T I P L I E R - Use
a f t e r N U M E R I C I N P U T e n tr y (6 a- k ) to e n te r in
ductor value. P u s h to r e c a ll e nt e re d value .
7 . P U L L C H A R T - P ro v id e s s im p l if ie d o p e r a ti n g in
str uc tio n s a n d q u ic k ref e re n c e t a b le s .
S . L E A K A G E S w i t c h
a . C U R R E N T - Selects rea dou t o f l e a k a g e cu rr en t
in u A or m A wh en C A P A C I T O R L E A K A G E bu t
to n (4 c) i s d e p r e s s e d .
f o . O H M S - Sel ect s re adout o f l e a k a g e in o h m s when
C A P A C I T O R L E A K A G E bu t t o n (4 c) is d e p r e s s e d .
9 . L E A D Z E R O S w it ch
a . O P E N - Use w i t h C A P A C I T O R V A L U E b u t t o n
(4 a ) a n d o p e n test lea ds t o ba lance out tes t lea d
c a pa ci ta nc e.
b . S H O R T - U se w i t h I N D U C T O R V A L U E b u t t o n
(4 e ) a nd s h o r t e d te st leads t o balance out te s t lead
in d u ct a n ce .
1 0 . T E S T L E A D I N P U T J A C K - P r o v id e s a c o n n e c
t i o n f o r a tt ac hi ng sup pl ie d te s t lea ds (17 ) o r op ti ona l
C H I P C O M P O N E N T T E S T L E A D S (30). Unscrew ja c k
fo r a c c e s s to pro tection f u s e .
1 1 . P O W E R S w i t c h
a . O F F - Removes powe r from a l l cir cu its .
b . A U T O O F F - P ro v id e s powe r f o r a p p ro x i m a te l y
1 5 minutes a f t e r a u to o f f c ir c u it ry is re se t. A u t o
o f f is b y p a s s e d wh en L C 1 0 2 is pow er ed from t h e
A C P o w e r Ad apter.
c . O N & B A T T T E S T - Tu rn un it o n a n d rese t a u t o
o f f c irc ui tr y . R e m a i n i n g b a tt e r y l i f e is di splayed
i n L C D D I S P L A Y ( 2 d ) .
8
C O M P O N E N T TYP E
C O M P O N E N T P A R A M E T E R S
N U M E fi iC IN P U T g N T S R ! R E C A L L
TEST
p S I N G E
POWER
O N S A
B A T T T E S T
A U T O O f f · B
OFF C
! 1 S V A C Q f l B A ? 1
2 c \
2 b — O P E N
2 a -
T ES T L E A D
LE A D ZE R O L E A K A G E
/ ^ W A R N I N G : F l a s h i n g t i g h t i n d i c a t e s 2 5 -1 00 0V
a p p li e d to tes t lead s w h e n leakage b u tt o n i s press ed .
T O P T E S T I N G : P r o t e c t i o n c i r c u i t o r fu s e i s
C a p a c i t o r b e i n g te s t e d m a y b e c h a r g e d .
N o s . · 3 S 9 « 0 0 2 . . ' « s e a t s . « 6 7 M 3 . O r i w n P f fn d i n y
F ig . 1 — Lo cat io n o f f r o n t pan el· c o n t r o l s a n d fea tu re s.
2 d 2 e 2 f
' W A I T
• O P E N 4 ' O Q O Ο Ο O S p r n H m A K f t G O O D -
S H O R T L I . O . L I . L I . U . U . R I N G S V % Ω B A D
- - - - - -
2 9
Fig . 2 — L C D a n n u n c ia t o r s .
3
R e a r F a n e ! F e a t u r e s
1 2 . B A T T E R Y C O M P A R T M E N T C O V E R - P ro v i d e s
a c c e s s t o th e (o p ti o n a l ) B Y 2 4 2 rec h ar g e ab le bat tery.
1 3 . I N T E R F A C E A C C E S S O R Y J A C K - A l l o w s t h e
(optio nal) IB72 I E E E 4 8 8 Bu s I n te r fa c e Accessory (2 6)
t o b e co n n ec t ed to feed LC 10 2 r ea d in gs t o a n a u tom at ed
me asu rin g sy s t e m .
1 4 . T E S T B U T T O N H O L D D O W N R O D H O L D E R
- H o ld s T E S T B U T T O N H O L D D O W N R O D (1 9) wh en
n o t in u s e .
1 5 . 3 9G 1 44 T E S T L E A D A D A P T E R M O U N T I N G
C L I P .
1 6 . P O W E R I N P U T - Co nnec ts to su ppl ie d P A 2 5 1
P O W E R A D A P T E R (21 ) f o r 1 10 V A C ope ratio n, o r t o
PA252 f o r 2 20V A C o p e r a t i o n (n o t pictu re d).
F ig. 3 — L o c a t i o n o f r e a r p a n e l features.
S u p p l i e d A c c e s s o r i e s
1 7 . T E S T L E A D S (39 G 21 9) - Spe cia l lo w c a p a c i t y
c a b l e with E - Z H o o k ® c l i p s . Con nec t t o T E S T L E A D
I N P U T ( 1 0 ) .
1 8 . 3 9 G 1 4 4 T E S T L E A D A D A P T E R (3 9 G 1 4 4 ) - U s e
t o a d a p t T E S T L E A D S (17 ) to lar ge , s c r e w te rminal
c a p a c i t o r s .
1 9 . T E S T B U T T O N H O L D D O W N R O D ( 3 9 G 2 0 1 ) -
U se t o h o l d C A P A C I T O R L E A K A G E b u tt on (4 a ) d e p re
s s e d w h e n refo rm ing c a p a c i t o r s .
2 0 . T E S T L E A D M O U N T I N G C L I P ( 64 G 3 7) - U s e
t o h o l d Test L ea d w h e n n o t in u s e .
2 1 . P O W E R A D A P T E R ( P A 2 5 1 ) - P lu gs i n to P O W E R
I N P U T (1 6 ) t o p o w er unit fro m 1 0 5 - 1 3 0 V A C l in e . A lso
re c h a r g e s t h e (o pti ona l) B Y2 3 4 B a t t e r y w he n in st al le d
i n s id e t h e L C 1 0 2 .
F ig . 4 — S u p p l i e d A c c e s s o r i e s .
O p t i o n a l A c c e s s o r i e s
2 2 . 3 9 G 8 5 T O U C H T E S T P R O B E - Use f o r in -c irc u it 2 7 . C A R R Y I N G C A S E (CC254)- P ro v i d e s pr ote ct io n
testi ng o f c o i l s a n d in d u c t o r s fr o m P.C . b o a r d . a n d easy c a r r y in g fo r the L C 1 0 2 a n d its a c c e s s o r i e s .
2 3 . F I E L D C A L I B R A T O R ( F C 2 2 1 ) - Use t o p e ri o di
cally c h e c k ca lib ra ti o n o f the L C 1 0 2 .
2 4 . R E C H A R G E A B L E B A T T E R Y ( B Y 2 3 4 ) - P r o
v i d e s po rta bl e o pe ra ti o n f o r th e L C 1 0 2 . O n e batter y
r e q u i r e d .
2 5 . S C R / T R I A C T E S T A C C E S S O R Y (S C R 2 5 0 ) - U se
f o r testin g S C R s a n d T r ia c s.
2 6 . I E E E 4 8 8 B U S I N T E R F A C E A C C E S S O R Y -
C o n n e c t s b et w ee n t h e I N T E R F A C E A C C E S S O R Y
J A C K ( 1 3 ) a n d t h e I E E E 4 8 8 por t o f a B u s contr oll er
t o a l lo w the L C 7 7 t o b e u s e d in auto mat ed test s e t u p s .
E -Z H o o k ® i s a reg iste red tr a d e m a r k o f T e l e T e k I n c .
2 8 . C O M P O N E N T H O L D E R ( C H 2 5 5 )- U s e t o h o l d
c o m p o n e n t s f o r fast t e s t s when d o i n g , v o l u m e t est in g.
2 9 . C H I P C O M P O N E N T T E S T L E A D (C C2 56 )-
Special sh iel de d test le a d s for te s ti n g s m a ll s u r f a c e
mo unt (C hi p ) c o m p o n e n t s .
Fig. 5 — O p ti o n a l A c c e s s o r i e s .
O P E R A T I O N
Introduction
Before y o u be gi n to u s e y ou r LC102 A U T O - Z , ta ke a
few m in u te s t o r e a d th r o u g h the Op era tions a n d A p p l i
c a t i o n s s e c t i o n s o f thi s ma nu al a n d a cqu ain t yo ur s el f
w i th the fe a t u re s a n d cap ab il iti es o f your in s t r u m e n t .
A f t e r you h av e f a m ilia ri ze d y o u r s e l f w i t h t h e general
o per at io n o f th e L C 1 0 2 , m o st tests c a n b e p er fo rm e d
w it h th e in for ma ti on o n the fr o n t p a n el .
A C P ow er Oper ati on
F o r c o n t i n u o u s b e n c h operation th e L C 1 0 2 i s p o w e r e d
from a n y s t a n d a r d 1 0 5 - 1 3 0 V ( 5 0 - 6 0 H z ) A C line u s i n g
the PA 25 1 P ow e r Ada pter. W h e n 22 0V A C o p e ra t io n
i s re qu ir ed , p o w er t h e L C 1 0 2 w i t h th e o pt io n a l PA 252
2 2 0 V A C P ow er Ada pter. Co nne ct th e P o w e r Adap ter
t o t h e P O W E R I N J A C K locat ed o n the r ea r o f th e
LC 1 0 2 , a s s h o w n i n F ig ur e 6 .
- - - - - - - - - - - - - - - - - - - -
W A R N I N G
- - - - - - - - - - - - - - - - - - - -
U s i n g a n A C a d a p t e r o t h e r t h a n t h e P A 2 5 1
o r P A 2 5 2 m a y c a u s e d a m a g e t o t h e LC 102,
m a y c a u s e t h e o p t i o n a l b a t t e r y ( i f i n s t a l l e d )
t o i m p r o p e r l y c h a r g e , o r m a y c a u s e m e a s u r e
m e n t e r r o r s o n l o w v a l u e o f c o m p o n e n t s . O n l y
u s e a S e n c o r e P A 2 5 1 o r P A 2 5 2 P o w e r A d a p
t e r f o r A C o p e r a t i o n .
T o o p e r a t e t h e LC 1 02 f r o m a n AC l i n e :
1 . Co nne ct the A C l in e c o r d o f t h e pow er ad ap ter t o a n
adequate s o u r c e o f A C p o w e r .
2 . Co nne ct t h e po w er a d a p t er le a d t o t h e P O W E R
I N P U T J A C K o n the b a c k o f t h e L C 1 0 2 , a s s h o w n i n
f i g u r e 6 .
T h e pow er a d a p t er s e r ve s a s a b a t t e r y charger t o re
ch arg e t h e (o ptional) BY234 b a t t e r y when i t i s installed
in the u n i t . The BY2 34 m ay b e l e f t in st al led in t h e
LC 1 02 a t a ll t im es without d a n g e r o f o v e r ch a rg in g .
Con nec tin g th e P ow er A d a p t e r by pa ss es the auto -o ff
c irc ui tr y in t h e L C 1 0 2 a n d al lo w s c o n t i n u o u s , uninter
ru pte d o p e r a t io n .
F i g . 6 — C o n n e c t t h e P A 2 5 1 t o t h e 1 2 V D C i n p u t f o r
A C b e n c h o p e r a t i o n a n d t o r e c h a r g e t h e o p t i o n a l b a t
t e r y .
3 . Push the P O W E R s w it ch o n t h e LC1 02 u p t o t h e O N
& B A T T T E S T p o s it io n a n d r e le a s e . T h e W A R N I N G
L E D w i l l m om en ta ri ly bli n k t o in di ca te i t is op era ti ona l
a n d the d i s p la y s w i l l re s e t a n d r e a d z e r o s .
4 . T h e L C 1 0 2 i s im mediately r e a d y f o r u s e . I f p r e c i s e
me asuremen ts a re r e q u ir ed , allow th e unit to o p e r a t e
f o r 1 0 m in u te s t o re a c h s p e c i fi e d a c c u r a c y .
--- --- --- --- --- --- --- -- W A R N I N G
- - - - - - - - - - - - - - - - - - - - - -
T h e C A U T I O N I N D I C A T O R L E D m u s t
m o m e n t a r i l y f l a s h w h e n t h e P O W E R s w i t c h
i s f i r s t t u r n e d o n a n d m o v e d f r o m t h e O F F t o
t h e O N & B A T T T E S T p o s i t i o n . F a i l u r e o f t h e
l i g h t t o f l a s h i n d i c a t e s a p r o b l e m w i t h t h e
L E D o r s a f e t y c i r c u i t s . DO N O T o p e r a t e t h e
L C 1 0 2 i n t h i s c o n d i t i o n , s i n c e i t e x p o s e s t h e
o p e r a t o r t o d a n g e r o u s v o l t a g e s w i t h o u t
a d e q u a t e w a r n i n g .
B a t t e r y O p e r a ti o n
T h e LC 102 i s d es ig n ed t o o p e r a t e a s a c om pl ete ly po rt
able u n it w i t h t h e o pt ion al BY 23 4 re c h ar g e ab le ba ttery
in s ta ll ed . The ope rat ion o f t h e L C 1 0 2 wh en i t i s battery
power ed i s t h e s a m e a s w h e n it i s A C p o w er ed . T h e
l e n g th o f tim e the A U T O - Z w i l l o p e r a t e bef or e th e ba t
t e r y n eed s rec h arg in g d e p e n d s o n s e ve r a l fa c t o rs : 1 . t h e
tes t fu n ct ion s u s e d ; 2 . te m p e r a t u r e ; 3 . b a t t e r y a g e .
L e a k a g e t e s t s p l a c e the hea vie st cu rr en t dra in o n t h e
b a tt e r y — g re a t e r c u r r e n t s re su lt in sho rter b at te ry life
b e tw e e n cha rging . V a lu e t e s t s p l a c e the lea st d r ai n o n
the batte ry. F or ty pi ca l o p e r a t i o n , t h e LC 102 p r o v i d e s
a p p ro xi m a te ly 7 h o u r s o f c o m p l e t e capacitor testin g
(v al ue , ES R, D / A a n d lea kag e), a n d 8 h o u r s o f c o m p le t e
1 2
in d u c t o r te s tin g (v alu e a n d r in g in g ). Th ese t im e s , o f
c o u r s e , w i l l v a r y w it h te m pe ra tu re a n d b a tt e r y a g e .
A s t h e temp eratu re o f the b a tt e r y d e c r e a s e s , i t s c a p a c
i t y a l s o d e c r e a s e s . The o p e r at in g tim e bet wee n rech arg
in gs d e c r e a s e s a t the r a te o f ap pro xim ate ly 1 h o u r fo r
ev er y 2 0 de g re e s F d r o p in temperature below 7 0 ° F .
The BY 23 4 ba tte ry i s a s e a l e d , l ea d- a ci d type w h i c h
re qu ir es n o m ai nt ena nc e othe r th a n rec harging. A s a
battery a g e s , i t w i l l re q ui re m or e frequ ent r e ch a r gi n gs .
I f u s e d p r op e rl y, t h e B Y2 3 4 w i l l provide seve ra l ye ars
o f s e r v ic e be fo re need ing re pl ace me nt .
Y ou c a n maxim ize the li f e t i m e o f t h e B Y2 3 4 se veral
w a y s : 1 . N e v e r a ll o w the b a tt e r y t o deeply d i s c h a r g e .
The L C 1 0 2 h a s a b uilt- in b a tt e r y tes t a n d lo w batte ry
s h u t o f f cir cu itr y. C h e c k the r e m a in in g ch arg e p er io d
ic a ll y a n d recharge the b a tt e r y be fo re t h e low batte ry
ci r c u it s h u t s the unit o f f . 2 . K e e p the b att er y f u ll y
c h a r g e d . T he BY2 34 w i l l n o t b e h ar m ed i f i t i s l e f t
in sta lled in th e LC 1 02 du ri ng A C o p e ra t io n . In s t e a d ,
t h i s w i ll k e e p the b a tt e r y fresh a n d ready for u s e a n d
w i l l act u al ly leng the n it s u se fu l li f e t im e . 3 . R ec ha rg e
t he bat ter y bef ore us in g i t i f i t h a s s a t idle for m o r e
t h a n a c o u p l e o f w ee k s . Le ad-acid ba tteries norm all y
l o o s e s o m e o f t h e i r ch arg e i f th e y si t idle for a p e r i o d
o f t i m e .
F i g . 7 - T h e o p t i o n a l B Y 2 3 4 i s i n s t a l l e d i n t h e L C 1 0 2
f o r p o r t a b l e o p e r a t i o n .
- - - - - - - - - - - - - - - - - - -
W A R N I N G --- --- --- --- --- --- ---
O b s e r v e t h e s e p r e c a u t i o n s w h e n u s i n g l e a d -
a c i d b a t t e r i e s :
1 . D o n o t d i s p o s e o f o l d l e a d - a c i d b a t t e r i e s i n
fi r e . Th is may c a u s e them to b u r s t , sp ra y in g a c i d
t h r o u g h the a i r .
2. D o n o t s h o r t t h e “ + ” a n d t e r m i n a l s
t o g e t h e r . Thi s w i l l b u m o p e n int ern al c o n n e c
t i o n s , ma king t h e b a tt e r y u s e l e s s .
3 . D o n o t c h a r g e 1 2 v o l t l e a d - a c i d b a t t e r i e s
w i t h a v o l t a g e g r e a t e r t h a n 13 .8 V D C . H i g h
ch arg in g v o lt a g e m ay dam age the bat te ry o r c a u s e
it t o e x p l o d e .
4 . D o n o t d r o p t h e b a t t e r y . W h i l e le a d - a c i d ba t
ter ie s a re w e l l s e a l e d , th e y ma y br ea k i f d r o p p e d
o r s u b j e c t e d t o a stron g me cha nic al s h o c k . I f t h e
bat ter y d o e s break a n d th e j e l l e d e le ct ro ly te le a k s
o u t , ne utralize t h e a c id w i t h b a k i n g s o d a a n d
w a t e r .
5 . D o n o t c h a r g e t h e b a t t e r y b e l o w 0 ° C o r
a b o v e + 4 0 ° C . ( 3 2 ° t o 1 0 4 ° F).
T o i n s t a l l t h e o p t i o n a l B Y 2 3 4 B a t t e r y :
1 . O p en t h e B A T T E R Y C O M P A R T M E N T C O V E R lo
ca te d o n t h e r e a r o f t h e unit b y un s cr ew in g t h e
t h u m b s c r e w . Fo ld t h e cover d o w n o n it s h in g e .
2 . Sli d e the battery e n d th at d o e s n o t have the c o n n e c t o r
a ttached i n t o - t h e b a tt e r y c o m p a r tm e n t. (T h e w ir e
s h o u l d b e fa cing o u t a f t e r t h e b a t t e r y i s i n p l a c e . )
3 . C o n ne c t t h e plug fr o m th e b a tt e r y t o t h e jac k i n s id e
th e b a tt e r y c o m p a r t m e n t .
4 . C lo se t h e b att er y co m pa r tm en t cover a n d ti g ht e n t h e
th u m bs cr ew to h o ld the d o o r a n d b a tt e r y in p l a c e .
N o t e : R e c h a r g e th e B Y 2 3 4 o v e r n i g h t b e f or e u s i n g i t fo r
th e f i r s t t i m e .
B a t t e r y T es t
T h e L C X 0 2 h a s a bu ilt-in b att er y test feature w h ic h
s h o w s the r em ai n in g b a tt e r y c h a r g e . A r ea di n g o f 1 0 0 %
in dicates tha t t h e b a tt e r y is fu l ly c h a rg e d . A s t h e bat
t e r y cha rge i s u s e d u p , t h e rea ding w i l l d r o p . The lo w
b a t t e r y c i r c u i t s w i l l tu rn t h e unit o f f sh ortly after t h e
b a tt e r y test rea ding d r o p s to 0 % , a n d be fo re th e b a t t e r y ,
l e v e l d r o p s t o o lo w for r el ia b le o p e ra t io n . T he L C 1 0 2
n e v e r f u l l y d i s c h a r g e s the b att er y w hic h h el ps ex t e n d
the l i f e o f t h e BY 2 3 4 .
1 3
To p e r f o r m t h e b a t t e r y t e s t :
A u t o O f f
1 . W it h a B Y2 3 4 insta ll ed, mo ve t h e P O W E R s w it c h
t o t h e O N & B A T T T E S T p o s i t i o n .
2 . R ea d t h e percentage o f r em ai n in g b a tt e r y ch a rg e i n
th e LC D D I S P L A Y .
3 . I f t h e rea ding s h o w s 0 % , the u n it ma y not o p e r a t e ,
o r o p er a t e f o r ju s t a sh ort tim e s i n c e the low batter y
ci r cu it t u r n s the LC 1 02 o f f a t t h is b a tt e r y lev el.
C O M P O N E N T T y p e
i . v T i C S
C A P
c
s
J
^ &
- X N i S i . f - ·
m
A | , L O T K F #
C A P ?
■ ' O K F S 1
f i Y B a C K s -
H
W I
Έ Γ
*
r o n M E f t C
) ! ,
I
" η
i l U M i f i l J M
m
C O t ^ s
— 1 1
P O W E R r g
T o c o n s e r v e ba tte ry ch a rg e, th e LC1 02 c o n t a i n s a n a u t o
o f f ci r c u it . Th is cir cuit k ee p s t h e batt erie s from ru n n in g
d o w n i f y o u s h o u l d f o r g e t t o tu r n the u n it o f f , b u t k e e p s
the A U T O - Z p o w er ed u p du ri ng u s e . The a u t o o f f ci r cu it
w i l l s h u t t h e L C 1 0 2 o f f a f t e r appro xima tely 1 5 m in u t e s
i f n o n e o f th e fron t panel b u t t o n s hav e b e e n p u s h e d .
Pu shing any C O M P O N E N T T Y P E b u t t o n , C O M P O
N E N T P A R A M E T E R S b u t t o n , T E S T b u t t o n , o r
m om en ta ri ly m ov in g the P O W E R b u t t o n t o t h e O N &
B A T T T E S T p o si t io n w i l l re set t h e a u t o o f f c i r c u i t s .
T h e a u t o o f f c ir c u it s a re b y p a ss ed w he n the L C 1 0 2 i s
o pe ra te d fr o m the A C P o w e r Adapter.
T o o p e r a t e t h e LC 10 2 u s i n g t h e o p t i o n a l BY 23 4
b a t t e r y :
1 . In s ta ll t h e BY23 4 b a tt e r y in to t h e L C 1 0 2 ba ttery
c o m p a r t m e n t .
N O T E : I f y o u a re us in g the B Y 2 3 4 for th e firs t t i m e ,
b e s u r e to ch a rg e th e b a tt e r y bef ore u s i n g t h e L C 1 0 2 .
Though fa ctory t e s t e d , th e BY2 3 4 ma y n o t b e c h a r g e d
w he n y o u rece ive i t .
2 . Pu sh t h e P O W E R sw it ch to t h e O N & B A T T T E S T
po sition a n d r e le a se . T he W A R N I N G L E D w i l l m o m e n
t a r i l y b lin k t o in di ca te i t i s operational a n d t h e d is p l a y s
w i l l res et a n d re ad z e r o s .
F i g . 8 — P u s h t h e P o w e r s w i t c h t o “ O n & B a t t T e s t
t o r e a d t h e r e m a i n i n g b a t t e r y c h a r g e .
R e c h a r g i n g t h e B a t t e r y
T h e BY2 34 b a tt e r y s h o u ld n e v e r b e al lo w e d t o remain
d is c h a rg ed fo r mo re tha n a f e w h o u r s , s i n c e th is w i l l
s h o r t e n i t s lif e t im e . T h e b a tt e r y m u s t b e re charged
w h en eve r t h e b a tt e r y t e s t re ad s 0 % . H o w ev e r , y o u
s h o u l d rechar ge the b a tt e r y m o r e o ft en than t h is t o
le ngthen t h e b a tt e r y ’ s l i f e t i m e a n d ke e p the L C 1 0 2
rea dy fo r portable u s e at a l l t i m e s .
T o re ch a rg e t h e b at te ry, s im p l y le a v e i t ins ta lle d i n s id e
t h e L C 1 0 2 wh il e the un it is c o n n e c t e d t o th e A C P ow e r
A d a p te r a n d the P o w e r A d a p t e r i s c o n n e c t e d t o a s o u r c e
o f A C p o w e r . T he c h a r g in g ti m e required to ret urn t h e
b att er y t o 1 0 0 % d e p e n d s o n h ow fa r i t i s d is c h a r g e d .
T h e b at te ry w i l l t r i c k l e charge w h il e the L C 1 0 2 i s i n
u s e a n d p o w e r e d from the A C a d a p t e r , but i t w i l l r e
ch a rg e t h e q u ic ke st i f th e P O W E R sw it ch i s in th e
“ O F F ” p o s it i o n . N o r m a l l y , a b att er y w i l l co mpletely
r ec har ge i n a b o u t 8 h o u r s w it h the P O W E R s w it c h
“ O F F ” .
4 . The LC 1 02 i s im m e d i a te ly ready fo r u s e . I f p r e c i s e
m e as u r em e n ts a re requ ire d, al lo w t h e u n it t o o p e r a t e
f o r 1 0 m in u t e s t o r e a c h sp ec ifi ed a c c u r a c y .
- - - - - - - - - - - - - - - - - - - W A R N I N G
- - - - - - - - - - - - - - - - - - -
T h e C A U T I O N I N D I C A T O R L E D m u s t
m o m e n t a r i l y f l a s h w h e n t h e P O W E R s w i t c h
i s m o v e d f r o m t h e O F F t o t h e O N & BA T T
T E S T p o s i t i o n . F a i l u r e o f t h e l i g h t t o f l a s h
i n d i c a t e s a p r o b l e m w i t h t h e L E D o r s a f e t y
c i r c u i t s . D O N OT o p e r a t e t h e LC102 i n t h i s
c o n d i t i o n , s i n c e i t e x p o s e s t h e o p e r a t o r to
d a n g e r o u s v o l t a g e s w i t h o u t a d e q u a t e w a r n
i n g .
S T O P T E S T I N G I n d i c a ti o n
T h e L C 1 02 i s d e s ig n e d t o prov ide yo u w it h t h e s a fe s t
p o s s i b le m e t h o d o f te s ti n g ca p a c i t o rs a n d i n d u c t o r s . Th e
S T O P T E S T I N G i n d ic a t or s o f th e LC 1 02 a r e a flashing
L E D in dicator o n the fro nt pan el a n d a n in ternal a u d i
ble a la rm . Th is imp ortant feat ur e alerts y o u w h e n a
s h o c k pote nt ial ex is t s d u e to e i t h e r th e t es t l e a d f u s e
h a v i n g b lo w n , p re v e n ti n g th e ca p a ci t o r fr om dis c ha rg
ing, o r th a t y o u have c o n n e c t e d t o a ch a rg e d ci r cu it
( 1 0 V o r m o r e ) .
Y o u s h o u l d , a t t h i s t ime, f a m i l i a r i z e y o u r s e l f w it h t h is
fe at ur e b y re m ov in g t h e te st le a d f u s e . R e fe r t o t h e
m aintena nce s e c t i o n , l o ca te d at the b a c k o f th is m a n u a l
for info rmatio n o n r epl aci ng the test le a d f u s e ( pa ge 5 9 ) .
1 4
I f t h e S T O P T E S T I N G i n d i c a t o r s a c t i v a t e :
1 . S t o p a ll t e s t i n g w i t h the L C 1 0 2 .
N O T E : D o n o t m o u n t th e T E S T L E A D M O U N T I N G
C L I P t o th e side s o f the A U T O - Z . a s t h i s w i l l i n t e r f e r e
w i t h th e h a n d l e m o v e m e n t .
2 . C a r e f u ll y disch arge t h e ca p a c it o r yo u ar e te s t i n g by
co nn ec ti n g a 1 0 k o hm 1 w a t t re si st or a c r o s s the t e r m i
n a l s .
3 . R ep lac e th e test le ad f u s e i f b lo w n , o r rem ove th e
v o lt a g e f ro m the poin t the test l e a d s a re c o n n e c t e d t o .
4 . R e s u m e te sting.
Test Lea ds
The t e s t lea ds s u p p lie d w it h t h e L C 1 0 2 ( 3 9 G 2 1 9 ) are
m a d e o f sp e c ia l, low capacity co a xia l c a b l e . U s in g an y
other c a b l e w i l l a d d e x t r a c a pa ci ty t o the m e t e r c ir c u it s ,
w hi c h ma y n ot b e w i t h i n the range o f the le ad z e r oi ng
c i r c u i t s . A t t e m p t i n g t o z e r o t h e l e a d s w i t h an o th e r,
hi ghe r ca p a ci t a n c e cable c o n n e c t e d w i l l c a u s e the L C D
D I S P L A Y t o s h o w t h e m e s s a g e er ro r. T h i s indica tes
th at t h e v a lu e i s be y on d the ze roi ng li m it s o f the L C 1 0 2 .
I f the te st le a ds e v e r requ ire rep la ce m e nt , new l e a d s
(p ar t # 39 G21 9) may be o rd er ed d ir e c tl y fr om t h e : S E N
CO RE S E R V I C E D E P A R T M E N T a t 3 2 0 0 S en c or e
D r iv e , S iou x F alls, SD 5 7 1 0 7 .
Tes t Lead Mou nting C l i p
T e s t L ead Ada pte r
S o m e l a r g e r va lue e le c t r o ly t ic c a p a c it o r s h a v e s c r e w
terminals ra th e r than th e conventional wire l e a d s o r
s o l d e r terminals. T o c o n n ec t the L C 1 0 2 t o t h e s e
c a p a c i t o r s yo u w i l l n ee d t o u s e the s u p p l i e d 3 9 G 1 4 4
T E S T L E A D A D A P T E R . The T E S T L E A D A D A P T E R
c o n v e rt s t h e E - Z Hook ® c li p s o f the t e s t l e a d s t o a l
li g a to r c li p s w h ic h w i l l cl am p o n t o t h e larg e s c r e w t e r
m i n a ls . A mou ntin g clip o n the b a c k o f t h e L C 1 0 2 s t o r e s
t h e T E S T L E A D A D A P T E R wh en i t i s n o t in u s e .
A T E S T L E A D M O U N T I N G C L I P (6 4 G 3 7 ) i s su pp lie d
w ith t h e L C 1 02 . T h is clip is u s e f u l t o h o ld the test leads
o u t o f the w a y whe n n o t in u s e , b u t k e e p s them r ea d y
a n d w i th i n re ac h a t a n y ti me . The mounting clip m ay
b e attac he d o n t h e top o f th e L C 1 0 2 , o n the s id e o f th e
h a n d l e , or w h e r e v e r i t i s m o s t co nv en ie nt . T o mo u nt
th e c l ip , p e el o f f th e backing, p l a c e t h e cl ip in the des ired
lo cat io n a n d p r e s s i t f i r m l y in p l a c e .
F i g . 10 - T h e 3 9 G 1 4 4 T e s t L e a d A d a p t e r a l l o w s l a r g e ,
s c r e w - t e r m i n a l c a p a c i t o r s t o b e c o n n e c t e d t o t h e
L C 1 0 2 .
To u s e t h e T E S T L E A D A D A P T E R :
1 . C o n n e c t the r e d E- Z H o o k ® o f th e L C 1 0 2 t es t l e a d
t o t h e red T E S T L E A D A D A P T E R t er m in a l.
2 . C o n n e c t the b la c k E - Z H o o k ® t o the b la c k a d a p t e r
terminal.
3 . C o n ne c t the r e d T E S T L E A D A D A P T E R le a d t o t h e
“ 4 - ” capa cito r te rm in al, a n d the bla ck le a d t o t h e “ — ”
terminal.
4 . T e st the ca p a c it o r in th e u s u a l m a n n e r .
F i g . 9 — T h e t e s t l e a d m o u n t i n g c l i p h o l d s t h e t e s t
l e a d s o u t o f t h e w a y , y e t r e a d y f o r u s e a t a n y t i m e .
T es t Lead Fuse
A 1 a m p , S l o Bio ( 3 A G ) f u s e i s lo c a te d in t h e T E S T
L E A D inp ut j a c k o n th e fro nt o f the A U T O -Z . This f u s e
p r o t e c t s t h e unit fr om ac cidental ext er nal v olt a ge o r
cu rr e n t o v e r lo a d s .
1 5
L e a d Z e r o i n g
T h e test l e a d s c o n n e c t e d t o the L C 1 0 2 ha ve a ce r ta in
a m o u nt o f c a p a c i t a n c e , r e si st a n ce , a n d i n d u c t a n c e
which m u s t b e b a la n c e d o u t be fo re mea su ring s m a ll
v a l u e c a p a c it o r s a n d in d u c t o r s o r bef ore me asuring
cap acit or E S R . The test lead im p ed en ce s h o u ld b e
zeroe d w he n t h e L C 1 0 2 i s f i r s t tu rne d o n . I t w i l l re ma in
zeroed a s long a s t h e unit i s pow ere d o n . I f the L C 1 0 2
is b a tt e r y o p e ra t e d a n d is turn ed o f f b y th e A u t o O f f
cir cu its , h ow eve r, the le a d s m u s t b e re zer oe d.
T o z e r o t h e t e s t l e a d s :
1 . T ur n the L C 1 0 2 o n by m o m e n ta r i ly push ing th e
P O W E R sw it ch t o t h e O N & B A T T T E S T p o s i t io n .
2 . C o n ne c t t h e test l e a d s t o t h e T E S T L E A D I N P U T
ja c k o n t h e front o f the A U T O - Z .
3 . Pl ac e th e o p e n test le a d s (w it h no thi ng c o n n e c t e d )
o n th e wo rk a r e a w ith t h e red a n d blac k tes t c lip s n e x t
t o e a c h o t h e r , b u t n o t t o u c h i n g .
4 . M o v e t h e L E A D ZERO sw it ch t o t h e “ O P E N ” p o s i
t ion. Re lease w h e n a “ — ” begins t o move through t h e
d isp lay .
5 . C o n ne c t t h e r e d a n d blac k tes t c lip s together.
6 . M ov e th e L E A D ZERO sw it ch to t h e “ S H O R T ” p o s
ition, a n d r el e as e w he n a “ — ” beg in s t o move thr ou gh
the d is p la y .
F i g . 1 1 — T h e i m p e d e n c e o f t h e t e s t l e a d s i s b a l a n c e d
o u t w i t h t h e L E A D Z E R O b u t t o n .
E n te r in g C om po n en t D a ta
F i g . 1 2 — C o n t r o l s u s e d f o r e n t e r i n g c o m p o n e n t d a t a .
T o u s e t h e L C 1 0 2 t o perform t h e auto ma tic G O O D / B A D
tes ts expla ine d o n p a g e 2 6 , y o u m u s t e n te r data a b o u t
the c o m p o n e n t u n d e r tes t into t h e LC 1 02 A U T O - Z . ( A l l
c o m p o n e n t t e s t s c a n b e pe rf orm ed w i th o u t e nt e r in g
c o m p o n e n t d at a i f au to m a ti c G O O D / B A D test indica
t io n s a re n o t d e s i re d ). Th e c o m p o n e n t d a t a te ll s t h e
LC 1 02 the “ id e a l ” para m ete rs n e c e s s a r y to m ake t h e
G O O D / B A D det er min atio n.
1 6
The c o m p o n e n t d a t a w h ic h c a n b e ente re d i n to t h e
LC 1 0 2 i n c l u d e s : c o m p o n e n t typ e, va lue, tole rance a n d
rate d w o r k i n g v ol ta ge fo r c a p a c i t o r s , a n d c o m p o n e n t
typ e, valu e, a n d t o le ra n c e for i n d u c t o r s a n d c o i l s . Th es e
pa rameters a r e us u a ll y mar ked o n the c o m p o n e n t , o r
c a n b e de te rm in ed b y looking t h e c o m p o n e n t u p i n a
p a rt s l is t o r re pl a cem en t g u id e . T h e A P P L I C A T I O N S
s e c t io n o f t h is m a n u a l c o n t a in s i nf o rm at io n o n h o w t o
id e n t i f y ca p a c it o r a n d in d u c t o r t y p e s .
N O T E : A l l c o m p o n e n t d a t a c a n b e c l e a r e d b y p u s h i n g
t he “ C L R ” b u t t o n o n t he g r a y C O M P O N E N T
P A R A M E T E R S k e y p a d t w i c e .
T o E n t e r C o m p o n e n t T y p e :
N O T E : T h e C O M P O N E N T T Y P E s w i t c h e s t e l l th e
L C 1 0 2 w h a t k i n d o f c o m p o n e n t i s b e i n g t e s t e d .
1 . Pre ss the d e s ir e d C O M P O N E N T T Y P E b u t t o n . U s e
the be ige c o l o r c o d e d b u t t o n s when checking c a p a c i t o r s
a n d t h e bl u e b u t t o n s w h e n ch eck ing i n d u c t o r s .
2 . A re d L E D i n di ca to r i n t h e c o m e r o f the C O M P O
N E N T T Y P E b u t t o n lights w he n th a t button i s s e l e c t e d .
T o E n t e r C o m p o n e n t V a l u e :
1 . E n te r a n u m b e r , u p t o 3 s ig n i f ic a n t digi ts, equ a l t o
the v al u e o f t h e c a p a c i t o r o r in d u c t o r . (E xa m p le : “ 1 2 3 ” .
o r “ 1 2 3 0 0 0 . ” ) . E a c h d i g i t w i l l ap pe a r in the disp lay a s
a k e y is p u s h e d .
a . T h e L C 1 0 2 r o u n d s t h e e n t r y d o w n i f y o u en ter a
n u m b e r h a v i n g m o r e t h a n 3 sig nificant d i g i t s ( E x a m
p l e : “ 1 2 3 9 ” b e c o m e s “ 1 2 3 0 ” ) .
b . T h e L C 1 0 2 accepts n u m b e r s u p t o 6 p l a c e s b e f o r e
the d e c i m a l . ( E x a m p l e : “ 1 0 0 0 0 0 ” ) . E n t r i e s larger
t h a n t h i s r e s e t t o 0 .
c . T h e L C 1 0 2 acc ep ts n u m b e r s u p t o 5 p l a c e s a f t e r
the d e c i m a l f or n u m b e r s l e s s t h a n 1 . ( E x a m p l e :
“ 0 . 0 0 0 0 1 ” ) . E n t r i e s s m a l l e r t h a n t h i s r e s u l t in “ E r r o r
2 ”.
d . A l l u n n e c e s s a r y p l a c e h o l d e r d i g i t s a r e d r o p p e d .
( E x a m p l e : “. 0 6 7 0 0 ” b e c o m e s “ . 0 6 7 ” ) .
e . P u s h th e “ C L R ” b u t t o n o n c e t o cl ear the v a l u e entry
a n d s t a r t o v e r .
T o E n t e r C o m p o n e n t T o l e r a n c e :
1 . E nt e r a 1 , o r 2 o r 3 d i g i t n u m b e r u p t o 1 0 0 w h i c h
e q u a ls to th e “ + ” va lue t ole ran ce o f t h e capa cit or o r
in d u c t o r . D o n o t u s e a d e c i m a l .
2 . P r e s s th e w h i t e “ + % ” C O M P O N E N T P A R A M E T
ERS b u t t o n .
3 . E nt e r a 1 o r 2 d i g i t n u m b e r u p t o 9 9 wh ich e q u a ls
to th e “ - ” v a lu e t ole ran ce o f t h e c a p a c it o r o r in d u c t o r .
D o n o t u s e a de c i m a l.
4 . P r e s s th e w h i te
ER S b u t t o n .
5 . To c h ec k the en te red p er ce n t ag e, p r e s s the whit e
“ + % ” o r “ — % ” b u t t o n a t a n y t im e .
S E N 1 C O R E L C 1 0 2 A U T O - Z C A P A C i T C m - I M Q U C T O R A N A L Y Z E R
0 u 0 u ‘
■ % ” C O M P O N E N T P A R A M E T -
C O M P Q N F f * ? P A R A ( * F t £ i
□ □ □ □ 0
0 0 0 0
0 0 0 0
S E N C O R E
L C 1 Q 2 A U T O * Z
π η η n
u . u . u . u .
C A P A C I T O R . I X O U C T O f t A N A L Y Z E R
. C O M P O N E N T P A B A W f T f i f l S
2 . E n t e r the de s ir e d c a p a c i t o r v al u e m u l t i p l i e r o r i n d u c
tor v al u e multiplier.
a . T h e c ap a c i t o r v a l u e r a n g e i s 1 p F t o 1 9 . 9 F . T h e
i n d u c t o r v a l u e r a n g e i s . 1 u H t o 1 9 . 9 H . E n t e r i n g
v a l u e s b e y o n d t h i s r a n g e c a u s e s a n “ E r r o r 2 ” .
b . T h e L C 1 0 2 acc ept s n o n - c o n v e n t i o n a l v a l u e n o t a
t i o n s , s u c h a s “ . 0 0 0 0 1 F ” , “ . 0 0 0 0 2 u F ” o r “ 1 0 0 0 0 0 p F ”
3 . A f t e r e nt er in g t h e mul tip li er, the di s pl a y mo mentar
i l y s h o w s t h e en t er ed valu e a n d m u l t i p l i e r be fo re r e
tu r n in g t o a “ 0 0 0 0 ” r e ad in g . The LC1 02 i s n ow re ad y
for the next param eter en t ry .
4 . T o c h e c k t h e en t er ed ca pa ci to r v a lu e a t any t im e,
p u s h an y be ige c o l o r e d ca p a c it o r v a l u e m u l t i p l i e r b u t
t o n . T o c h e c k t h e e n t e r e d in du ct or v a l u e p u s h any b l u e
co l o r e d i n d u c t o r valu e m u l ti p l ie r b u t t o n .
5 . T o ch a ng e φ ΐ en t er ed v alue pa ra mete r, r ep e at s t e p s
1 & 2 .
□ 0 0 0 0 0 0
0 0 0 0 0
S E N C C 3 R E L C 1 0 2 A U T O - Z C A P A C I T O R · I N D U C T O H A N A L Y Z E R
u u
0 0 0 0
0 0 0 0
0 0 0 0
d
F i g . 13 — T o e n t e r c o m p o n e n t d a t a s e l e c t t h e C O M P O
N E N T T Y P E s w i t c h w h i c h c o r r e s p o n d s t o t h e c o m p o
n e n t b e i n g t e s t e d (a ) . N e x t , e n t e r t h e c o m p o n e n t v a l u e
( b ) a n d v a l u e t o l e r a n c e ( c ) . F i n a l l y , i f t e s t i n g a
c a p a c i t o r , e n t e r t h e r a t e d w o r k i n g v o l t a g e ( d ) .
17
T o E n t e r L e a k a g e V o l t a g e :
1 . E nt e r t h e d e s ir e d v o l t a g e fr o m 1 t o 9 9 9 . 9 using t h e
g ra y ke y s o n t h e N U M E R I C I N P U T k e y p a d . A d e c i m a l ,
fo llowe d b y o n e d i g i t m ay b e en te red , b u t i s n o t n e c e s
s a r y .
2 . P u s h t h e wh ite “ V ” k e y t o ent er t h e vol tage. The
v ol ta ge w i l l a p p e a r in the app lied v ol ta ge L C D d is p l a y .
Fo r valu es g re a te r th a n 2 5 v o l t s th e re d W A R N I N G
i n di ca to r L E D w i l l blin k.
N O T E : T h e vo lta ge i s a p p l i e d t o th e c o m p o n e n t T e s t
L e a d s w h e n th e C A P A C I T O R L E A K A G E t e s t b u t t o n i s
p u s h e d .
3 . To ent er a d if fe r e n t v o l t a g e , repe at s t e p s 1 & 2 .
E r r o r C o d e s
E r r o r 3 - E n t e r e d V a l u e B e y o n d R a n g e O f T e s t
T h e c o m p o n e n t pa rameter ente re d v i a t h e k e y p a d c
I E E E i s b e y o n d t h e lim its o f th e a u to m a ti c G O O D / B A
t e s t . The c o m p o n e n t may s t i ll be a b le t o b e t e s t e d , b i
n o t for a G O O D / B A D in di ca ti on .
Possible c a u s e s :
1 . P e r f o r m in g a n ES R t e s t w it h a c a p a c i t o r v a l u e o f less t h a n 1 u
e n t e r e d .
2 . P e r f o r m in g a D / A t e s t w i t h a c a p a c i t o r v a l u e of les s t h a n . 0 1 u
e n t e r e d .
3 . P e r f o r m i n g a IND U CTOR RI N G E R t e s t w i t h a in d uc to r value
le ss t h a n 1 0 u H en t er ed .
E r r o r 4 - V a l u e B e y o n d Z e r o i n g L i m i t - The a m o u r
o f i n d u c t a n c e o r c a p a c i t a n c e a t the T E S T L E A D I N P U
i s b e y o n d t h e range o f t h e z e r o i n g c i r c u i t s . A n o p e
( g r e a t e r tha n 2 0 k o h m s ) o r shor te d ( le ss t ha n 1 o h i r
test lead w i l l c a u s e t h e " O P E N ” or “ S H O R T ” a n n u r
ciator t o c o m e o n , rathe r t ha n p r o d u c e a n “ Erro r 4 ” .
Several e rro r co n d it i o n s m a y o c c u r w h il e u s in g t h e
L C 1 0 2 w h ic h c a u s e a n e r r o r me ss a ge t o a p p e a r in t h e
LCD d is p la y . T h es e are us ua lly c a u s e d by sm al l e r ro rs
i n t h e o pe ra ti o n o f the LC1 02, al though s e ve r e ly d ef ec
tiv e c o m p o n e n t s ma y a l s o c a u s e certain e rro r c o n d i
t i o n s . The error c o n d i ti o n s are exp lained b e l o w .
E r r o r I - C o m p o n e n t T y p e S e l e c t i o n E r r o r - Th is
erro r o c c u r s w h e n a co mp on ent test i s a t te m pt ed , a n d
either a n in c o r re c t C O M P O N E N T T Y P E sw it ch i s
s e l e c t e d f o r t h e t e s t , or n o C O M P O N E N T T Y P E sw i t c h
i s s e l e c t e d w h e n re qu ir ed.
Po s s ib l e c a u s e s :
1 . P e r fo r m in g a ca pa c it o r t e s t w i t h a n in d u c t o r CO MP O NE N T TYPE
swi tch sele cte d.
2 . P e r fo r m in g a n i nd u c to r t e s t w i t h a c a p a c it o r CO MP O NE N T TYPE
swi tch s ele cte d.
3 . P er fo r m in g t h e IND U CTOR R I N G E R t e s t w i t h o u t a n in du c to r
COM PONENT T Y PE sw it c h se lec te d.
4 . P e r fo r m in g an y com po n en t t e s t w i t h t h e “ S p a r e ” c a p ac ito r C O M
P ON E N T TYPE b u t t o n se lected.
E r r o r 2 - E n t e r e d V a l u e B e y o n d R a n g e o f U n i t -
T he c o m p o n e n t par am ete r e nt e r e d v i a the k e y pa d o r
I EEE i s b e y o n d t h e m ea su rin g r ang e o f t h e L C 1 0 2 .
P o ss ib le c a u s e s :
1 . E n t e r i n g a c a p ac it a n ce v a l u e g r e a t e r t h a n 1 9 . 9 F a r a d s , or le s s
th a n 1 pico fara d.
2 . E n t e r i n g an in d u c ta n c e v a l u e g r e a t e r t h a n 1 9 . 9 H en ry s, o r l e s s
th a n . 1 mi cr oh en ry s.
3 . E n t e r i n g a le a k a g e v o lt a g e g r e a t e r t h a n 99 9. 9 vol ts.
4 . E n t e r i n g a t o l e r a n c e p e r c e n t a g e g r e a t e r t h a n + 1 0 0 % , o r less t h a n
- 9 9 % .
5 . E n t e r i n g a t o l e r a n c e p e r c e n t a g e t h a t inc lu d es a deci m al.
Possible c a u s e s :
1 . T h e c a p ac it a n ce a t t h e TEST LE A D I n p u t is g r e a t e r t h a n 1 8 0 0 p F .
2 . T he in d u c t a n c e a t t h e TEST LE A D I n p u t i s g r e a t e r t h a h 1 8 u t
3 . T he r e s i s t a n c e a t t h e TE ST LE A D I n p u t is g r e a t e r t h a n 1 o h m
E r r o r 5 - N o V o l t a g e E n t e r e d - Th is err or o c c u r
when t h e C A P A C I T O R L E A K A G E b u t t o n i s p u s h e
a n d n o t e s t v o l ta g e h a s b e e n en te red .
E r r o r 6 - I n v a l i d C o m p u t e r I n t e r f a c e C o m m a n d
A n imp rope r c o m m a n d w a s sen t t o t h e L C 1 0 2 vi a t h
co m p u t e r in te rfa ce .
Poss ib le c a u s e s :
1 . S e n d i n g a com mand t h a t is no t r ec og niz ed b y t h e L C 1 0 2 .
2 . W ro n g co m ma nd syn ta x .
N O T E : R e f e r t o th e C O M P U T E R I N T E R F A C E s e c t i o ,
o f t h i s m a n u a l f o r i n f o r m a t i o n o n u s i n g t he A U T O - 4
w i t h c o m p u t e r c o n t r o l .
E r r o r 7 - C o m p o n e n t O u t O f T e s t R a n g e - Th e c o m
po ne nt u n d e r t e s t e x c e e d s t h e l i m it s o f th e t e s t w h i c i
w a s a t te m p t ed .
Possible c a u s e s :
1 . M e a s u r i n g ESR o f a ca pac ito r h a v i n g a v a l u e les s t h a n 1 u F .
2 . M e a s u r i n g c a p ac it a n ce v a l u e o n a n e x t r e m e l y le a k y capa cit or.
3 . A t t e m p t i n g a c a p ac ito r v a l u e t e s t w i t h 1 ohm t o 2 M eg oh m s <
r e s i s t a n c e conne cted across t e s t lea ds .
N O T E : E n t e r i n g a l e a k a g e vol tag e l e s s t h a n 1 v o l t w i l l
s e t t h e l e a k a g e s u p p l y t o 0 v o l t s .
1 8
C a p a c i t o r T e s t i n g
F i g . 1 4 — C o n t r o l s u s e d f o r c a p a c i t o r p a r a m e t e r t e s t s .
T h e L C 1 0 2 A U T O - Z c h e c k s ca p a c it o rs f o r v a l u e fr om
1 . 0 p F t o 2 0 Fa ra d s in 1 2 au to m at ic al ly se le cte d ra n g e s .
T he a u to m a t ic feat ure s o f the LC 1 02 A U T O - Z al lo w
you t o per form tw o le v e l s o f au to m a te d ca pa ci to r t e s t
in g : b a s i c par am ete r testing, a n d au to m a ti c G O O D /
B A D t es ti n g. F or b a s i c p ar am e te r tes tin g, yo u simply
c o n n e c t th e c o m p o n e n t to the test lea ds a n d p u s h the
test b u t t o n . T h e L C 1 0 2 m e a s u r e s t h e ca pa ci to r a n d
d i s p la y s th e test r e su lt . Y o u m u s t lo ok u p the value s
o f le ak age , E SR a n d die lec tr ic a b so rp t io n in a tab le t o
det er min e i f the ca pa ci to r is g o o d or b a d .
Fo r a u to m a t ic G O O D /B A D testing, yo u f i r s t ent er th e
pa ra m et er s o f the ca pa ci to r before p e rf or m in g the t e s t .
Then t h e LC 1 02 w i l l disp lay the te st re su lts alo ng wi th
a G O O D / B A D ind icat ion o f the c a p a c i t o r . O n l y se l e c t e d
pa ra m et er s n e e d to b e entered i nto the LC 1 0 2 , d e p e n d
in g u p o n wh ic h te st s yo u d es ir e a GO O D /B A D re ad ou t
f o r .
C a p a c i t a n c e M e a s u r e m e n t A c c u r a c y
T h e L C 1 0 2 m e a s u r e s t h e R C ch arg e ti m e a s t h e
c a p a c it o r i s ch a rg e d t hr ou g h a pr eci sio n re s is t o r . This
g iv e s t h e m o s t a c c u r a t e me asureme nt o f tr ue cap a cit y
available. Capacity va lu es m e as u r ed w i t h the A U T O - Z
may o r may n o t e xa c tly m a t c h rea dings o n oth er in str u
m e n t s w h ic h u s e a d i f fe r e n t measuring t e c h n i q u e .
B r id ge s, fo r e x a m p le , m e a s u r e ca pac itive r e a c t a n c e
using a n A C sig na l. Capa ci tiv e r ea cta nc e c h a n g e s w i th
freque ncy . Therefore, tw o bridge s ope ra tin g at dif fer ent
fr equencies w i l l g i v e d if fe r e nt ca pac it y re a d i n g s .
E l e c t r o l y t ic c a p a c it o r s ma y n o rm a ll y re ad u p t o 5 0 %
h i g h e r than t h ei r mar ked v a l u e w he n m e a s u r e d with
th e L C 1 0 2 . Th is i s b e c a u s e e l ect ro lyt ic s are m a r k ed
ac cording t o t h ei r va lue a s m e as u r ed o n a n AC -ty pe
im pe dan ce br id ge. T he v al u e o f a n e le c t ro ly ti c c h a n g e s
g r e a t l y w it h t h e me as ur em e nt fr eq ue nc y. Th is s h o u l d
c a u s e n o pr ob le m in d e te rm in in g i f a n el e ct ro ly tic
capacitor i s g o o d o r b a d , s i n c e m o s t elect rol yti c
c a pa ci to rs have u p t o 8 0 % v a l u e t ol e ra n c e. The
capa cit or s h o u l d re ad c l o s e t o its mar ked va lu e, o r
w i t h i n tole rance wh en c h e c k e d w it h the L C 1 0 2 . In a d
d ition, elect roly tic s m o s t com m on ly f a i l d u e t o lea ka ge ,
d ie le c tr ic a b s o r p t io n , o r E S R . W h e n a n e le ct ro ly ti c d o e s
ch ange va lu e, the valu e d r o p s f a r b el ow th e m a r k ed
val ue.
T h e LC1 02 A U T O - Z is des ig n ed t o m e as u r e c a p a c it o r s
ou t o f ci r c u it . I m p e d a n c e s f o u n d in the cir cuit w i l l u p s e t
th e A U T O - Z re a d in g s . Ca pa ci to rs c a n not b e c h e c k e d
in c ir c u it accur ate ly o r r e l i a b l y w it h a n y test m e t h o d .
Ca pacitors in ci r c u i t, h ow eve r, ma y b e te sted by u n s o l
d e r i n g o n e le a d fr om the ci r c u i t. When do ing t h i s , b e
su re t o remove po w er fr om the c ir cu it. I f t h e un it i s A C
po w er ed , u n p l u g t h e A C l in e c o r d . W h e n e v er p o s s i b l e ,
r e m o v e the ca p a c it o r comp le tel y from t h e circ uit t o te st
i t .
1 9
■ W A R N I N G
M e a s u r i n g C a p a c i t o r V a l u e
W h e n c h e c k i n g c a p a c i t o r s , r e m o v e t h e
c a p a c i t o r f r o m c i r c u i t i f p o s s i b l e . O t h e r w i s e ,
m a k e s u r e t h e p o w e r i s r e m o v e d f r o m t h e c i r
c u i t a n d t h e A C l i n e c o r d t o t h e u n i t c o n t a i n
i n g t h e c a p a c i t o r i s u n p l u g g e d . A l w a y s c o n
n e c t t h e c a p a c i t o r t o t h e LC 1 0 2 t e s t l e a d s b e
f o r e d e p r e s s i n g t h e C A P A C I T A N C E V A L U E
t e s t b u t t o n , t o p r e v e n t d i s c h a r g e i n t o t e s t c i r
c u i t r y .
M e a s u r i n g S m a l l C a p a c i t a n c e
V a l u e s I n N o i s y E n v i r o n m e n t s
T h e s e n s it iv e A U T O - Z measuring ci r cu it s m a y b e a f
fec ted b y la rge , o u t s id e sig nals ( s u c h a s th e A C fiel ds
ra d ia te d by s o m e lig ht s a n d power trans for m ers ) whe n
s m a ll capa cita nc e va lu es are b e in g m e a s u r e d . Spe cia l
cir cu it s in the LC 1 02 h e lp m in im iz e n o i s e pic k up a n d
s tablize the re ad ing s.
M eas urements o f sm all valu e ca p a c it o rs i n no is y e n v i
ro n m en ts m ay be fur th er im pro ve d by g ro u n d in g th e
L C 1 0 2 c a s e to e ar th g r o u n d . W h en po s s ib l e , p ow er th e
L C 1 0 2 w i t h the PA 25 1 A C P o w e r A d a p t e r c o n n e c t e d
t o a pr o p er ly gr o u n d ed A C o utlet. The P A 2 5 1 P ow e r
A d a p t e r ma in ta in s the th ird w i r e gr ou n d sh ie ld a n d
k e e p s the n oi se a w a y from t h e m e a s u ri n g c ir c u it s in si de
the A U T O - Z .
C a p ac it or Par am ete r T e st i n g
T o M e a s u r e C a p a c i t o r V a l u e :
1 . Ze ro the te st lea ds , a s e xpl ain ed o n p a g e 1 6 .
2 . C o n n e c t the capa cit or t o t h e t es t l e a d s . I f t
ca pa ci to r i s polar ize d, b e s u r e to c o n n e c t t h e b l a c k t <
cl ip t o t h e “ — ” te r m i n a l o f the c a p a c it o r a n d t h e i
test c li p t o the “ + ” ca pa ci to r te rm in a l.
3 . D e p r e s s the C A P A C I T O R V A L U E b u t t o n .
4 . Read the v a l u e o f th e ca pa ci to r in t h e L C D d i s p l a y .
N O T E : T h e “ S H O R T ” a n n u n c i a t o r a p p e a r i n g i n \
L C D d i s p l a y w h e n the C A P A C I T O R V A L U E b u t t o r ,
d e p r e s s e d ind ica te s a resis ta nce o f 1 o h m o r l e s s a t \
t e s t l e a d s . C h e c k th e t e s t l e a d s . If they ar e not sh o rt
th e ca pa c i t o r i s b a d .
S o m e c a p a c it o r s w i l l c a u s e the di s p la y t o r e a d “ E r :
7 ” . Th ese ca pa cit ors ha ve t o o m u c h le ak ag e c u r r e n t
a llo w the LC 1 02 t o make a va lue c h e c k a n d s h o u l d
c o n s id er e d b a d .
. · · i . W — Έ Β Β Β
C O M K J W W t T < r * f
■ s r *
Ξ 0 Θ Β Β Β Β 0 Ξ 0
k C l O S t A U T O · * C A P A C f T O * - » t i l M J C T O R A t t J l t Y M i H
j v w t ·
« — i
T he LC102 c h e c k s c a p a c i t o r s f o r ca p a ci t a n c e value,
lea k ag e, d ie le c tr ic a b s o r p t i o n a n d e q u i v a le n t se ri es r e
si s t a n c e (E S R ), The se t e s t s are m a d e d i r e c tl y us ing the
b e ig e co lor ed T E S T b u t t o n s . S im p ly c o n n e c t th e c o m p o
ne nt to the tes t l e a d s , p u s h the des ire d T E S T b u t t o n ,
a n d re a d the t e s t res ult in the L C D dis p la y . Y o u c a n
d e te rm in e i f th e c o m p o n e n t i s g o o d o r b a d by com paring
the me asured E S R a n d l e a k a g e v alu es to th e st a nd ar d
val ue s li s te d in the t a b le s in this ma n u al a n d o n th e
P U L L C H A R T u n d er n ea th the L C 1 0 2 .
N O T E : E x c e p t fo r th e cap ac it or l e a k a g e t e s t , n o c o m p o
n e n t p a r a m e t e r s n e e d t o b e e n t e r e d t o p e r f o r m a n y
c a p a c i t o r p a r a m e t e r t e s t , i f a n y b l u e I n d u c t o r C o m p o
n e n t T y p e b u t t o n i s s e l e ct ed , e r r or c o d e “ E r r o r 1 ” w i l l
a p p e a r in th e L C D r e a d o u t w h e n y o u a t t e m p t t o m a k e
a c a p a c i t o r t e s t . P u s h t he “ C L R ” k e y o n th e g r a y
N U M E R I C k e y p a d tw ice t o clea r a n y p a r a m e t e r s .
T h e f o l l o w i n g p r o c e d u r e s provide a l l the n ece ss ary i n
fo r m a ti on r eq u ir e d to per form th e capac ito r p ar am e te r
t e s t s . A more detailed des cri pti on o f e a c h o f the
capa cito r te st s a n d fa il ur e m o d e s c a n b e fo u n d in the
A P P L I C A T I O N S s e c t io n o f this m a n u al .
3 Ε τ · φ 0 1 n r ;
F i g . 15 — T o m e a s u r e c a p a c i t a n c e , c o n n e c t
c a p a c i t o r t o t h e t e s t l e a d s a n d p u s h t h e C A P A C H
V A L U E b u t t o n . T h e a m o u n t o f c a p a c i t y a p p e a r s i n
L C D d i s p l a y ,
M e a s u r i n g C a p a c i t o r
D i e l e c t r i c A b s o r p t i o n
D i e le c tr ic Ab s or p ti on is o fte n c a ll ed “ battery a c t i o n
“ ca p a ci t o r m e m o r y ” a n d i s the i n a b i li t y o f t h e c a p a c
to com pletely di sc har ge . W h i le all c a p a c i t o r s h av e s <
minu te a m o u n t s o f dielec tr ic a b s o r p t i o n , e l e c t r o l y
may o ft en d e ve lo p ex ce ss iv e a m o u n t s w h ic h affe ct
opera tio n o f th e c i r c u i t the y a r e u s e d i n .
20
To c h ec k a capa cito r for diele ctric ab s o r p t io n , pr es s the
D I E L E C T R I C A B S O R P b u t t o n a n d co m p a r e th e v a lu e
t o the c h a r t . A f u l l y a u to m a t i c G O O D / B AD t e s t m a y
a l s o b e u s e d t o tes t for diele ct ric a b s o r p t io n . T h i s t es t
i s exp lai ned o n page 2 6 .
T o m e a s u r e c a p a c i t o r d i e l e c t r i c a b s o r p t i o n :
1 . C o n ne c t the ca p a ci t o r t o the test lea ds. I f th e
capa cito r is pol ari zed , c o n n e c t t h e re d tes t clip to th e
“ + ” capa cit or te r m i n a l a n d t h e b la ck te st c li p to th e
“ — ” ter mina l.
2 . D ep r e s s the D I E L E C T R I C A B S O R P b u t t o n . A “ - ”
w i l l ap pea r a n d s l o w ly m o v e t hr ou g h t h e d is p la y i nd i
c at in g th a t the tes t i s in p r o g r e s s .
3 . Re ad th e perc enta ge o f dielec tr ic abso rpt io n on the
dis pl ay.
4 . Co mp are th e m e a s u r e d D / A t o the amo unt li s t e d in
T a b le 1 fo r the ca pa ci to r type yo u a re t e s t in g to d e t e r
mine i f the capa cito r is g o o d o r b a d .
N O T E : D e p e n d i n g o n t h e c a p a c i t o r ’ s val ue, t y p e a n d
a c t u a l D / A , th e L C 1 0 2 m a y , in a f e w c a s e s , t a k e u p t o
1 0 s e c o n d s t o d i s p l a y a rea di ng.
M a x i m u m A l l o w a b l e P e r c e n t O f D / A
c h a r t s . T h e capa cit or i s g o o d i f the m e a s u r e d le a k a g e
i s below the a m o u nt s h o w n in t h e c h a rt . A f u l l y a u to m a
ti c G O O D / B A D test ma y a l s o b e u s e d t o c h e c k
ca p a c i t o rs fo r leaka ge. T h is test i s explain ed o n pa ge 2 6 .
Ι Π Γ Ι Π V 0 L T S
I U U . U
o m p q n e n t p a r a m e t e r s
l e a k a g e
#
F i g . 1 6 — T o t e s t c a p a c i t o r l e a k a g e , e n t e r t h e w o r k i n g
v o l t a g e o f t h e c a p a c i t o r .
T o m e a s u r e c a p a c i t o r l e a k a g e :
C a p a c i t o r t y p e M a x i m u m % o f D / A
D o u b le L a y e r L y t i c M e a n in g le s s . D / A m a y n o r m a l l y
b e v e ry high.
A i u m in u m L y ti c 1 5 %
T a n t a l u m L y ti c
C e r a m ic 1 0 %
All o th e r s
R e f e r t o t h e A P P L I C A T I O N S s e c ti o n o f th i s m a n u a l f o r
c a p a c i t o r ty p e i d e n t if ic a t io n .
T a b l e 1 — M a x i m u m a m o u n t s o f D i e l e c t r i c A b s o r p t i o n .
1 5 %
1 %
M e a s u r i n g C a p a c i t o r
L e a k a g e ( I n m i c r o a m p s )
C ap aci tor le a k a g e o c c u r s w h e n s o m e o f the v o l t a g e from
o n e p la te flow s (l e ak s ) t hr ou g h the d ie le c tr ic to t h e
other plate. T h e a m o u n t o f le a k a g e cu rren t th ro ug h
th e d i e le c tr ic d e p e n d s o n t h e v o l t a g e a pp lie d a c r o s s th e
p la t es . F o r this re a s o n , alwa ys c h e c k a c ap ac ito r fo r
l e a k a g e at (o r a s c l o s e a s p o s s i b l e to) it s ra te d v o lt a g e .
V o l t a g e s u p t o 9 9 9 . 9 vo lt s ma y b y applie d w i t h th e
LC 1 0 2 .
1 . C o n ne c t t h e capa cito r t o t h e test l e a d s . I f t h e
c a pa ci to r i s pol ari zed , c o n n e c t th e re d t es t c li p t o t h e
“ + ” ca pa ci to r te r m i n a l a n d t h e blac k t es t c l i p t o t h e
term in al.
2 . Set the L E A K A G E s w it ch t o th e “ C U R R E N T ” p o si
tion t o read the l e a k a g e o f th e ca pa ci to r in u A o r mA .
3 . E n te r the no rmal w o rk in g v o lt a g e o f t h e c a p a c i t o r
a s exp lain ed e a r l i e r in the s e c ti o n “ E nt e r in g C o m p o
n ent P ar am e te r s ” o n pa ge 1 6 .
- -- -- -- -- -- -
^ ----- -- W A R N I N G ----- ---- - - - - - - - - - -
T h e L C 1 0 2 i s d e s i g n e d t o b e o p e r a t e d b y a
t e c h n i c a l l y t r a i n e d p e r s o n w h o u n d e r s t a n d s
t h e s h o c k h a z a r d o f u p t o 10 00 v o l t s a p p l i e d
t o t h e t e s t l e a d s d u r i n g t h e c a p a c i t o r l e a k a g e
t e s t . DO N O T h o l d t h e c a p a c i t o r i n y o u r h a n d ,
o r t o u c h t h e t e s t l e a d s o r c a p a c i t o r l e a d s
w h e n m a k i n g t h e l e a k a g e t e s t .
4 . D e p r e s s t h e C A P A C I T O R L E A K A G E b u t t o n a n d
read t h e a m o u n t o f l e a k a g e in t h e L C D d i s p l a y .
5 . C om p are the m e as u r ed le ak ag e to t h e m a x im u m
all o wa b le a m o u nt list ed in t h e L e a k a g e C h a r t s o n p a g e s
2 3 a n d 2 4 for the typ e, valu e, a n d v o lt a g e r a ti n g o f t h e
ca pa ci to r y o u a re te sting.
T o c h e c k c a pa ci to rs f o r lea kage, ente r the w o r k i n g v o l
t a g e o f th e capa cito r a n d p r e s s the C A P A C I T O R L E A K
A G E b u t t o n . Comp are t h e m e a s u r ed l e a k a g e c ur ren t
t o the maximum allo wab le a m o u n t s in the l e a k a g e
N O T E : B y e n t e r i n g th e C o m p o n e n t T y p e a n d V a l u e
p a r a m e t e r s f o r th e c a p a ci to r, t he L C 1 0 2 w i l l a u t o m a t i
c a l l y d i s p l a y th e m e a s u r e d l e a k a g e a l o n g w i t h th e s a m e
G O O D IB A D i nd ic at io n a s t he L e a k a g e C h a r t s .
2 1
V o l t a g e w i l l b e ap pl ie d t o the capacitor a s long a s th e
C A P A C I T O R L E A K A G E b u t t o n remains d e p r e s s e d ,
a n d the lea kag e read ing s w i l l de c re a se a s th e c a p a c it o r
c o n t i n u e s t o c h a r g e . S o m e ca p a ci t o rs m ay ta ke a fe w
s e c o n d s t o ch a rg e u p t o the app lied v o l ta g e a n d m a y
c a u s e t h e dis p la y to ov e rra n ge w i t h a fl as hin g “ 8 8 . 8 8
m A ” d i s p l a y . Co nti nu e t o d e p r e s s the C A P A C I T O R
L E A K A G E b u tt on until the l e a k a g e rea ding d r o p s
below t h e ma x im u m allo wab le am ou nt li st ed in t h e
Le a k a g e C h a r t .
When t h e C A P A C I T O R L E A K A G E bu t t o n i s r e le a s e d ,
the L C 1 02 d i sc h a rg es th e ca pacitor thr ou gh a lo w
valu e, high w at tag e re s is t o r . T h e L C 1 0 2 c o n t a i n s safe ty
ci r cu it s w h ic h s e n s e the v o l t a g e a c r o s s the test l e a d s .
Therefore, w he n yo u relea se t h e C A P A C I T O R L E A K
A G E b u t t o n af te r ch eck ing a l a r g e v a lu e c a p a c i t o r , o r
af te r apply ing a hig h leak ag e v o l t a g e , the di sp la y m a y
s h o w “ W a i t
- - - - -
” a n d the S T O P T E S T I N G alarm m a y
a c tiv at e unti l the v o lt a g e is gone from the test l e a d s .
A l l da ta in p u t a n d te st b u t t o n s w i l l b e lo c k e d o u t unti l
t h e dis pl ay re tu r n s t o “ 0 0 0 0 ” .
L e a k a g e I n P a p e r , M i c a a n d F i l m C a p a c i t o r s
Pap er , m i c a a n d f i l m ca p a c i t o rs s h o u ld ha ve e xt re me ly
sm al l a m o u n t s o f le aka ge. M e a s u ri n g a n y lea kag e
wh en ch e c k in g th e se t ype s o f c a pa ci to rs in d ic a t e s a b a d
c o m p o n e n t . The l e a k a g e r ea di n g m a y ta k e 1 - 2 s e c o n d s
t o s h o w a n a c c u r a t e displa y w h i le t h e ca p a ci t o r c h a r g e s .
L e a k a g e I n C e r a m i c C a p a c i t o r s
L e a k a g e in c e r a m ic ca p a ci t o rs is g e n e r a ll y v e r y l o w .
Ceramic d i s c c a p a c it o r s , h ow ev er, ma y have sm a l l
a m o u n t s o f n o r m a l le ak ag e. Cer am ic d i s c c a p a c i t o r s
w it h v o lt a g e ratings ab ov e 5 0 W V D C s h o u l d have l e s s
tha n 1 u A o f lea kage. S o m e d i s c s w i t h w o rk in g volta ges
l e s s t h a n 5 0 W V D C ma y have a lo w e r insulation re si s
t a n c e , a n d the refore m ay s h o w som ewhat m o r e lea kag e,
dep endi ng u p o n m a n u fa ct u r er . I n gen era l, a 1 0 W V D C
ce ra mi c d i s c ca p a ci t o r m ay s h ow a s m u c h a s 1 6 u A o f
le aka ge, a n d 2 5 W V D C ce ra mi c d i s c m a y re ad u p t o
2 . 5 u A o f lea kag e a n d s t il l b e c o n s id er e d g o o d .
L e a k a g e I n A l u m i n u m E l e c t r o l y t i c s
B e c a u s e o f t h e i r l a r g e r va lu e a n d h ig h e r lea kag e
ch a ra c t e ri s ti c s , alu mi n um e l e c t r o l y t i c c a p a c i t o r s m a y
ta k e several s e c o n d s t o c h a r g e . T h e L C 1 0 2 dis p la y m a y
ov e r ra n ge (fl as hi n g 8 8 . 8 8 m A d is pl a y) ind ic ati n g t h e
cha rg in g c u rr e n t i s g re a t e r than 2 0 m A w h ile th e
ca p a c it o r i s ch a rgi n g. T ab le 2 s h o w s the a p p r ox im a t e
tim e th a t y o u c a n exp ect the LC1 02 t o ov er ran ge fo r a
g i v e n c a p a c it o r va lu e a n d app lied v ol ta ge . A f t e r t h e
L C 1 0 2 s t o p s ove rra ng in g, t h e c ur re nt w i l l d r o p in p r o g -
re s s i v ly sma ller s t e p s a s t h e capa cit or c h a r g e s . W hen
the c a p i s f u l l y c h a r g e d , the l e a k a g e re ad in g s w i l l
ch a ng e jus t a fe w di gi ts u p o r d o w n . Y o u d o n o t n e e d
t o w a i t u nt il a n e le ct ro ly ti c capacitor i s f u l l y c h a rg e d
t o deter min e i f i t is g o o d . Si m p ly keep the C A P A C I T O R
L E A K A G E b u t t o n d e p r e s s e d u n ti l th e le a k a g e rea ding
f a ll s below t h e max imum a m o u n t s h o w n in the L e ak ag e
C h a r t s .
C a p a c i t y j u F )
T a b l e 2 — M e t e r O v e r r a n g e t i m e v e r s u s c a p a c i i
v a l u e a n d a p p l i e d v o l t a g e .
L e a k a g e I n T a n t a l u m E l e c t r o l y t i c s
T a n t a l u m e le ct ro ly tic c a p a c it o r s ha ve m u c h l o v
l e a k a g e than a lu m in u m elec trolyt ics o f t h e s a m e s :
a n d v o l t a g e rat ing. Therefore, ta nt a lu m ly tic s w i l l g j
a l e a k a g e rea ding in a m u c h s h o r t e r tim e t h a n
al um in u m l y t ic - t y p i c a ll y with in 2 t o 5 s e c o n d s . C o :
p ar e t h e m e a s u r ed le ak ag e w ith th e a m o u n t s s h o w n
th e l e a k a g e c h a r t s t o d etermine i f t h e capacitor i s g o
o r b a d .
L e a k a g e I n N o n - P o l a r i z e d
E l e c t r o l y t i c s
E l e c t r o l y t i c c a p a c i t o r s w h ic h a r e non -p ol ar iz ed s h o u
b e ch eck ed for le akage in b o t h d i r e c t i o n s . This r e q u i r
t h a t you m e a s u r e leak ag e tw ic e , r e v e r s i n g th e LC li
t e s t l e a d c o n n e c t i o n s fo r th e s e c o n d t e s t . T h e m a x i m u
a l l o w a b l e l eak ag e fo r a n o n - p o la r i z e d e le ctr ol yti c
e i t h e r di rection is twice th at o f a s im ila r polarized e l *
t r o l y t i c o f si m ila r c a p a c i t a n c e va lu e a n d v o l t a g e r a t i n j
L e a k a g e c h a r t s
T h e f o l l o w i n g leakage c h a r t s lis t t h e maximum a m o u :
o f a l lo w a b l e l eak ag e for the m o s t c o m m o n a l u m i n u
e le c t ro ly ti c s a n d d ip p e d s o lid tan tal um c a p a c i t o r
T he se c h a r t s a re a l s o du pl ic a te d o n t h e P U L L C H A S
b e lo w the L C 1 0 2 . G o o d c a p a c it o r s ( a s f a r a s lea ka ge
co nc er n ed ) w i l l m e a s u r e low er t h a n t h e a m o u n t s s h o v
i n th e L e a k a g e C h a r t s . Wh en m ea su ri ng lea kage, y c
d o not n e e d t o w a i t for the re ad in g s t o d r o p t o z e r o i
t o its lo w est p o i n t . The ca pa ci to r i s g o o d f o r an y l e a k a ^
r e a d i n g whi ch i s lo w er th a n t h e a m o u n t s h o w n i n t t
ch a rt .
L e a k a g e va lu es s h o w n in T ab le 3 fo r alumin um e i e
t r o l y t i c c a p a c i t o r s a r e th e w o r s t - c a s e c o n d i t i o n s , J
spec ified by the Elec tro nic In du st ri e s As soc iat io n (Ε ΰ
sta nd ard R S - 3 9 5 . The va lu es a r e de termined b y t t
form ula s: , L = 0 . 0 5 x C V (for C V p r o d u c t s l e s s t h a
1 0 0 0 ) or L = 6 x s q u a r e r o o t o f C V ( f o r C V p r o d u c i
g r e a t e r tha n 1 0 0 0 . (T h e C V p r o d u c t i s equ al t o t h
ca pac it anc e valu e m ul tip li ed by t h e v o lt a g e rating)·
2 2
Th e tan talum c a p a c i t o r le a k a g e va lu e s listed in T ab le
4 a re fo r the m o s t c o m m o n ty p e o f ta n ta lu m c a p a c it o r s
— d ip p e d s o l i d , type 3 . 3 . Th ese v a lu e s a re s pe ci fie d by
E I A s t a n d a r d R S - 2 2 8 B , f o ll o w in g th e fo rm ul a : L = 0 . 3 5
x s q u a re ro o t o f C V . In a f e w ap plicatio ns o u t s i d e o f
M a x i m u m A l l o w a b l e L e a k a g e ( i n M i c r o a m p s )
S t a n d a rd A lu m in u m E le c t r o ly t ic C a p a c it o r s
C a p a c i t y
i n u F 1 . 5 V
1. 0
1 . 5
2 . 2
3 . 3
4 . 7
6 . 8
10
1 5
2 2
3 3
4 7
6 8
1 0 0
1 5 0
2 2 0
3 3 0
5
5
5
. . . . .
5
5
5
5
5
5
5
5
5
8
1 1
1 7
2 5 5 0 26 7
4 7 0
6 8 0 1 9 2
1 0 0 0 23 2 329
1 5 0 0 2 8 5
2 2 0 0
3 4 5
3 3 0 0 4 2 2 59 7
4 7 0 0 504
6 8 0 0 60 6
1 0 0 0 0
7 3 5 1 03 9 1 47 0
1 5 0 0 0 90 0
2 2 0 0 0
3 3 0 0 0
1 09 0 1 5 4 1
1 33 5
4 7 0 0 0 1 59 3
5 6 0 0 0
6 8 0 0 0
1 0 0 0 0 0
1 5 0 0 0 0
2 2 0 0 0 0
1 73 9
19 16
23 24
2 84 6
3 4 4 7 1
S . O V
3 . 0 V
5
5
5
5
5
5
5
5
5
5
7
10
1 5
2 3
3 3
22 5 3 1 9
2 7 1
402 56 9
4 8 7 ;
712 100 8 1 3 0 1 159 3 1 84 0 2 0 5 7
85 7
1212 15 65 1916 2 2 13
180 0
1 2 7 3
21 80
26 70
1 8 8 8
3186 4 1 1 3 50 38
22 53
34 7 8
245 9
2710
3 8 32 4 9 4 8 60 60
3286 46 48
5 6 92
4025
48 74
68 93
1 0 V
5
5
5
5
5
5
5
5
7
10
1 4
2 0
3 0
4 5
21 8 2 8 1 34 5
38 3
465
689
84 4
10 90
1 8 9 7
2 3 2 4
2 8 1 4
Γ 3 4 4 7
4 4 9 0
6 0 0 0
7 3 4 8
8 8 9 9
1 5 V
2 0 V 2 5 V 3 5 V
5
_ _
5
5
5
5
8
1 1
1 7
2 4
3 4
5 0
2 3 2
3 4 5 1
4 1 1
4 9 5
60 0
7 3 5 90 0
8 9 0
5
5
5
1 1
1 7
5
5
5
5
5
5
5
5
7
5
8
1 0
1 5
2 2 ~
2 5
3 5
1 9 2
2 3 2
28 5
4 2 2
5 04
606 70 0 78 2
73 5
109 0
13 35
2 3 2 4
28 46 3 2 8 6
3 4 4 7
4 2 2 1
5 4 9 9 6 3 5 0 7 0 99 84 00
7 3 4 8 84 85
9 0 0 0
4 7
2 2 1
268
3 2 9
39 8
48 7
58 2 650
84 9
1039 116 2
1 25 9 140 7 1 66 5 199 0
1 5 4 1
26 8 3
39 80
4 8 7 4
58 17 6 5 0 4
69 97
1 72 3 2 0 3 9
24 7 4 29 27 34 99 4 9 4 8
3 0 0 0 35 50
36 74 4 3 4 7
44 50 52 65
54 50 64 48
7 82 3
9 4 8 7
ί I I I I
1 3
1 9
2 8
4 1
20 6
247
300
367
4 45
5 4 5
949
co ns um er ser vic e, tan talum c a p a c it o r s other tha n typ e
3 . 3 m a y b e e n c o u n t e r e d . R e fe r t o th e ma n u fac tu re rs
spe cifica tio ns for th e m a x im u m all o wa b le le a k a g e fo r
th e se special ca p a ci t o r t y p e s .
5 0 V
5
5
5
5
5
6
9
5 1 1
6
8
12
1 8 5 0
2 6
19 9
3 9
2 0 4
2 43
2 9 3
35 5
4 3 5
52 6 62 9 8 9 0
6 4 5 7 7 1 10 90
770
9 26
1 122 134 2
137 5
2 4 3 4 29 09 4 1 1 3
76 95 9 1 9 8
9 2 56
0 4 4
2 9 1 4 1 1 582
35 0
4 2 4
520
92 0 1 3 0 1
1106
1643
2 4 3 7
42 43 6 0 0 0 8 4 8 5
51 96
62 93 8 8 9 9
77 07
1 0 0 V
5
5
8
1 2 2 3
1 7
3 8
15 65
18 97
2 3 2 4
2 8 1 4
3 4 4 7 4 8 7 4 59 70 689 3
7 3 4 8
2 0 0 V
5
10
1 5
8
2 2
1 7
3 3
4 7
3 4
2 2 1
268
2 3 2
2 8 1
3 4 5
49 5
60 0 849 1 0 3 9
7 3 5 103 9 1 27 3
3 2 9 40 2
3 9 8 48 7 56 3 6 2 9
4 8 7
70 0
125 9
1 5 4 1
18 40 2 2 53
2 2 13
26 8 3
3 2 8 6
39 8 0
5 8 17
69 9 7
4 0 0 V
3 0 0 V
2 0
1 5
2 3 ~
3 0
4 4
3 3
5 0 21 8
2 25 260
2 7 1
31 3
37 9 424
3 29
4 6 5:
59 7
689
712
823
990
8 5 7
1 2 0 0 1 3 4 2
1 470
1 5 4 1
178 0
21 80
1 8 8 8
26 02
271 0
3 1 29
32 86
37 95 4 24 3 4 6 4 8
46 48
40 2 5
48 7 4
5 628
8 22 7
7125
85 70 98 95
. . . . . . . Γ .
.. .. ._ j
. . . . . . . .
5 0 0 V
6 0 0 V
2 5
3 8
1 9 9 2 1 8 ~
2 44 2 6 7
2 9 1
3 50 3 8 3
5 2 0
7 7 1
9 20
1 10 6
1 6 4 3 18 00 2 3 2 4
1 9 9 0
2437
2 90 9
3 499 3 8 3 2
5 19 6
6 2 9 3
7 70 7
9 19 8
3 0
4 5 2 3 2
3 1 9
4 6 5 600
5 6 9 735
6 8 9
8 4 4
1 008
12 12 156 5
1 47 0 18 97
21 8 0
2 6 7 0
3 1 8 6
5 6 9 2
68 93
8 4 4 3
j
_
I i
I . .. .. .. .ί
. . . . . . . . .
— l
1 0 0 0 V
5 0
2 8 1
. 3 4 5
4 1 1
49 5
89 0
109 0
1 3 0 1
2 8 1 4
3 4 4 7
4 1 1 3
4 9 4 8
6 0 0 0
7 3 4 8
8 8 9 9
. . . . . . . . .
N O T E : N o in d u s t ry s t a n d a r d s a r e a v a i la b l e f o r c o m p o n e n t v a iu e s i n t h e s h a d e d ar ea s. These vaiues h a v e b een
e x t r a p o la t e d fro m ex is tin g s t a n d a r d s a nd m a n u f a c t u r e r s data . A i l v a i u e s not s h a d e d are b a s e d o n e x is t in g E IA
in d u s t r y s t a n d a r d s .
T a b le 3 — M a x im u m a llo w a b le le a k ag e fo r a lu m i n u m e le c tr o ly t ic s p e r E IA s t a n d a rd s .
2 3
D ip p e d Sol id T a n t a l u m C a p a c it o r s
C a p a c i t y
1 . 5 V 3 . 0 V 6 . 0 V
1 . 0
1.0 1 . 0
1 . 5 1.0
2 . 2 1.0 1 . 0
3 . 3 1.0
4 . 7 1.0
6 . 8 1.0
10 1.6
1 5
2 2
2 . 2 2 . 2
2 . 8 2 . 8 2 , 8 3 . 0
3 3 Γ 3 , 4
4 7 4 . 0
6 8
1 0 0
1 5 0
2 2 0
5 . 0 5 . 0
.......
7 Τ Ί
2 0
3 3 0 2 0
4 7 0
2 4
6 8 0 2 9
1 0 0 0
1 5 0 0
2 2 0 0
3 3 0 0
4 7 0 0
6 8 0 0
1 0 0 0 0
3 5 3 5 3 5
4 3 4 3 4 3
5 2 5 2
6 4 6 4 6 4 6 4 7 8 9 0
7 6
9 1 9 1
■ · ' . 111 ;:
1 5 0 0 0 1 3 6 :
2 2 0 0 0
: 164
3 3 0 0 0 2 0 1
4 7 0 0 0 2 4 0 )
6 8 0 0 0 289
1 0 0 0 0 0
1 5 0 0 0 0
2 0 0 0 0 0 49 5
3 5 0
: 429
1 . 0
1 . 0
Γ i . o
1 . 0
1 . 6 1 . 6
3 . 4 3 . 4 5 . 0 7 . 5
4 . 0 4 . 0 10 1 0
10 1 0
1 5 1 5 2 0 2 0
1 5
2 0
2 0 2 0
2 4 2 4 2 4 2 9 3 4 3 8 4 5
2 9 2 9
7 6 7 6 7 6 9 3
1 1 1
13 6
C O
I T — .
201
■ 2 4 0
2 4 0
2 8 9
3 5 0
4 2 9 4 2 9
4 9 5 4 9 5
1 0 V
1.0 1.0 1.0
1 . 0
1 . 0 1.0 1.0
1 . 0 1.0 1 . 0 1.0
1 . 0 1.0
1.0
1 . 0 1 . 5 2 . 0
2 . 0
2 . 2 2 . 5
5 . 0
1 5 1 5 2 0
10 1 5 2 0
2 0 2 0 2 0 2 3
2 0
2 9
3 5
4 3 5 3 6 1 6 8
5 2 5 2 6 4 7 3
9 1 9 1 1 1 2 1 2 9
1 1 1 1 3 6 1 5 7 175
1 1 1
136 ■ 3 6 1 6 6
1 6 4
164
2 0 1
2 0 1
240
289
2 8 9
3 5 0
3 5 0
42 9
49 5 60 6
M a x im u m A l l o w a b l e L e a k a g e (I n M ic r o a m p s )
2 0 V 2 5 V
1 5 V
1 .0 1 . 4 1 .0
1 . 5
1.0
1 . 5 2 . 0 2 . 6
2 . 5 3 . 0 3 . 0
2 . 5 3 . 0
4 . 0
3 . 0
5 . 0 9 . 5 10
1 5 10
1 5 1 5 1 6
2 0
1 9
2 5 2 8
3 5 V 5 0 V
1 . 0
1 . 8
2 . 2 2 . 0
1 .0 1 . 0
1 .2
2 . 5
4 . 0
7 . 0
5 . 0 7 . 8
5 . 0 9 . 6
10
1 1 1 4 2 0 2 8
1 5 1 7 2 0
1 7
2 1 2 5
2 1
2 6 3 1
3 2 3 8
1 0 0 V 2 0 0 V
4 . 9
3 . 5
6 .1
4 . 3
2 . 0
7 . 3
5 . 2
2 . 0
6 . 4 9 . 0 1 1 1 3
3 . 0
7 . 6
3 . 5
6 . 5 9 . 1
1 1 1 9
1 1 1 3 1 5
1 3 1 6 1 8 2 0
1 4 1 9
12 1 6 2 3
3 4 4 2 4 8
2 4
1 7
4 1 5 0
2 9
2 5 3 5
3 0 4 3
4 9 6 1 7 0 7 8 8 6
6 1
3 7 5 2 7 3
6 4 9 0 11 0 12 7
4 5
5 4 7 6 1 0 7 1 3 1
12 9
4 1 4 6
3 5
4 9
4 3
5 5
8 2 9 7 1 1 6
1 0 1 1 1 9
1 0 7 1 2 0 1 4 2 1 7 0
144 1 7 1
2 1 4 25 4 30 3
1 9 2
232 2 6 0
2 0 1
246 284 318
294 339
353
429 495 5 5 3
5 3 5 ^ 60 6 6 7 8
3 7 9 449 537 75 9
408 4 5 6 540
7 3 4
7 8 3
5 4 6 5
6 5 7 8
8 0
14 2 2 0 1
204
2 0 7 247 350
3 0 7 36 7 519 i : 73 4
3 7 6 45 0 63 6
645
655
80 2
9 7 1
7 8 3
95 9
1 10 0
9 1
1 1 1 1 5 7
9 6 1 3 6 1 9 2 23 5 2 7 1 303 332 429
1 6 4 232
2 8 4 34 8
240 33 9
289 408
49 5
42 9 60 6 7 4 2
89 9 1 1 0 1 1 2 72 ■ ■ 1 4 2 2
107 3
1 2 9 1 ί 1 5 8 1 ■ 18 25
9 1 3
1 10 7 1 56 5
1 91 7 23 48 2 71 1
1 35 6
22 10
1 57 0
3 0 0 V
6 . 1 7 . 0 7 . 8 8 . 6
7 . 4
5 0 0 V 6 0 0 V 1 0 0 0 V
4 0 0 V
8 . 6 9 . 6
1 1
9 . 0 1 0 12 1 3
1 4 1 6
1 7 1 9
2 2
2 2 2 5 2 7
2 3 2 7 3 0 3 3
2 8
3 7 4 0 5 2
3 3
3 5 4 0 4 5 4 9 6 4
5 4
5 9 7 6
_ _
7 1
7 4
5 8
8 6 9 6 1 0 5
9 0 104 1 1 6 12 7 1 6 4
204
367
450
64 5
1 5 6 . 2 0 1
186
22 4 28 9
2 7 1
40 2 51 9
49 2
707
1 557
22 36 2 886
2 7 1 1 35 00
33 20
3 8 30
• : ■ 1 4 2
: 1 5 2 17 0
158
19 2
2 8 4
4 1 6 4 8 0 537 588 7 5 9
5 0 0 57 7
6 0 6 7 0 0 783 8 5 7
89 9 10 38
1 3 1 V
1 9 17
27 10
18 3
2 2 1 247
3 2 8
; 4 0 2
8 5 7 959 1 05 0 1 35 6
1 1 6 1 1 2 7 2 1 642
1 5 18 16 97 1 8 5 9
2 0 4 1
2 2 1 4 24 75
3 0 3 1
3 1 3 0 35 00
1 1
1 4
2 0
2 4
2 9
3 5
4 3
9 1
1 1 1
1 3 6
2 4 0
350
63 6
9 1 3
1 1 0 7
2 0 1 1
2399
4 28 7
5 1 9 1
NO TE : No in dustry s t a n d a r d s a r e ava ila bl e for c o m p o n e n t v a iu e s i n th e sha de d are as. Th es e vai ues ha ve bee n ex t r a p o la t e d fr om existing sta nd a rd s
and m an uf ac tu re rs d a ta . A li v a iu e s n ot sh a d e d are ba se d o n e x is ti n g E iA in dus tr y standards.
T a b l e 4 — M a x i m u m a l l o w a b l e l e a k a g e f o r s o l i d t a n t a l u m e l e c t r o l y t i c s p e r E I A s t a n d a r d s .
M e a s u r i n g C a p a c i t o r
Y e t , a s f a r a s t h e ci r c u i t i s c o n c e r n e d , t h e D C l o a d i
i s th e s a m e .
L e a k a g e ( I n O h m s )
T h e L C 1 0 2 u s e s a regula ted DC p o w e r s u p p l y t o p r o v i
A t ti m e s i t i s u se fu l to kn ow t h e a m o u n t o f c a p a c it o r
le aka ge i n te r m s o f re si st a n ce . Fo r e x a m p l e , i t i s often
easier t o visualize wh at e ffect a 1 Meg ohm re s is t o r w i l l
ha ve o n a h ig h im p ed a n c e c ir c u it tha n it i s t o translate
t h e e ff ec t o f a cap ac it or h a v in g 1 m i c r o a m p o f lea ka ge .
volt ag es f or c h e c k in g cap aci to r l eak age . B e c a u s e a I
v ol ta ge i s u s e d , th e leak ag e cu r r e n ts c a n ea sil y b e c o
v e rte d t o a r e s i s t a n c e . P l a c in g t h e fr on t p a n e l L E A -
A G E s w i t c h i n t h e “ O H M S ” p o si t io n a l lo w s t h e L C T
t o dis p la y leakage c u rr en t i n o h m s .
2 4
To m e a s u r e c a p a c i t o r l e a k a g e i n o h m s :
1 . C o n n e c t th e capa cito r to the tes t l e a d s . I f t h e
ca p a ci t o r i s po larized, c o n n e c t the re d test cl ip t o th e
“ + ” ca pa ci to r te r m in a l a n d th e bla ck te st cl ip t o th e
“ - ” terminal.
2 . Set th e L E A K A G E switch t o the “ O H M S ” po s it io n
t o re ad the l e a k a g e cu rrent in o h m s .
3 . E n te r t h e norm al w o r k in g v o l ta g e o f the c a p a c it o r
a s explain ed e a r l i e r in the s e c ti o n “ E n te r in g C o m p o
n e n t P a r a m e te r s ” o n pag e 1 6 .
!
- - - - - - - - - - - - - - - - - - - - - -
W A R N I N G
- - - - - - - - - - - - - - - - - - - - - - -
T h e L C 10 2 i s d e s i g n e d t o b e o p e r a t e d b y a
t e c h n i c a l l y t r a i n e d p e r s o n w h o u n d e r s t a n d s
t h e s h o c k h a z a r d o f u p t o 1 00 0 v o l t s a p p l i e d
t o t h e t e s t l e a d s d u r i n g t h e c a p a c i t o r l e a k a g e
t e s t . D O N O T h o l d t h e c a p a c i t o r i n y o u r h a n d ,
o r t o u c h t h e t e s t l e a d s o r c a p a c i t o r l e a d s
w h e n m a k i n g t h e c a p a c i t o r l e a k a g e t e s t .
B H M C O R E
1 X 1 0 2 A U T O - Z C A P A C IT O R .I H O U C T O R AH A iY Z CJ l
4 . D e p r e s s the C A P A C I T O R L E A K A G E b u t t o n a n d
r e a d th e a m o u nt o f le a k a g e res is ta nc e in t h e LC D d is
p l a y .
F i g . 17 — P l a c e t h e L E A K A G E s w i t c h i n t h e “ o h m ”
p o s i t i o n t o m e a s u r e l e a k a g e r e s i s t a n c e .
M e a s u r i n g C a p a c i t o r E S R
F i g . 18 - D e p r e s s t h e E S R b u t t o n a n d r e a d t h e a m o u n t
o f ESR o n t h e L C D d i s p l a y .
T o m e a s u r e c a p a c i t o r E S R :
1 . Ze ro t h e test l e a d s , a s e xp la in ed o n p a g e 1 6 .
2 . C o n n e c t the ca pa ci to r t o t h e te st l e a d s . I f t h e
ca p a c it o r i s po la riz ed , b e su r e t o c o n n e c t th e b l a c k t e s t
clip t o t h e “ — ” te r m in a l o f t h e ca p a c it o r a n d t h e r e d
te st c l ip t o the “ + ” ca pa ci to r termin al.
3 . D e p r e s s the C A P A C I T O R E S R bu t t o n a n d re ad th e
a m o u n t o f E SR in o h m s o n th e d i g it a l d is p l a y .
4 . C o m p a r e the m e a s u r e d E S R t o th e va lue listed i n
the fo llo w in g E S R table s f o r th e ca p a c it o r ty p e , v a lu e,
a n d v ol ta ge r a t i n g o f the capa cit or yo u a r e t es ti n g.
N O T E : B y e nt e r in g t h e co mp on ent t y p e , w o r k in g v o l
t a g e, and valu e p aram eters f o r t h e cap acito r, t h e LC1 02
w i l l aut om at ic al ly d is p la y t h e m ea sur ed E S R a l o n g w it h
t h e s a m e G O O D IB A D in d i c a ti o n a s t h e E S R t a b l e s .
E qu iv al e n t S er ie s Res ist anc e (E S R ) o c c u r s w he n a
c a p a c it o r deve lop s ab no rm al ly h ig h in t e r n a l r e s i s t a n c e .
The LC 1 02 tests ca pa ci to rs f o r abn or mal a m o u n t s o f
in ter nal resistance using a pa te n te d E S R t e s t .
To test a capa cito r for excessive ES R, sim p ly p r e s s t h e
C A P A C I T O R E S R bu tt on a n d co m p a r e t h e m e a s u r e d
E SR to the m axi m um a l lo w a b le E SR li s te d in T a b le 5
fo r a lu mi num e l e c t r o l y t i c c a p a c it o r s , a n d T a b l e 6 fo r
tan ta lu m c a p a c i t o r s . A f u l l y auto ma tic G O O D / B A D
t e s t m a y a l s o b e u s e d t o tes t ca p a c i t o rs fo r e x ce ss iv e
E S R . Th is te st is e xp la in ed o n pa ge 2 6 .
25
M a x i m u m A l l o w a b l e E S R ( i n O h m s )
S t a n d a r d A lu m in u m E l e c tr o ly t ic C a p a c i t o r s
C A P A C I T Y ! I
i n uF j 1 .5 V I 3 . 0 V
1 . 0 6 6 3
1 . 5
2 . 2
3 . 3
4 4 2
3 0 2
2 0 1
4 . 7 1 4 1 -
6 . 8
1 0
1 5
2 2
3 3
4 7
6 8
1 0 0
1 5 0
2 2 0
3 3 0
4 7 0
6 8 0
1 0 0 0
1 5 0 0
2 2 0 0
3 3 0 0
4 7 0 0
6 8 0 0
1 0 0 0 0
1 5 0 0 0
2 2 0 0 0
3 3 0 0 0
4 7 0 0 0
5 6 0 0 0
98
6 6
44
3 i P
20
1 4
9 . 7 6
6 . 6 3
4 . 4 2
3 . 0 2
2 .01
1 .4 1
. 9 7 6
. 6 6 3
. 4 4 2
. 3 0 2
.2 0 1
.1 4 1
. 0 9 8
.0 6 6
.0 4 4
.0 3 0 . 0 3 0
. 0 2 0
. 0 1 4
.0 1 2
6 8 0 0 0 .0 1 0 .010
6 . 0 V
6 6 3
4 42
302
2 0 1
1 4 1
9 8
6 6
44
3 0
2 0
1 4
9* 76:
6 .6 3
4.42.
3 . 0 2
2 .0 1
1 .4 1
.97 6
.663
.44 2
.30 2
. 2 0 1
. 1 4 1
. 0 9 8
.06 6
.04 4 . 04 4 . 0 4 4 .0 3 1
.02 0 . 0 2 0 . 0 2 0
.0 1 4
.01 2
1 0 V
6 6 3
6 6 3
4 4 2
4 4 2
3 0 2 3 0 2
1 4 1
20 1
1 4 1
20 1
9 8
6 6
4 4
3 0
2 0
1 4
1 . 4 1
. 4 4 2
. 3 0 2
9 . 7 6 6 . 8 3
6 . 6 3
4 . 4 2 3 . 1 0
3 . 0 2
2. 01
1 . 4 1
. 9 7 6 . 6 8 3
. 6 6 3
. 4 4 2
. 3 0 2
.20 1
9 . 7 6
6 . 6 3
4 . 4 2
3 . 0 2
2.0 1
. 9 7 6
. 6 6 3
.201
. 1 4 1 | . 1 4 1
. 0 9 8 . 0 9 8
. 0 6 6 . 0 6 6 . 0 4 6
.0 3 0 . 03 0 .0 2 1
. 0 1 4 1 .0 1 4
. 0 1 2 . 0 1 2
. 0 1 0 j . 01 0
. . . .
1 5 V j 2 0 V 2 5 V 3 5 V
4 6 4 4 6 4
3 1 0
2 1 1 2 1 1 211
1 4 1
9 9
9 8 6 8
6 6 4 6
4 4
3 0
3 1 3 1
2 1 2 1
2 0 1 4
1 4
9 . 8 8
4 . 6 4
2 .1 1
1 . 4 1 1 . 4 1
. 9 8 8
. 4 6 4
. 3 1 0
.211
. 1 4 1 . 1 4 1
. 0 9 9
. 0 6 8
. 0 1 4
.0 1 0
i
. .
3 1 0
1 4 1
9 9
6 8
4 6
1 4
9 , 8 8
6 . 8 3
4 . 6 4
3 . 1 0
2 . 1 1 2.1 1
. 9 8 8
. 6 8 3
. 4 6 4
. 3 1 0
.21 1
. 0 9 9
.0 6 8
. 0 4 6
.0 3 1 . 0 3 1
.0 21
.0 1 4
. 0 1 0
4 6 4
4 6 4
22 1 22 1
3 1 0
1 5 1
1 4 1 1 0 1 1 0 1
7 1
9 9
6 8 ! 4 9
3 3
4 6
2 2 2 2
3 1
2 1 1 5
1 4 ί 1 0
9 . 8 8 7 . 0 6
4 . 8 8
6 . 8 3
4 . 6 4
3 . 3 2
2. 21
3 . 1 0
1 . 5 1
1.0 1
1 . 4 1
. 7 0 6
. 9 8 8
. 4 8 8
. 6 8 3
. 3 3 2
. 4 6 4
,221
. 3 1 0
.211
. 1 5 1
. 1 4 1
.1 0 1
.0 7 1
.09 9
. 04 9
.0 6 8
. 0 3 3
. 0 4 6
. 0 2 2
.01 5
. 0 2 1
.01 0
: o i 4
.01 0
!
5 0 V 1 0 0 V 2 0 0 V 3 0 0 V
3 3 2
1 5 1
3 3 2
1 7 7
1 2 1
2 6 5
1 77
12 1 12 1
2 6 5
1 7 7
8 0 8 0
5 6
7 1
4 9
3 3
3 9 3 9
2 7
5 6
2 7
1 8 1 8
1 5
10
7 . 0 6
4 . 8 8
3 . 3 2
2.2 1
1 . 5 1
1. 0 1
. 7 0 6 ! . 5 6 5
. 4 8 8 j . 3 9 0
. 3 3 2 I . 2 6 5
.221
. 1 5 1
.1 0 1
. 0 7 1
.04 9
. 0 3 3
.02 2 .01 8 . 0 1 8 .0 1 8
.01 5 .01 2
.0 1 0
12 1 2
8 . 0 4 8 . 0 4
5 . 6 5 5 . 6 5
3 . 9 0 3 . 9 0
2 . 5 5 2 . 6 5
1 . 7 7 1 . 7 7
1, 2 1
. 8 0 4 . 8 0 4
. 1 7 7
.1 2 1
.0 8 0
.05 6 .0 5 6
.03 9 . 0 3 9 . 03 9
.0 27 . 0 2 7
8 . 0 4
5 . 6 5
3 . 9 0
2 . 6 5
H l 7 7 ~ 1 . 7 7
1.2 1 1. 2 1
1.21
. 8 0 4 . 8 0 4
.5 6 5 .565
. 5 6 5
.39 0 .39 0 .390 .39 0
. 3 9 0
. 2 6 5 .26 5
.2 6 5
.1 7 7 .1 7 7
. 1 7 7 '
.1 2 1 .1 2 1
.0 8 0 . 08 0 .080 .080 .0 8 0
.0 8 0
.0 5 6
.0 2 7
. 0 1 2 .0 1 2 .01 2 .01 2
.0 1 2
4 0 0 V
2 6 5 2 6 5
1 7 7
1 2 1
8 0
8 0
5 6
5 6
3 9
3 9
2 7
2 7
1 8
1 8
12
1 2
8 . 0 4
5 . 6 5
3 . 9 0
2 . 6 5
. 1 2 1 : . .1 2 1
.05 6 .05 6 .056
. 03 9
. 02 7 .0 2 7 .02 7
.01 8
6 0 0 V I 1 0 0 0 V
5 0 0 V
2 6 5
1 7 7
1 7 7
1 2 1
w ]
8 0
8 0
5 6
5 6
3 9
3 9
2 7 ! 2 7
2 7
1 8
1 8
Ϊ 2 Ί
12
8 . 0 4
8 . 0 4
8 . 0 4
5 . 6 5
5 . 6 5
5 . 6 5
3 . 9 0
3 . 9 0
3 . 9 0
2 . 6 5
2 . 6 5
2 . 6 5
1 . 7 7
1 . 2 1 .
.8 0 4 . 8 0 4
.56 5
.2 65
. 1 7 7
. .1 2 1
.0 3 9
.01 8 .0 18 .01 8
1 . 7 7
1 . 7 7
. 1 .2 1
1 . 2 1
. 8 0 4
.56 5
.56 5
.39 0
.26 5
.265
1 ? 7
. 1 7 7
. 1 2 1
.05 6
.039 .039
.0 2 7
.01 2
2 6 5
1 7 7
1 2 1
8 0
3 9
1 8
12
NO TE : N o in d u s t r y stan da rd s are ava ila bl e f or c o m p o n e n t v a iu e s i n the sha de d ar ea. T h e s e v a lu e s h a v e be en extra p ol at ed from ex isting st an dar ds
and m a n u f a c t u r e r s data . A i l va lu es not sha de d are b a s e d on ex is ti ng EIA in d u s tr y stan dar ds .
T a b l e 5 — M a x i m u m a l l o w a b l e E S R f o r a l u m i n u m e l e c t r o l y t i c s p e r E I A s t a n d a r d s .
C a p a c i t o r A u t o m a t i c
G O O D / B A D T e s t i n g
form ulas in th e A U T O - Z me m o ry a re t h e s a m e a s t h o s e
T h e LC 1 02 A U T O - Z c a n au to m at ic al ly displa y a
“ GOOD/ BAD ” in d ic a t io n f o r ca pa ci to r p a r a m e te r t e s t s .
The aut oma tic t e s t s a r e m u c h fa s te r th an m a n u al
p ar am e te r t e s t s , s i n c e yo u d o n o t h a ve t o loo k u p t h e
res ul t i n a c h a rt , o r interpolate bet wee n li s t e d v a lu e s .
The LC 102 c o m p a r e s t h e m e a s u r ed valu es o f d ie le c tr ic
a b s o r p t i o n , lea k ag e, a n d E S R t o tables a n d fo rm ul as
s t o r e d in it s m ic r o p r o c e s s o r m e m o ry . T h e tables a n d
printed in th is m a n u al , a n d a re b a s e d o n E I A st a n d a r d s
a n d man u fac tu re rs d a t a . N o t e v e r y pa ra m et er fo r s o m e
ca p a ci t o r t ype s are sp e ci fie d by E I A s t a n d a r d s o r m an
ufacturer’ s d a t a . T h e LC 1 0 2 w i l l n o t p r o d u c e a “ G O O D /
B A D ” disp lay f o r ca p a c it o r para m ete rs n o t c o ve r ed b y
in dus try a c c e p te d s t a n d a r d s . The c a p a c i t o r t y p e s a n d
param et ers w hich w i l l p r o d u c e a “ G O O D / B A D " indi ca
tion a r e li sted in T ab le 7 .
2 6
D ip p e d S o l id T a n t a lu m C a p a c it o r s
C A P A C I T Y
i n u F
1 . 5 V | 3 . 0 V 6 . 0 V
1.0 1 3 3 1 3 3
8 8 . 4 I 8 8 . 4 8 8 . 4 5 3 . 1 5 3 . 1 5 3 . 1 ΐ 5 3 , 1
1 . 5
2 . 2 6 0 . 3 6 0 . 3
4 0 . 2 4 0 . 2 4 0 . 2
3 . 3
4 . 7 2 8 . 2 2 8 . 2
1 9 . 5 1 9 . 5 1 9 . 5
6 . 8
1 3 . 3 1 3 . 3 1 3 . 3 7 , 9 6
10
1 5 8 . 8 4
2 2 6 . 0 3 6 . 0 3 6 . 0 3
3 3
8 . 8 4 8 . 8 4 5 . 3 1 5 . 3 1 5 . 3 1
4 . 0 2 4 . 0 2
6 0 . 3 3 6 . 2
2 8 . 2 1 6 . 9 1 6 . 9
4 . 0 2 2 . 4 1
1 0 V
7 9 . 6 7 9 . 6 ί 7 9 . 6
1 3 3
2 4 . 1 2 4 . 1
1 1 . 7 1 1 . 7
3 . 6 2 3 . 6 2 3 . 6 2
4 7 2 . 8 2 2 . 8 2 2 . 8 2 1 . 6 9 1 . 6 9
6 8 1 . 9 5 1 . 9 5
1 0 0 1 . 3 3 1 . 3 3
1 5 0 0 . 8 8 0 . 8 8 0 . 8 8
2 2 0 0 . 6 0 0 . 6 0 0 . 6 0
3 3 0 0 . 4 0 0 . 4 0
4 7 0 0 . 2 8 0 . 2 8 0 . 2 8
6 8 0 0 . 2 0
1 0 0 0
0 . 1 3
1 5 0 0 0 . 0 9 0 . 0 9
2 2 0 0 0 . 0 6
3 3 0 0
0 . 0 4 0 . 0 4 0 . 0 4
4 7 0 0 0 . 0 3 0 . 0 3 0 . 0 3
6 8 0 0
0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2
1 . 9 5 1 , 1 7
1 . 3 3 0 . 8 0 0 . 8 0 0 , 8 0 0 . 8 0
0 . 8 8 0 . 8 8 0 . 8 8 0 . 8 8 0 . 5 3
0 . 6 0 0 . 6 0 0 . 6 0 0 . 6 0
0 . 4 0 0 . 4 0 0 . 4 0 0 . 4 0
0 . 2 8 0 . 2 8 0 . 2 8 0 . 2 8
0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0
0 . 1 3 0 . 1 3 0 . 1 3 0 . 1 3
0 . 1 3
0 . 0 9 0 . 0 9 0 . 0 9 0 . 0 9
0 . 0 6 0 . 0 6 0 . 0 6
0 . 0 4 0 . 0 4
0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3
M a x i m u m A l l o w a b l e E S R ( i n O h m s )
I I
1 5 V I 2 0 V I 2 5 V 3 5 V 5 0 V
6 6 . 3 6 6 . 3 6 6 . 3 6 6 . 3 6 6 . 3 6 6 . 3 6 6 . 3 6 6 . 3 6 6 . 3
7 9 . 6
1 0 0 V 2 0 0 V I 3 0 0 V | 4 0 0 V 5 0 0 V 6 0 0 V 1 0 0 0 V
4 4 . 2 4 4 . 2 4 4 . 2 4 4 . 2 4 4 . 2 4 4 . 2 4 4 . 2 4 4 . 2
3 6 . 2 3 6 . 2 3 6 . 2
2 4 . 1 2 4 , 1
1 6 . 9 1 6 . 9
1 1 . 7 1 1 , 7
7 . 9 6
7 , 9 6 7 . 9 6 7 . 9 6
3 0 . 1
2 0, 1 20.1 2 0 . 1 2 0 . 1 2 0.1
3 0 . 1 3 0 . 1 3 0 . 1 3 0 . 1 3 0 . 1 3 0 . 1 3 0 . 1
1 4 , 1 1 4 . 1 1 4 . 1
1 1 . 7
1 1 . 7 1 1 . 7 1 1 . 7 1 1 . 7 1 1 . 7 1 1 . 7
1 1 . 7
7 . 9 6
7 . 9 6 7 . 9 6
5 . 3 1 5 . 3 1 5 . 3 1 5 . 3 1 5 . 3 1
3 . 6 2 3 . 6 2 3 . 6 2 3 . 6 2 3 . 6 2 3 . 6 2
1 . 6 9
1 . 6 9 1 . 6 9
2 . 4 1
3 . 6 2 3 , 6 2
2 , 4 1
2 . 4 1 2 . 4 1 2 . 4 1 2 . 4 1 2 . 4 1
1 . 6 9 1 . 6 9
1 . 1 7 1 , 1 7 1 . 1 7 1 , 1 7 1 . 1 7 1 . 1 7
0 , 8 0 0 . 8 0 0 . 8 0 0 . 8 0 0 . 8 0
0 . 5 3 0 . 5 3 0 . 5 3 0 . 5 3 0 . 5 3
0 . 3 6 0 . 3 6 0 . 3 6 0 . 3 6 0 . 3 6
0 . 4 0 0 . 2 4 0 . 2 4
0 . 2 4 0 . 2 4 0 . 2 4
0 . 1 7 0 . 1 7 0 . 1 7
0 . 2 0 0 . 2 0 0 , 1 2
0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 2 0 . 1 2
0 . 1 3 0 . 0 8 0 . 0 8 0 . 0 8
0 . 0 9 0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 5
0 . 0 6 0 . 0 6 0 . 0 6
0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 4
0 . 0 4 0 . 0 4 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2
0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2
0 . 0 2 0 . 0 2 0 . 0 2 0.01 0.0 1
0 . 0 1
20 .1
2 0. 1
1 4 . 1 1 4 . 1 1 4 . 1 1 4 . 2
7 . 9 6 7 . 9 6 7 . 9 6
5 . 3 1 5 . 3 1
2 , 4 1 2 . 4 1
5 . 3 1 5 . 3 1
2 . 4 1 2 . 4 1 2 . 4 1
1 . 6 9 1 . 6 9 1 , 6 9 1 . 6 9
1 . 1 7 1 . 1 7 1 . 1 7
0 . 8 0
1 . 1 7
0 . 8 0
0 . 5 3 0 . 5 3 0 . 5 3
0 . 3 6
0 . 3 6 0 . 3 6 0 . 3 6
0 . 2 4
0 . 2 4
0 . 1 7 0 . 1 7 0 , 1 7 0 . 1 7
0 . 1 2 0 . 1 2
0 . 0 8 0 . 0 8
0 . 0 8 0 . 0 8 0 . 0 8
0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 5
0 .0 1
0 . 0 4 0 . 0 4
0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2
0 .0 1
0 . 0 2
0 .0 1
0 . 0 4 0 . 0 4
0 . 0 2
0 , 0 1 0. 01
4 4 . 2
3 0 . 1
2 0. 1 ■ 2 0 . 1
1 4 . 1 1 4 . 1
1 1 . 7
7 . 9 6
7 . 9 6
5 . 3 1
3 . 6 2 3 . 6 2
1 . 6 9 1 . 6 9
1 . 1 7
0 . 8 0
0 . 2 4
0 . 1 7
1 . 1 7
0 . 8 0
0 . 2 4
0 . 1 7
0 . 1 2
0 . 0 8
0 . 0 5
0 . 0 4
0 . 0 2
0 . 0 2
0 . 0 2
0 . 0 1
N O TE : No in dustry s t a n d a r d s a r e av a ila b le f or co m p o n e n t v a lu e s i n th e sh a d e d are as. T h e s e v al ues h ave b ee n
extra po late d fr om exis ting s t a n d a r d s a nd m a n uf ac tu re rs da ta. A l t v a i u e s a re ba se d on exis ting E IA indu stry
st andards.
T a b l e 6 — M a x i m u m a l l o w a b l e E S R f o r d i p p e d s o l i d t a n t a l u m e l e c t r o l y t i c s p e r E IA s t a n d a r d s .
Π Ύ
C A P A C I T O R T YPE TE STS T O PE RFORM
V a iu e Lea kage D /A E S R
Alu minu m Lyt ic X
D ouble La yer Lyt ic
Tan ta lu m
Ce ramic
A ll o t h e r caps
X
X X X
X X
X
X X
X
X
X
(p aper, film , myl ar, e tc .)
T a b l e 7 — T h e L C 1 0 2 w i l l p r o v i d e a n a u t o m a t i c G O O D I B A D t e s t o f t h e c a p a c i t o r p a r a m e t e r s s h o w n h e r e .
To p er fo rm a n a u to m a ti c GO OD /B AD t e s t , y o u m u s t
ente r t h e ca p a ci t o r t y p e , ca pa ci ta nc e va lue, a n d v olt a ge
r a ti n g o f the ca p a c it o r t o b e tes ted s o the L C 1 0 2 c a n
det er m in e t h e G O O D / B A D li m it s. I f you des ire t o gra de
c a p a c i t o r s a c c o r d in g t o va lu e , you m u st a l s o en ter the
de s i r e d “ + ” a n d “ - ” v al u e tol e ra nc es . T h e v a lu e t o l e r
a n c e s , ho w ev e r, d o not n e e d to b e ente red fo r a u to m a t ic
G O O D / B A D t e s t s o f leaka ge, E SR , o r die lec tr ic a b s o r p
t i o n .
T E S T C A P
Cap . V a lu e
C ap . L e a ka g e
C ap . ESR
Cap. D/A
VA LU E
X
X
X
X
+ %
X
- %
X
C A P
VO LT A GE
X
X
X
C O M P O N .
T Y P E
X
X
X
N O T E : T h e l e a k a g e t e s t f u n c t i o n m a y req uir e f r o m 4 t o
8 d i s p l a y u p d a t e s fo r th e l e a k a g e v a l u e t o s e t t l e b e f o r e
a G O O D / B A D i nd ic ati on i s dis pla ye d.
X
X
T a b l e 8 — T h e s e p a r a m e t e r s m u s t b e e n t e r e d i n t o t h e
A U T O - Z f o r c o m p l e t e G O O D / B A D t e s t o f a c a p a c i t o r .
T o p e r f o r m a n a u t o m a t i c G O O D / B A D c a p a c i t o r
t e s t
1 . Z e r o the te st l e a d s .
2 . C o n n e c t t h e ca p a ci t o r t o th e te st l e a d s . .
3 . Place the L E A K A G E sw itc h in the “ C U R R E N T ” p o s
it io n . The LC 1 02 w i l l n o t g i v e a G O O D / B A D rea ding
wi th t h e sw it ch i n t h e “ O H M S ” po s i t i o n .
4 . Enter the c o m p o n e n t typ e, v alue, a n d v o lt a g e r a ti n g
o f t h e ca p a c it o r t o b e t e s t e d . ( R e f e r to th e s e c t i o n “ E n
te r i n g C o m p o n e n t D ata ” o n pag e 1 6 . )
5 . To gr a de c a p a c it o r s a cc o rd in g to va lu e , ente r the “ + ”
a n d “ - ” va lue t o le ra n c e.
6 . P u s h the d e s i r e d ca pa ci to r T E S T b u t t o n .
7 . R e a d the tes t resu lt in the L C D al on g w i t h the G O O D /
B A D in d i c a t io n .
F i g . 2 0 - T h e L C 1 0 2 p r o v i d e s a n a u t o m a t i c G O O D / B A D
c o m p o n e n t i n d i c a t i o n .
8 . The display m u s t s h o w a “ G O O D ” r ea d in g fo r al l o f
t h e t e s t s listed in table 7 u nd er t h e ty p e o f c a p a c it o r
bein g t e s t e d .
2 8
Inductor Testing
F i g . 21 — C o n t r o l s u s e d f o r i n d u c t o r t e s t i n g .
The LC102 A U T O - Z me as ur es the true in d u c t a n c e o f
c o i l s using a f a s t , r e l i a b l e pa te nte d t e s t . C oils fr om
. l u H to 1 9 . 9 9 H are a u t om a ti c a ll y m e a s u r e d for va lu e
b y c o n n ec t in g t h e tes t leads a n d pr es si n g the test bu t
t o n . A pa ten ted R in g e r te st dyn am ica ll y c h e c k s th e “ Q ”
o f th e co il a n d provid es a pro ven G O O D / B A D c h e c k .
B a l a n c i n g O u t L e a d I n d u c t a n c e
The L C 1 0 2 test le ads h a v e a sm all a m o u n t o f in d u c
t a n c e w hi c h m u s t be bala nced ou t f o r g re a t e r a c c u r a c y
w he n meas urin g i nd uct or va lu es sm aller than 1 0 0 0
u H . Thi s le a d in d u c t a n c e i s b a la n c e d o u t w i t h th e
L E A D Z ERO s w it c h .
T o b a l a n c e o u t t e s t l e a d i n d u c t a n c e
1 . C o n n e c t t h e t es t leads to th e T E S T L E A D in pu t ja c k
o n the L C 1 0 2 .
2 . C o n n e c t the re d a n d bla ck tes t c l i p s toge the r.
3 . M ov e t h e L E A D Z E R O sw it ch t o t h e “ S H O R T ” p o s
i ti on , a n d rele as e wh en a be g in s t o m ov e th ro u gh
t h e d i s p la y .
4 . The te st lead i n du ct an ce w i l l au to m ati ca lly b e ba
l a n c e d o u t fo r all s u b s e q u e n t in d u c t a n c e t e s t s a s long
a s the A U T O - Z remains o n .
F i g . 2 2 - C o n n e c t t h e t e s t l e a d s t o g e t h e r a n d p u s h t h e
L E A D Z E R O b u t t o n t o “ S H O R T ” t o b a l a n c e o u t t h e t e s t
l e a d i m p e d a n c e w h e n c h e c k i n g s m a l l v a l u e i n d u c t o r s .
N O T E : Z e r o i n g o r n o t z e r o i n g th e t e s t leads w i l l no t
a f f e c t t he R i n g e r t e s t .
2 9
I n d u c t o r V a l u e T e s t i n g
In d u ct o rs a re te s te d for va lu e w it h t h e LC 1 02 by sim pl y
co nne cti ng th e i nd uct or t o t h e te st le a d s a n d pu sh in g
t h e I N D U C T O R V A L U E b u t t o n . N o c o m p o n e n t type
sw it ch es n e e d to b e s e l e c t e d t o m e a s u r e in d u ct an ce
val ue. M a k e su re n o n e o f t h e beige ca pa ci to r t y p e bu t
t o n s are sel ected, o r t h e L C 1 0 2 w i l l on ly displa y ‘ ‘ E r r o r
1 ” wh en the induc tor test b u t t o n i s p r e s s e d .
N O T E : O n l y t h e b l u e c o l o r c o d e d L C 1 0 2 b u t t o n s a r e
u s e d for i n d u c t o r v a l u e t es t i n g .
T o m e a s u r e i n d u c t a n c e v a l u e
1 . Ze ro the t e s t l e a d s .
2 . Con nec t the in duc tor t o t h e test l e a d s .
3 . Pu sh the I N D U C T O R V A L U E b u t t o n .
4 . Re a d the in du ct an ce valu e o n the L C D dis pl ay.
N O T E : T h e L C 1 0 2 L C D d is pl ay w i l l r e a d “O P E N ” i f
th e c o m p o n e n t c o n n e c t e d t o the t e s t l e ad s h a s m o r e t h a n
2 0 k o h m s o f re si sta nc e w h e n the I N D U C T O R V A L U E
b u t t o n i s p r e s s e d . C h e c k t h e c o n n e c t i o n s t o th e i nd uc to r.
I f y o u a r e tes t in g a m u l t i t a p c o i l o r t r a n s f o r m e r , b e s u r e
y o u a r e c o n n e c t e d t o the p r o p e r t a p s . I f th e c o n n e c t i o n s
a r e g o o d , the i n d u c t o r h a s a n o p e n w i n d i n g a n d i s b a d .
I n d u c t o r A u t o m a t i c
G O O D /B A D T e s t i n g
s h o w n in t h e L C 1 0 2 L C D dis p la y . A s h o r t e d t u r n w i l l
lo w er the Q o f th e coi l, ca usin g the L C 1 0 2 di s p la y t o
re ad “ B A D ” a n d s h o w l es s than t e n r i n g s .
In ad dition t o a i r c o r e c o i l s " a n d R F c h o k e s , vert ica l
def lec ti on y o k e s , ho riz on ta l flyback t ra n s fo rm e rs a n d
s w itc hi n g po w er su ppl y tra n sf o rm e rs a r e rel ia bly
c h e c k e d w i t h t h e R i n g e r t e s t . T h e L C 1 0 2 au tom at ically
m a t c h e s t h e co i l im p ed a nc e t o t h e n e c e s s a r y tes ti n g
param eters fo r the in duc tor ty pe w h e n th e p r o p e r In
d u c t o r C O M P O N E N T T Y P E swi tch i s s e l e c t e d . Si m pl y
s e l e c t the c o m p o n e n t ty p e a n d p r e s s t h e I N D U C T O R
R I N G E R test bu t t o n t o ob tain t h e G O O D / B A D in di ca
t i o n . R e fe r t o t h e A P P L I C A T I O N S s e c t i o n o f t h i s m a n
u a l f o r m ore deta ils o n in du cto r ty p e s .
f : 0 ? $ P 0 N E N T T Y P £
- ■
m s v
c o n s
Μ 1 : : &
ί ν ί Τ Τ
Y O K E S 4
F L Y B A C K S
S W I T C H I N G
X F O R M E R S
T h e L C10 2 pro v id e s tw o G O O D / B A D t e s t s f o r in d u c
t o r s . T h e f i r s t G OO D /B AD test i s the pat ented R i n g i n g
tes t wh ich ch e c k s fo r s h o r t e d tu rn s (l o w Q) in th e in du c
t o r .
T h e s e c o n d L C 1 0 2 G O O D / B A D te st c o m p a r e s the a ct u al
m eas ur ed v a lu e o f a n in d u c t o r t o a u ser -en te re d v a l u e
a n d tole ran ce s. Both t e s t s w i l l disp lay a G O O D /B AD
re adout al on g w i t h the m e a s u r e d pa ram ete r.
N O T E : T h e b l u e col or c o d e d T E S T a n d C O M P O N E N T
T Y P E Sel ect b u t t o n s a r e u s e d f or i n d u c t o r G O O D I B A D
t e s t s .
C h e c k i n g I n d u c t o r s
w i t h t h e R i n g e r T e s t
A sh ort ed tu rn in many c o i l s w i l l g o u n n ot ic ed w i t h a
v al u e tes t, si n ce th e s h o r t e d t u rn c h a n g e s the in d u c
t a n c e v a l u e o n l y a sm all a m o u n t . T h e pate nted R i n g e r
t e s t , ho we ver , p ro vi de s a fa s t a n d a c c u r a t e GO O D/ B AD
indic atio n o f non -ir on c o r e c o il s l a r g e r t ha n 1 0 u H b y
checking t h e i r q u a l i t y or “ Q ” fa c t o r . The R i n g e r te st i s
sen s iti v e enough t o d ete ct ev en a si ng le sh or t ed turn
o n a co il . T h e A U T O - Z m e a s u r e s Q by a p p ly in g a p u ls e
t o t h e co il a n d cou ntin g t h e n u m b e r o f r i n g i n g cy cl es
unt il the r i n g i n g d a m p e n s t o a p r es et le v e l. A goo d c o il
w i l l in di cat e “ G O O D ” , a n d 1 0 o r m o r e ri ng s w i l l b e
P i g . 2 3 — T h e i n d u c t o r C O M P O N E N T T Y P E s w i t c h e s
m a t c h t h e R i n g e r t e s t c i r c u i t s t o t h e i n d u c t o r i m p e
d a n c e .
T o p e r f o r m t h e R i n g e r t e s t
1 . C o n ne c t t h e co il to the L C 1 0 2 t e s t l e a d s .
2 . Select t h e proper in d u c t o r C O M P O N E N T T Y P E
s w it c h .
3 . Pu sh the I N D U C T O R R I N G E R b u t t o n .
4 . Read t h e co n d it io n o f the co i l a s “ GOOD” o r “ B A D ”
in the LC 1 02 LC D display.
S p e c i a l N o t e s O n U s i n g T h e R i n g i n g T es t
1 . D o n o t r i n g c o i l s a n d t r a n s f o r m e r s h a v i n g l a m i n a t e d
ir on c o r e s , s u c h a s p o w e r tr an s f o r m e r s , f i l t e r c h o k e s a n d
a u d i o o u t p u t t r a n s f o r m e r s . T h e ir o n c o re w i l l a b s o r b
t he r i n g i n g e n e r g y a n d p r o d u c e unreliab le t e s t r e s u l t s .
2 . G o o d c o i l s b e l o w 1 0 u H m a y n o t r e a d “G O O D ” b e c a u s e
t h e s m a l l i n d u c t a n c e v a l u e m a y n ot a l l o w t h e c o i l t o
r i n g . C o m p a r e t he n u m b e r o f r i n gs t o a k n o w n g o o d c o i l · .
30
T h e p a t e n t e d S e n c o r e R i n g i n g t e s t i s b a s e d o n t h e Q o f
th e c o i l . H o w e v e r , th e r e a d i n g s o n th e A U T O - Z m a y n o t
a g r e e , w i t h t he Q r e a d i n g s o b t a i n e d u s i n g a “ Q M e t e r ”
o r b ridge. T h i s i s b e c a u s e t h e R i n g i n g t e s t h a s b e e n
si m p l i f i e d t o p r o v i d e a s i m p l e G O O D I B A D t e s t , r a t h e r
t h a n a f r e q u e n c y d e p e n d e n t re actance!resistance r a t i o .
T e s t i n g I n d u c t o r V a l u e s
U s i n g T h e G O O D / B A D T e s t
The LC 102 w i l l au to m ati cal ly c o m p a r e the me as ure d
v al u e o f an in d u ct or t o it s m a r ke d va lue a n d d i s p l a y a
g o o d or b a d r e su lt , b a s e d o n the c o m p o n e n t b e i n g i n o r
o u t o f tol er a nc e. I n o rd er for the A U T O - Z t o co mp ar e
t h e m ar k e d valu e t o the m e a s u r e d valu e you mus t p ro g
ra m the in d u c t a n c e va lue a n d t ole ran ce into the LC1 02
us ing th e N U M E R I C k e y p a d . Then w h e n yo u pu sh th e
I N D U C T O R V A L U E b u t t o n , the m e a s u r e d ind u ct an ce
v al u e w i l l b e dis play ed a lon g w ith a GO O D/ B AD r e a d
i n g ba s e d o n the pr ogrammed to le ra n c e .
CO MP UT ER I N T E R F A C E
O PE R A TI ON
A l l o f t h e L C10 2 A U T O - Z t e s t s m a y b e to tally au t o
m at ed o r in corporated into a n a u to m a t e d t e s t sy stem
thr oug h the u s e o f the I E E E 4 8 8 G eneral P u r p o s e I n t e r
f a c e B u s ( G P I B o r R S 2 3 2 ) . Th is s e c t io n ex p la i n s I E E E
o p e ra t i o n , b u t th e c o m m a n d s a re the s a m e fo r R S 2 3 2 .
The L C 1 0 2 is i n te r fa c e d t o a n y I E E E s y s t e m o r c on tr o l
le r using the (o p ti o n a l ) IB 7 2 I E E E 4 8 8 B u s I n te r fa c e
a c c e s s o r y . T h e IB7 2 m a ke s t h e A U T O - Z a ful ly comp at
ib le I E E E ins tru me nt .
The LC 1 02 m a y ha ve e it h e r o f tw o f u n c t i o n s . A s a “ l i s
te n e r ” i t c a n r e c e i v e in s t ru c t i o n s fr o m t h e I E E E 4 8 8
b u s con tro lle r t o ch ange fu n c t io n s o r r a n g e s . T h e L C 1 0 2
lis te ne r fu n ct ion s pr ov ide c o m p le te a u t o m a t i o n , a s th e
controller i s able t o s e n d a n y val u es o r tole ra nc es
n e e d e d for g o o d / b a d te s ti n g c o m p a r is o n s a n d the co n
t r o l l e r c a n selec t an y o f t h e A U T O - Z te st f u n c t i o n s .
A s a “ t a l k e r ” the LC1 02 c a n s e n d rea d in g s b a c k to t he
I E E E 4 8 8 b u s c o n tr o lle r a s th e co nt ro ll er re que st s
t h e m .
F i g . 2 4 - T h e L C 1 0 2 w i l l p r o v i d e a G O O D / B A D t e s t o f
i n d u c t a n c e v a l u e i f t h e m a r k e d v a l u e a n d t o l e r a n c e i s
p r o g r a m m e d i n .
T o U s e T h e G O O D /B A D I n d u c t a n c e T e s t :
1 . Z er o the te st l e a d s .
2 . Con ne ct t h e in d u c t o r t o the tes t l e a d s .
3 . E n t e r the ma rk ed value, alon g w it h the “ + ” a n d
“ — ” to lerance o f th e in du ct or to b e t e s t e d . ( R e f e r t o th e
s ec ti o n “ E n t e r in g C o m p o n e n t D a ta ” o n pag e 1 6 . )
C O N N E C T I N G T H E L C 1 0 2
F O R I E E E O P E R A T I O N
The IB 72 I E E E 4 8 8 B u s In ter fa ce a c c e s s o r y m u s t b e
c o n n e c t e d t o the L C1 02 A U T O - Z fo r IEE E o p e ra t i o n .
The IB 72 a c t s a s a tra nsla to r b etw een t h e G PIB sign als
a n d the m i c rop ro ces so r in s i d e t h e L C 1 0 2 AUT O-Z . T h e
IB 72 c o n n e c t s to th e I N T E R F A C E A C C E S S O R Y J A C K
lo ca ted o n the ba ck o f th e L C 1 0 2 . The s t a n d a r d G P I B
c a b le the n c o n n e c t s t o the I B 7 2 .
4 . P ush th e I N D U C T O R V A L U E b u t t o n .
5 . I f th e m e as u r ed in d u c t a n c e v al u e i s w i t h i n th e p ro g
rammed v al u e tol erance the “ G OO D” annunciator w i l l
c o m e o n .
6 . I f th e m e as u r ed i n d u c t a n c e v a lu e i s o u ts id e th e p ro g
rammed valu e to le ra nc e, th e “ B A D ” annu ncia tor w i l l
c o m e o n .
F i g . 2 5 - T h e I B 7 2 IE E E 4 8 8 B u s A c c e s s o r y i n t e r f a c e s
t h e L C 1 0 2 t o a n y G P I B s y s t e m f o r a u t o m a t e d o p e r a
t i o n .
W hen using t h e L C 1 0 2 in a B u s sy st em on l y o p e ra t e
t h e LC102 fr om i t s A C po w er a d a p t e r . T h e power a d a p
te r p rev en ts t h e a u to - o ff c ir c u i ts fr om r e m o v i n g p o w e r '
fr om th e L C 1 02 du ri n g a n a uto ma ted t es t . I f t h e a u t o -
o f f cir cu it s s h u t t h e A U T O - Z d o w n , the b u s con troller
may b e c o m e h u n g u p i n t h e mi d dl e o f its p r og ra m .
E a c h in strumen t in a n a u to m a te d b u s system m u s t b e
a ss ig n ed its o w n a d d r e s s in order for th e con tro ll er t o
s e n d in st ru ct io n s t o o r r ec ei ve rea dings fro m o n e in st ru
me nt at a t im e. Th e a d d r e s s o f the LC102 i s set with
a g r o u p o f minia tur e s li d e sw it c h e s o n the b a c k o f t h e
I B 7 2 . R e fe r t o t h e I B 7 2 ins tru ct ion man ual for de ta ils
a b o u t a d d r e s s e s a n d se tting t h e se sw it c h e s .
S P E C I A L N O T E O N I E E E P R O G R A M S
T h e c o m p u t e r p r o g r a m s or s o f t w a r e u s e d t o a u t o m a t e a
s y s t e m m u s t b e w ri tt en fo r t h e s p e c i f i c ap pli ca ti on b e i n g
p e r f o r m e d . T h e a m o u n t o f p r o g r a m m i n g r e q u i r e d d e
p e n d s o n t he typ e o f I E E E 4 8 8 c o n t r o l l e r u s e d a n d w h a t
y o u w a n t t he a u t o m a t i o n t o a c c o m p l i s h . M o s t I E E E 4 8 8
p r o g r a m m i n g i s d o n e i n t h e B A S I C c o m p u t e r l a n g u a g e ,
a l t h o u g h a n y o t h e r l a n g u a g e c o m p a t i b l e w i t h y o u r c o n
t r o l l e r c a n b e u s e d a s w e l l . T h e e x a m p l e s c o v e r e d i n t h i s
s ec t i o n a r e w r i t t e n i n B A S I C , since i t i s t h e m o s t c o m
m o n l y u s e d c o m p u t e r l a n g u a g e for G P I B a p p l i c a t i o n s .
S E N D I N G D A T A T O T H E L C 1 0 2
T o c o n n e c t t h e LC 102 t o a n a u t o m a t e d G P I B s y s
t em :
1 . Remo ve po w er t o t h e L C 1 0 . 2 a n d t o th e I B 7 2 .
2 . Set the B u s A d d r e s s s lid e sw it ch es o n the b a c k o f
th e IB 72 t o the a d d r e s s y o u have assig ned to the L C 1 0 2 .
3 . C o n ne c t t h e m a le D I N c o n n e c t o r o n th e IB72 t o th e
I n te r fa ce A cc e s s o r y J a c k o n t h e b a c k o f the L C 1 0 2 .
4 . Co nne ct th e A C p o w e r a d a p t e r s t o the L C X 0 2 a n d t o
the IB 72 a n d c o n n e c t t h e m t o A C ou tl et s.
5 . C onfir m that p o w er h a s re a c h e d the units by c h e c k
i n g th e power L E D o n t h e I . B 7 2 a n d the d i g i t a l r e a d o u t
o n the L C 1 0 2 .
6 . F o ll o w t h e in s t r u c t i o n s fo r your c o n tr o ll e r t o lo a d
a n d ru n t h e s o ft w a r e .
A s a li s te n e r , the L C 1 02 a c c e p t s c o m m a n d s fro m t h e
contr oller . Th e s e c o m m a n d s c a n b e u s e d t o select a
fu n c t i o n o r to s e n d para m et ers t o the L C 1 0 2 fo r G O O D /
B A D co mpar ison testing. The c o m m a n d s se n t t o t h e
A U T O - Z d u r in g b u s o pe ra ti o n d u p li c a t e th e f r o n t p a n e l
p u s h b u t t o n s . F o l l o w t h e s a m e prog ram min g s e q u e n c e
a n d r a n g e l im it s a s fo r m a n u a l (non-IEEE) o p e ra t io n .
T h e l is t e n e r c o d e s c o n s i s t o f o n e , t w o , o r th ree ch a ra c
t e r s , a n d r e l a t e t o t h e fu n c t i o n bein g se le cte d o r t h e
d a t a b e i n g en tered. M o s t , liste ner c o d e s c o n s is t only o f
th e c o d e ch a ra ct er s . The lis tener c o d e s u s e d t o en ter
d a t a f o r g o o d / b a d tes tin g c o n s i s t o f a n u m b e r , followed
by t h e cha ra cte r c o d e .
Mo st c on tro ll ers s e n d in for ma ti on ov er the b u s b y
m e a n s o f a “ p r i n t ” s t a t e m e n t . T h e information t o b e
s e n t i s u s u a lly p la c e d in to a var iable, a n d th e va ri ab le
i s the n p ri n te d t o th e b u s , a lon g wi th the a d d r e s s o f
the ins tru men t. S tu dy t h e in for ma ti on w it h y ou r c o n
t r o ll e r f o r d e ta i ls a b o u t s e n d in g infor ma ti on to in stru
m e n t s . .
T h e c o d e s m a y b e se n t by t h e co n t r ol le r a s e i t h e r u p p e r
or lo w er c a s e (c ap ita l or sm all ) l e t t e r s .
F i g . 2 6 - T h e LC102’ s a d d re s s i s s e le c t e d b y th e B u s
Ad d re ss sw itc h es loc ated o n the r e a r o f the IB 7 2 .
A l l data sent t o - the L C 1 0 2 m u s t e n d w it h a linefeed
ch a ra ct er , to b e re cog niz ed by t h e L C 1 0 2 . S o m e co nt ro l
lers a u t o m a t i c a ll y a d d t h i s c h a ra ct er t o the e n d o f ev er y
str ing o f da ta , w h il e o t h e r s have a s p e ci a l f u n c t io n
w h i c h a d d s th e li ne fe ed w h e n ac ti va ted w i t h a sof tw are
Q o m m a n d . I f your co ntroller h a s neither o f th es e o p
t io n s , you ca n a d d a linefe ed c h a r a c t e r b y s tor in g t h e
char act er i n a v a r ia b le a n d the n a d d i n g thi s v ar ia b le
t o yo u r d at a be fo re s e n d in g i t t o t h e b u s .
Fi g. 2 7 - sh o w s how t h e l in efe ed ch a ra c t e r c a n b e s t o r e d
in a s t r in g - v a r i a b l e c a lle d “ L F $ ” . Th is v a r i a b l e c a n
t h e n be co mb in ed with t h e fu n c t i o n st o re d in “ L I S
T E N S ” b e fo re being s e n t t o t h e b u s .
32
1 0 0 L F $ “ CH R $ ( 1 0 ) : R E M C H R $ ( 1 0 ) I S A LIN EF E ED
1 1 0 L I S T E N $ = L I S T E N $ + L F $ : R E M A D D S THE LI N EF E ED T O T H E D A T A
1 2 0 P R I N T LI STEN!: R E M S E N D S TH E S T RI N G T O T H E B O S
F ig . 2 7 - U s e t h i s r o u t i n e t o a d d a l i n e f e e d c h a r a c t e r
t o t h e e n d o f d a t a s t a t e m e n t s s e n t t o t h e L C 1 0 2 .
V a l u e M u l t i p l i e r s :
These G P I B lis te ne r c o d e s l e t t h e c on tr o lle r s e n d c o m
po nent data inf ormation t o t h e LC 1 02 inclu din g t h e
id e al c o m p o n en t v alue a n d valu e t ol era n ce limi ts. T h e
c o d e s dup licate t h e non-IEE E o pe ra to n o f t h e c o m p o
nent par ameters ke yp ad fo r ente ring c o m p o n en t d a t a .
The d a t a o r l is ten er c o d e s s e n t to th e LC1 02 f a l l i n to
f o u r g r o u p s : 1 . C o m p o n e n t T y p e C o m m a n d s , 2 .
V a l u e M u l t i p l i e r s , 3 . T e s t F u n c t i o n C o m m a n d s ,
a n d 4 . G e n e r a l C o m m a n d s . A l l li s t e n e r c o d e s are
li ste d in Ta ble 9 . T h e y a re al s o l i s t e d in the Si m pl ifi ed
Ope rat ing In s t ru c t io n s o n t h e P U L L - C H A R T u n d e r t h e
unit fo r read y re fer en ce .
T a b le 9 C o m p o n e n t T y p e C o m m a n d s :
A lu m in u m Lytics
D o u b le L aye r Ly ti cs
T a n t a lu m C a p s
C e ra m ic Ca ps
A ll O t h e r Ca ps
S par e
C oils
Y o k e s & Fly b a ck s
S w it c h in g T r a n s fo r m e r s
V a l u e M u l t i p l i e r s :
( to b e p re c e e d e d by n u m e r i c v a lu e )
p F , uF , F , U H , Μ Η , H , + % , -
T e s t F u n c t i o n C o m m a n d s
- % , V
C a p a c it o r Value
C a p a c it o r L e a k a g e (c u rr e n t)
C a p a c it o r L e a k a g e (o hm s)
D ie le c t ri c A b s o rp t io n
C a p a c it o r E S R E S R
I n d u c t o r V a lu e
I n d u c t o r R in g e r R I N
G e n e r a l C o m m a n d s
L e ad Z e r o Ope n
L ea d Z e r o S h o rt
LDO
LD S
N o Fu nc ti o n NF C
C o nt ro l Pane l O n CP O
T a b l e 9 - IE E E c o n t r o l c o d e s f o r t h e L C 1 0 2 .
AL M
D BL
TAN
CE R
AOC
SPR
COL
Y FB
SWX
CA P
L K I
L K R
D /A
I N D
C o m p o n e n t T y p e C o m m a n d s
C O M P O N E N T P A R A M E T E R S
N U M f c t t l C I M P U I fr NT t. P t R L C M i
P F
s
C LR
μ Μ
m H
□
LEAD ZE RO LE AKAGE
F i g . 2 8 - D u r i n g IE EE o p e r a t i o n t h e V a l u e M u l t i p l i e r
C o d e s a l l o w c o m p o n e n t d a t a t o b e e n t e r e d i n t o t h e
L C 1 0 2 .
A s w i t h ma n u al o p e r a t i o n , e a c h V a lu e M u l t i p l i e r C o m
m a n d in cl u de s a n u m b e r , fo llowe d b y th e li s te n e r c o d e .
T h e r e are four t ype s o f V a lu e M u lt ip li e r s fo r I EE E
pro gra m mi ng: 1 . Ca pa cit o r va l u e , 2 . Ind uc to r Val ue , 3 .
P e r c e n t to le ra nc e, a n d 4 . Ca pa cit o r v o l ta g e . T h e first
t h re e a r e on ly u s e d for LC 1 0 2 au tom at ic G O O D / B A D
c o m p a r i s o n s . T h e ca p a ci t o r v ol ta ge c o d e a l s o s e t s t h e
LC102 p ow er s u p p ly t o t h e s e l e c t e d v o l t a g e fo r th e le ak
a ge te s t
W h en sen ding a c o m p o n e n t va l u e t o th e LC 1 02 it i s
n o t n ec es s ar y t o s e n d long s t r in g s o f z er o s t o e s t a b l is h
de cima l re ad in g s. In s t e a d , u s e t h e v a l u e m u lt ip lie r s u F
(m icr ofa ra ds ) pF (p ic o fa ra d s ) , a n d F (f ar ad s) a n d t h e
t h re e uH (mi cr ohe nr ie s), m H ( m i ll ih e n r ie s ), a n d H
(he nrie s). F o r in d u c t o r s t h e c h a r a c t e r s ma y b e s e n t i n
u p p e r o r lo w er c a s e . F or e x a m p l e , “ u F ” , “ U F ” , o r e v e n
“ U f ” w i l l a l l p r o d u c e t h e s a m e r e s u l t s . T h e LC 1 02 a l s o
ignores any b lan k s p a c e s b et w ee n l is t e n e r c o d e c h a r a c
t er s . T h i s m e a n s tha t “ 10U F” , “ 1 0 U F ” a n d even “ 1 0
U F ” wo rk e q u al ly well.
T h e co mp le te V a lu e M u l t ip l ie r c o d e c o n s i s t s o f th e c o r
rect num eric valu e, the V a lu e M u l ti p l ie r, a n d the E n d
T e rm in at or . T h e fo ll o w in g e x a m p l e s s h ow v a l i d c o m
m a n d s , w it h t h e E n d Ter mina tor s not s h o w n :
T h es e c o d e s d u pl ic a t e t h e fro nt p an e l C O M P O N E N T
T Y P E s w i t c h e s a n d m u s t b e sen t t o the L C 1 0 2 i f y o u
want th e test re su lts t o b e co m pa re d t o the tab les a n d
ca l c u l a t i o n s a s s o c ia t e d w it h the LC 1 0 2 m i c r o p r o c e s s o r .
A s in non -IE EE o p e ra t io n , the L C10 2 u s e s t h e s e t o
establish t h e G O O D / B A D li m it s f o r t h e leaka ge, E S R ,
diel ect ri c a b s o r p t i o n , a n d co il r i n g i n g t e s t s . The g o o d /
b a d re s u l t s m a y b e i n error i f th e w r o n g C o m p o n e n t
Typ e C o m m a n d is s e n t .
N O T E : T he L E D o n t h e co m po n en t t y p e swit ch w hi c h
in dicates i f t h e sw itch i s se le ct ed D O E S N O T l i g h t w h e n
t h e L C10 2 i s u n d er I E E E co n t r o l.
3 3
4.7 uF
(ent ers ca p a ci t o r v a lu e o f 4 . 7 mic rofarad)
1 0 0 p F
(en ter s ca p a c it o r v al u e o f 1 0 0 p ic o fa ra ds )
1 5 V
(ent ers le ak ag e v o l ta g e o f 1 5 volt s)
2 0 + %
(ent ers val ue tol erance o f + 2 0 % )
5H
(ent ers i n d u c t a n c e va lue o f 5 he nries)
S e t t i n g t h e L e a k a g e V o l t a g e :
T h e leak ag e po w er s u p p ly m u s t b e s e t t o t h e d e s i r e d
v o lt a g e b e f o r e se lec tin g a l e a k a g e t e s t with t h e L K I o r
the L K R c o d e s . T h e su p p l y c a n b e s e t t o th e n e a r e s t
ten th o f a volt. T h e lis te n e r c o d e simply c o n s i s t s o f t h e
d es ir ed v ol ta ge followed b y t h e l e t t e r V a n d t h e E n d
Terminator. F or e x a m p le , “ 1 0 0 V ” s e t s th e s u p p l y t o
p r o d u c e 1 0 0 volts when a le a k a g e fu n ct io n i s a ct iv a te d.
The high est v o l ta g e w hic h c a n b e pr ogr am m ed in to t h e
L C 1 0 2 is 9 9 9 . 9 vo lts t h e low est i s 1 v o lt . A tt e m p ti n g
t o en ter a v o lt a g e hi gh er o r lo w er t ha n t h i s ran ge w i l l
p r o d u c e a n E rr o r 2 c o n d i ti o n .
T h e a m o u n t o f C o m p on en t data w hic h n e e d s t o b e e n
t e r e d wit h the I E E E V a l u e M u l t i p l i e r c o d e s fo r a
G O O D / B A D t e s t d e p e n d s o n the LC 1 02 fu n c t i o n . The
c h a r t in T a b le 1 0 s h o w s the c o m p o n e n t pa ra m et er s
n e e d e d fo r e a c h G O O D / B A D t e s t . Sending add it io na l
d a t a t o t h e L C 1 0 2 w i l l not aff ect t h e t e s t s .
C O M P O N J
T E S T C A P I N D
V A LU E VALUE
C a p . V a lu e X
C a p . L e a ka g e
C ap . ES R
C ap . D /A
I n d . V al ue
X
X
X
X
I n d . R in g in g
+ % - %
*
*
CA P
V O L T A G E T Y P E
*
X X
X
X X
*
X
X
X = Mu st b e en te re d for G O O D / B A D re s u l ts .
* = To lerances a r e s e t t o z e r o pe rc en t at p o w e r - u p .
T a b l e 1 0 - T h e s e p a r a m e t e r s m u s t b e e n t e r e d f o r t h e
L C 1 0 2 t o p r o d u c e a g o o d / b a d t e s t r e s u l t
N O T E : T h e L C 1 0 2 w i l l s e n d g o o d / b c i d indicat ors b a c k
t o t h e c on tr o l l e r f or e a c h r e a d i n g i f a l l n e c e s s a r y in for
m a t i o n h a s b e e n su ppl ie d. T o stop th e L C 1 0 2 f r o m s e n d
i n g t he “ G ” o r t h e B ” a s p a r t o f i t s r e t u r n e d da ta, s i m p l y
s e n d a ze ro v a l u e r e a d i n g , s u c h a s “ O p F ” . T h e o t h e r
V a l u e M u l t i pl ie rs ( s u c h a s p e r c e n t a g e s o r v o lt ag e) w i l l
r e m a i n i n th e L C 1 0 2 m e m o r y u n t i l c h a n g e d o r u n t i l
p o w e r i s r e m o v e d f r o m t he u n i t .
Th e p l u s a n d m i n u s c o m p o n e n t tol erance li m it s m u s t
b e se n t in the c o r r e c t fo rm . Firs t, t h e n u m b e r m u s t b e
a w ho le n u m b e r , w it h n o d ec im a l. Th en , the pe r ce n
ta g e s m u s t b e w it h i n the a ll o w a b le r an ge. The lar ge s t
n e g at iv e n u m b e r allo wed is 9 9 per cen t ( 9 9 - % ) . a n d th e
la rge st p ositive n um be r allo wed i s
1 0 0 pe r c e n t
( 1 0 0 + % ) . Nu m ber s tha t a re o u ts id e this range , o r th at
c o n t a in a d ec im a l, p r o d u c e a n E r r o r 2 c o n d i t i o n .
The lea kag e po w er su p p ly only a p p li e s pow er t o t h e
te st l e a d s a f t e r o n e o f t h e tw o le ak ag e fu n c t io n s h a v e
be e n s e le c t e d w i t h the “ LK I” o r “ L K R ” li ste ner c o d e .
T h e p o w er su p p l y au to m ati ca lly re m o ve s v o l ta g e fr o m
the test le a d s when the c on tr o lle r s e n d s an y o th e r lis
t e n e r c o d e , o r when th e fr ont -pa nel b u t t o n i s p r e s s e d .
- - - - - - - - - - - - - - - - - - - - -
W a r n i n g
- - - - - - - - - - - - - - - - - - - - -
T h e w a r n i n g L E D o n t h e f r o n t o f t h e LC102
w i l l f l a s h a s a r e m i n d e r t h a t a s h o c k h a z a r d
o f u p t o 1000 v o l t s m a y b e a p p l i e d t o t h e t e s t
l e a d s w h e n a l e a k a g e t e s t i s s e l e c t e d . U s e e x
t r e m e c a u t i o n w h e n t h e L E D i s b l i n k i n g .
N O T E : W h e n n o t u s i n g a l e a k a g e t e s t , s e n d the l i s t e n e r
c o d e “ O V ” t o t he L C 1 0 2 t o p r e v e n t ac ci de nta lly a p p l y i n g
a voltage t o t he t e s t l e a d s .
T e s t F u n c t i o n C o m m a n d s :
O n e o f t h e se ve n li s te ne r T e s t Fu nc ti on C o d e s m u s t b e
se n t t o t h e LC 1 02 b e f o r e the con troller c a n r e q u e s t a
re ad in g. T he se le ct ed fun cti on i s ca n c e ll e d by a n y o t h e r
lis te ne r c o d e s e n t t o the L C 1 02 , m ea nin g th at a Te st
Fu n ct ion Co m m a n d m u s t b e the las t lis ten er c o d e s e n t
be fo re a r ea di n g i s r e q u es te d .
The L C 1 0 2 w i l l re m ai n in the las t fu n ct io n s e l e c t e d
un til i t rece ive s ano the r te st fu n c t io n c o m m a n d o r l is
t e n e r c o d e . T h e con troller c a n se le ct an L C 1 0 2 t e s t , g o
o n to o th er in str u m en ts o n the b u s , a n d th e n c o m e b a c k
t o t h e L C 1 0 2 a t a l a t e r ti m e t o re qu es t a re ad in g . T h is
allows t e s t s w hic h req uire longe r t im es , s u c h a s
ca pa ci to r leakag e, to b e u s e d with out sl ow in g t h e o p e r
a tion o f other in st ru m en ts o n the b u s .
3 4
T E S T
\ n a B
1 U A K A ' , : ,
1 O I C L t C T P r o I j C A P A C l i O R
fu n c t i o n s w it h a Test Fu nction C o m m a n d o r w h e n
ch ang ing c o m p o n e n t p ar am et er s w i t h a Value M u lt i p
l i e r c o m m a n d , s i n c e an y l i s t e n e r c o d e c l e a r s t h e cu rr en t
fu n c t i o n . S end ing t h e “ N F C ” c o m m a n d w h e n t h e L C 1 0 2
is n o t i n a test fu n c t i o n h a s n o e ff ec t.
j I N D U C T O R
l e a k a g e
/‘ “ ' s C U R R E N T
T e s t F u n c t i o n
C a p a c it o r V a l u e
C a p a c it o r L e a k a g e ( c u r r e n t )
C a p a c it o r L e a k a g e (o h m s )
D ie le ct ric A b s o r p t io n
C a p a c it o r ES R
I nd u c to r Va fue
I nd u ct or R in g e r
F ig . 2 9 - T h e L C 1 0 2 T E ST f u n c t i o n s a r e s e l e c t e d v i a
IE E E u s i n g t h e T e s t F u n c t i o n C o m m a n d s .
ί t N l D U ' i T O H
C o m m a n d s
CA P
L K I
LK R
D/A
ESR
iN D
R I N
Th e L C 1 0 2 starts a t e s t f ro m i t s b e gi n ni ng e v e r y t i m e
i t re ce iv es anot her T e s t Fu n cti on C o d e . T h e r ef o re , i f
t h e L C 1 0 2 h a s b e e n pre s e t t o a fu n c t io n for a de layed
re ad ing ,m ak e certain t h a t th e contr oller d o e s n o t r e -
s e n d t h e c o d e just bef ore a rea ding i s t a ke n .
G e n e r a l C o d e s :
Th e fo u r g en e ra l li s t e n e r c o d e s acti va te s p e ci a l fu n c
t i o n s w h e n s en t to t h e LC 1 0 2 . Th e c o d e s l e t the con tro l
ler in s t ru c t the L C 1 0 2 to c o m p e n s a t e for the te st l e a d s ,
c le a r a fu n c t io n , o r r e t u r n c o n t r o l o f t h e L C 1 0 2 t o th e
fr o n t - p a n e l s w it c h e s .
Th e L C 1 0 2 m u s t su btr act re si du a l eff ects o f t h e test
l e a d s w h e n t e s t in g ESR, a n d s m al l ca pa ci to r o r in d u c t o r
v a l u e s . The L e ad Zer o ( L D O ) a n d L ead Shor t ( L D S )
list en er c o d e s du pli ca te th e o pe ra ti o n o f th e fro nt panel
L E A D ZERO b u t t o n t o null o u t t h e eff ec ts o f the r e
s i d u a l r e si st a n ce , ca pa ci ta nc e, a n d i n du ct an ce o f the
t e s t l e a d s a n d t e s t fi x tu re . The l e a d s m u st b e s h o r t e d
b e f o r e sen din g th e L D S c o m m a n d a n d o p e n e d bef or e
s e n d in g th e L D O c o m m a n d . I f n o t , th e test lea d im pe
d a n c e w i l l not b e co m p e n sa t ed f o r ,
N o t e : T h e l e a ds c a n b e n u l l e d m a n u a l l y b e fore t u r n i n g
c o n t r o l o f t h e L C 1 0 2 o v e r t o th e a u t o m a t e d s y s t e m . Sim,-
ply fo llo w t h e p r o c e d u r e s fo r m a n u a l l y n u l l i n g t he e f f e c t s
o f t h e l e a d s , a s e x p l a i n e d o n p a g e 1 6 . T h e L C 1 0 2 w i l l
r e m e m b e r t he c or re ct c o m p e n s a t i o n u n t i l th e p o w e r i s
t u r n e d o f f .
Th e N o Fu n cti on C om m and ( N F C ) c a n c e l s an y test t h a t
i s i n p r o g re s s a n d plac es the L C 1 0 2 in to the s t a n d b y
m o d e ( n o b u t t o n p r es se d ). Y o u o n ly n ee d t o s e n d “ N F C ”
i f y o u wan t t o c le ar a t est . F or e x a m p le , you may w is h
t o t u r n o f f the capa cito r v al u e test fu n ct io n w h il e you
re m o ve o n e co m po n en t a n d rep la ce i t w i t h a d i f fe r e n t
o n e . I t i s n o t n ece ss ary t o s e n d “ N F C ” w he n cha nging
I M P O R T A N T
D o n o t d i s c o n n e c t o r c o n n e c t a n y c o m p o n e n t s
t o t h e LC 1 0 2 a f t e r p e r f o r m i n g a n y c a p a c i t o r
o r i n d u c t o r t e s t w i t h o u t f i r s t s e n d i n g a N o
F u n c t i o n C o m m a n d ( N F C ) o r o t h e r c o m m a n d
f i r s t t o c l e a r t h e t e s t f u n c t i o n . T h e LC 1 02 m a y
b e d a m a g e d i f c h a r g e d c a p a c i t o r , o r s t a t i c
v o l t a g e i s c o n n e c t e d t o it. A l s o , a s e v e r e s h o c k
h a z a r d m a y e x i s t t o t h e u s e r i f a c a p a c i t o r is
r e m o v e d a f t e r a l e a k a g e t e s t w i t h o u t f i r s t
b e i n g d i s c h a r g e d .
T h e fro nt p a n e l sw i t c h e s a re automatically d i s a b le d
w h en eve r the L C 1 G 2 rec e iv e s it s f ir s t GP IB c o m m a n d
t hr ou g h t h e I B 7 2 . A s a r em ind er o f t h i s , a n y L E D s
a s s o c ia t e d w i t h the C O M P O N E N T T Y P E s w it c h e s w il l
t u r n o f f a s s o o n a s t h e LC 1 0 2 rec e iv e s a G P IB c o m m a n d .
Th e pan el w i l l rem ain lock ed o u t for al l f u n c t i o n s u n t i l
the C o n tro l Pa nel O n ( C P O ) c o d e i s se n t o r un ti l p o w e r
to th e.L C 1 0 2 is re m o v e d .
N O T E : O n e ex cep ti on i s the c a p a c i t o r l e a k a g e f u n c t i o n .
D e p r e s s i n g a n y o f t h e f r o n t - p a n e l s w i t c h e s w i l l m a n u
a l l y u n - l a t c h t he I E E E u s e o f th e l e a k a g e p o w e r supply.
R E A D I N G D A T A F R O M T H E
L C 1 0 2
T h e LC 1 02 w i l l s e n d data to th e co ntrolle r th r o u g h t h e
c o m p u t e r inter fac e a c c e s s o r y wh ene ver t h e co nt ro ll er
s e n d s the c o rr e c t t a l k e r a d d r e s s a n d a “ T a l k ” c o m m a n d .
The dat a retur ned ov er th e b u s w i l l b e t h e s a m e a s t h e
rea ding app earing in the L C D d i s p l a y .
Erro r m e s s a g e s w i l l a l s o be re tu rn ed over t h e b u s . Th e
e rr o r c o d e s w i l l b e t h e s a m e a s the c o d e s d u r in g m a n u a l
( n o n - b u s ) o p e r a t i o n , a n d are listed o n p a g e 3 7 .
N O T E : M o s t c o n t r o l l e r s a u t o m a t i c a l l y c o m b i n e t h e
“ T a l k ” c o m m a n d w i t h t h e instruction c o n t a i n i n g t h e
a d d r e s s , s o t he re i s n o t a s e p a r a t e st ep r e q u i r e d i n t h e
p r o g r a m . C o n s u l t t h e m a n u a l f or t h e c o n t r o l l e r y o u are
u s i n g for i n f o r m a t i o n o n i t s o pe rat io n.
O n c e a d d r e s s e d , t h e L C10 2 s e n d s a re ad ing over t h e
b u s e v e r y tim e i t u p d a t e s the r ea di n g o n t h e L C D di s
pl a y. The so ftw ar e in th e con troller d et er m in es h o w
m a n y read ing s a re re co r d ed . S o m e a p p li c a t io n s o n ly
n e e d a si ngl e re ad in g, w h i l e oth er a p p li c a t i o n s m a y
req uire col lecting seve ra l r ead in gs in a r o w .
The on ly diff ere nc e be twe en col le ct in g a s in gl e re ad in g
o r co llecting a s e r i e s o f r ead in gs i s in t h e c o n t r o lle r
so ft w a r e. I f only o n e r e a d in g i s d e s i r e d , t h e c o n t r o lle r
w i l l t r i g g e r t h e ta l k e r fu n ct io n , a n d t h e n w a it u n t i l
o n e r ea di n g i s re ce iv ed . T h e n t h e co ntrolle r s e n d s a b u s
in st ru ct io n whi ch c a u s e s the L C 1 0 2 t o s t o p s e n d i n g
r e a d i n g s .
35
O n e w a y t o s t o p t h e L C 1 0 2 fr om sen ding rea dings i s
t o simply a d d r e s s a d if fe r e nt instrum ent o n the b u s
wi th the controller. The L C 1 0 2 w i l l r e m a in in t h e t es t
fu n ct io n , bu t the re ad in g s w i l l n o t b e se n t t o the co nt rol
l e r until the LC1 02J s tal k a d d r e s s is a g a i n sele cted b y
t h e co ntroller.
N O T E : T h e L C 1 0 2 w i l l r e t u r n a C o n t r o l P a n e l O n
( C P O ) h e a d e r i f i t i s a d d r e s s e d t o t a l k b u t h a s n o t re
ce iv ed a v a li d l i s t e n e r c o d e . A N o F u n c t i o n C o m m a n d
( N F C ) i s r e t u r n e d i f th e L C 1 0 2 h a s rec eived a va li d
l i s t e n e r c o d e , b u t h a s n o t b e e n g i v e n a T e s t F u n c t i o n
C o m m a n d .
A s e c o n d me tho d t o s t o p th e L C 1 0 2 from sen ding read
ings i s t o se n d an y lis te ne r c o d e , inc ludin g th e N o Fu n c
tion C o d e ( N F C ) , t o th e L C 1 0 2 . Thi s w i l l bo t h s t o p t h e
re a di n gs a n d p l a c e t h e L C 1 02 in to it s sta ndby m o d e .
A l w a y s u s e this m e t h o d i f a d i f fe r e n t c o m p o n en t i s
g o i n g t o be c o n n e c t e d t o the L C 1 0 2 .
N O T E : T h e L C 1 0 2 d o e s n o t n e e d ( n o r d o e s i t r e s p o n d
t o ) the spe cia l “ G E T ” (gr oup -e xec ute -t rig ger ) c o m m a n d
u s e d i n s o m e c o n t r o l l e r s . I t w i l l b e g i n s e n d i n g r e s u l t s
a s s o o n a s the t a l k c o m m a n d i s c o mp le te .
D A T A F O R M A T
A l l d ata ret urn ed fr o m the L C 1 0 2 fa lls into a s t a n d a r d
d at a for ma t. E a ch d a t a s tr in g i s 1 7 cha rac te rs lon g a n d
co n ta in s in fo rm at io n in fo u r da ta fields. T h e software
c a n keep th e ent ir e str ing o f ch a ra ct er s t o ge th er , o r it
c a n sepa rat e the d a t a in to th ree pa rts for ca lcu la ti on s
o r pr oc e ss in g.
J L - L J L 2 L 2 L 2 L _ l _ J ! L 2 L 2 L J L 2 L 2 L 2 L i l £ 5 H :
— . — - v .
He ad er Nu m er ic D a ta Fieid / E nd
F i g . 3 0 - T h e d a t a f o r m a t r e t u r n e d b y t h e L C 1 0 2 i s a
s t r i n g o f 1 7 c h a r a c t e r s l o n g .
---- ---- --- , - - - - - - - - - - -
GOO D/B AD I n d i c a t o r
, f —
I T e r m in a to r
N u m e r i c a l D a t a F i e l d : T h e 1 1 s p a c e s fo ll o w in g th e
H ea d er (char act ers 4 thr oug h 1 4 ) c o n t a i n t h e num eric al
re su lts o f a t a l k e r fu n c t io n . T h e va iu e s re tu rn ed from
a te st fu n cti on a re in sc ientific n o t a t io n , a l lo w in g a ny
v alue t o b e represe nte d w it h t h e s a m e n um be r o f
c h a r a c t e r s . E r r o r c o d e s appea r a s a si ngle d i g i t (fro m
1 t o 7 ) w ith ou t the sc ientific n o t a t i o n .
G O O D / B A D I n d i c a t o r : Th e sing le s p a c e f o l lo w in g th e
N um e ri c al D a t a F i e l d (the f i ft ee n th ch a ra ct er ) i s re
ser ved for th e resu lts o f t h e auto ma tic L C 1 0 2 G O O D /
B A D t e s t s . T h e s in g le l e t t e r “ G” o r “ B ” a p p e a r s in t h is
p o si t io n when th e LC 1 02 h a s su ffi ci ent info rma tio n t o
determin e i f t h e r ea di n g i s g o o d o r b a d . I f a pie ce o f
da ta ( s u c h a s th e tole rance or i d ea l va lu e ) i s m is si ng ,
th e p o si t io n o c c u p ie d by t h e G O O D / B A D Ind ic ato r i s
l e f t b l a n k .
N O T E : A l e a k a g e t e s t f u n c t i o n m a y req ui re f r o m 4 t o 8
r e a d i n g s for the l e a k a g e t o s e t t l e b e f o r e p r o v i d i n g a
G O O D / B A D in di ca ti on .
E n d T e r m i n a t o r : A l l d a t a e n d s wit h b o t h a c arriage-
r e t u m ( A S C I I de cima l 1 3 ) a n d a li nefeed ( A S C I I de ci
mal 1 0 ) ch a ra ct er , a s re c o m m e n d e d by t h e I E E E 4 8 8
s t a n d a r d . M a n y controllers r e s p o n d t o ei ther ch a ra ct er ,
w h ile o t h e r s o n l y re s p o n d i f th e line feed i s p r e s e n t . A
few cont ro lle rs , ho wev er, may s t o p a c c e p ti n g da ta when
t h e c ar ria g e -re tu rn ch ara ct er i s s e n t , l e a v in g t h e
1 0 2 h un g u p w a i t i n g t o s e n d its las t ( li n e fe ed )
L C
c h a r a c t e r . I f th is h a p p e n s , y o u ma y n e e d t o p u t a n e xt r a
G E T or I N P U T s tat em ent i n to yo u r prog ram t o l e t t he
LC1 02 s e n d its la s t cha racte r in to a n u n u s e d v a r ia b le .
R e fe r to the m anu al f o r t h e s p e c if ic co nt ro lle r th a t y o u
are usi n g for i nf o rm at io n o n t h e e n d term in ato r i t a c t s
o n .
T h e four f i e ld s o f t h e d a t a s tr in g a r e : 1 . H ead er, 2 .
N u m e r i c a l D at a Fi el d , 3 . G O O D / B A D Ind ic ato r, a n d 4 .
En d T e r m in a t o r . E a c h f i e ld h a s t h e s a m e num ber o f
ch aracters f o r a l l test fu n c t i o n s , a l l o w i n g th e s a m e s u b
routines to p r o c e s s a n y retur ned d a t a . H e r e a re th e
d e ta ils f o r e a c h f ie ld o f d a t a .
H e a d e r : T h e f ir s t thr ee c h a r a c t e r s i d e n t i f y the test
fun ction wh ic h p r o d u c e d t h e re ad in g. T h e t h r e e ch a ra c
t ers sent b a c k from the i ns tru me nt are us ua lly t h e
s a m e a s th e test fu n c t i o n c o m m a n d s u s e d t o se le ct a
fun ction wh en the L C 1 0 2 a c t s a s a listener. T he se c o d e s
l e t the s of tw a re i d e n ti f y the s o u r c e o f th e d a ta , co nf ir m
th a t the corr ect fu n c t io n i s p r o d u c i n g rea ding s, o r labe l
the d at a f o r futu re r et ri e v al .
In c e rt a in c a s e s , the He ader ide ntifies s o m e special c o n
diti ons , s u c h a s e r r o r s o r s h o r t e d o r o p e n c o m p o n e n t s .
T h e c o n tr o ll e r softw are s h o u l d tes t fo r thes e co n d it io n s
bef ore pr oce ssi ng read ings fo r a c c u r a t e t e s t re s u lt s , a s
e xp la in ed in t h e s e c t io n Err or T e s t in g o n P a g e 3 7 .
S E P A R A T I N G D A T A F I E L D S
The B A S I C c o m m a n d s n e e d e d t o s e p a r a te t h e thr ee
fi elds o f info rm ati on into s ep ar a te va riables a r e L E F T $
a n d MID$. T h e L E F T $ c o m m a n d c a n c o ll ec t the th ree
c h a r a c t e r s o f the H ea d er i f th ey n e e d t o b e c o m p a r e d
t o inf or m ati on w i t h i n the p r o g r a m . The M I D I c o m
m a n d i s u s e d to sep arate the Num er ic al Da ta F i e l d a n d
t h e G O O D /B A D Ind icator fr om the other r e s u l t s .
2 0 0 0 R E H S UB RO UT INE T O S E P A R A T E D A T A INTO 3 P A R T S
2 0 1 0 H E A D $ » L E F T $ ( R E S D L T $ , 3 ) s R E M F IN D H E A D E R
2 0 2 0 A N S W E R = V A L ( M I D $ {R E S U L T $ , 4 , 1 1 ) ) ; R E H VA LU E
2 0 3 0 G 0 0 D $ - M I D $ ( R E S U L T S , 1 5 , 1 ) : R E M F IN D G O O D /B A D
2 0 4 0 R E T U R N : R E M J U M P B A C K T O M A IN P R O G R A M
F i g . 3 1 - T he f o r m a t t e d d a t a r e t u r n e d b y t h e L C 1 0 2 c a n
b e e a s i l y s e p a r a t e d i n t o s t r i n g - v a r i a b l e s u s i n g s i m p l e
B A S I C c o m m a n d s .
3 6
F o r e x a m p l e , t h e co ntrolle r c o u l d pl a ce a r ea di n g f r o m
t h e L C 1 0 2 i n t o a s tr ing -va ria bl e c a lle d R E S U L T S . T h e
s u b r o u t i n e i n Fi gu re 3 1 c a n t h e n se pa ra te th e Header
i n t o t h e string -va riab le H E A D $ , the N u m e r i c a l D a ta
i n t o t h e num erical-variable A N S W E R , a n d the G o o d / '
B a d In dic at or i n t o t h e s tr in g - va ri ab le G OO D$ .
Li n e 2 0 1 0 m o v e s t h e f ir s t 3 c h a ra ct er s in to t h e He ad er
v a r i a b l e . Lin e 2 0 2 0 s e l e c t s t h e 1 1 ch ara ct ers , st arting
a t t h e fo u rt h p o s i t i o n , a n d t h e n co nv er ts the resu lt t o
a va lue (with t h e V A L sta teme nt) before p la c in g i t i n t o
A N S W E R . L in e 2 0 3 0 s e le ct s t h e f i ft e e n t h ch a ra ct er
a n d m o v e s it t o G O O D $ . Th is s u b r o u t in e c a n b e u s e d
t o s e p a r a te d a t a fr o m a ny rea ding into th e t h re e m a in
p a r t s .
Program la ng u ag es other t ha n B A S I C h a v e s imilar
c o m m a n d s w h i c h c a n se pa ra te t h e da ta i nt o it s d if fer en t
f i e l d s .
A D V A N C E D P R O G R A M M I N G
I D E A S
Mo st er ror s c a u s e t h e L C 1 0 2 t o re tu rn a H e a d e r w it h
the thr ee l e tt e r s “ ER R". A s im p le t e s t f o r t h is H ea d er
all ow s the p ro gr am t o b e alerted t o t h e e r r o r . T h e valu e
o f t h e N u m e r ic a l Da ta F ie ld tel ls t h e co ntrolle r w h ic h
o f sev en e rro rs have o c c u r r e d . T he e rr o r c o d e s a r e s u m
marized in T a b l e 1 1 . R efe r t o the s e c t io n en ti tle d “ Err or
C o d e s ’ ' o n pa ge 1 6 fo r a m o r e de tailed explan ation o f
e a c h e rro r co n d i ti o n . Th e pr ogr am s e g m e n t lis te d in
F ig u r e 3 2 tests fo r e r r o r s a n d t h e n p r in t s a m es sa ge
whi ch indic ates it s c a u s e .
2 0 0 GO SU B 2 0 0 0 : R E H S EPA RAT E D A T A I N T O P A R T S
2 1 0 I F HEAD$<>"ERR" T H E N GO TO 3 0 0 : REM N O E R RO R F O U N D
2 2 0 O N AN SWER GOTO 230 ,24 0,2 50, 26 0 ,2 7 0, 2 80 , 29 0
2 3 0 PRI NT "COMPON ENT T Y PE SE LE C TI O N E R R O R " : G O T O 3 0 0
2 4 0 PRINT "V ALU E B E Y O N D RAN GE OF U N I T ” : G O TO 3 0 0
2 5 0 PRINT "V ALU E B E Y O N D RAN GE OF T E S T " : G O T O 30 0
A f t e r t h e d a t a h a s b e e n s e p a r a t e d , t h er e a re m a n y
th in gs you r pr o g ra m c a n d o t o p r o c e s s it . T h i s s e c t i o n
ex pla ins h o w t o a d d t h e s e ref inements to y o u r B A S I C
p r o g r a m s . I n e a c h c a s e , w e w i l l re fe r t o the sh or t s u b
ro u ti ne li s t i n g in F ig u r e 3 1 , w it h a G O S U B 2 0 0 0 s tate
m e n t , res ult ing i n th e LC1 02 r ea di n g b e in g s t o r e d i n
t h e va ri ab les HE AD $, A N S W E R , a n d GOO D$.
E r r o r T e s t i n g
Y o u r con troller so ftw ar e s h o u l d test f o r e r r o r c o n d i t i o n s
(o ft en ca ll ed “ e rr o r tr ap p in g ” ) af te r e v e r y r e a d in g h a s
b e e n c o lle ct ed fr o m th e L C 1 0 2 t o av oi d a n e rr o r fr o m
c a u s in g u n e x p e c t e d r e s u l t s . Th e s oft wa re c a n e ith e r
re por t th e er ror o r s k ip ov e r i t , b u t s h o u l d d o o n e o r
t h e other without cras hing the p ro gr am . I f y o u r pr og
r a m i s p articu larly a d v a n c e d , i t m ay tes t f o r the t y p e
o f error (a s in d i c a t e d b y the error n um be r returned i n
t h e Nume ric al Da ta F i e ld ) a n d t h e n br an ch to di ffe re nt
p a r t s o f th e pr o g ra m w h ic h c a n take the corr ect a c t i o n
t o c o m p e n s a t e fo r t h e e r ro r.
Er ro r D e s c r i p t i o n
C o m p o n e n t T y p e s e l e c t i o n e rr or
1
E n t e r e d v a lu e b e y o n d r a n g e o f u n i t
2
E n t e r e d v a l u e b e y o n d r a n g e o f te s t
3
4 V a l u e b e y o n d z e r o i n g l i m i t
5
N o v o l t a g e e n t e r e d
6
i n v a l i d I E E E c o m m a n d
C o m p o n e n t o u t o f t e s t r a n g e
7
2 6 0 PRIN T "V ALU E B E Y O N D Z E R O I N G L I M I T " : G O T O 3 0 0
2 7 0 PRIN T " N O VO LTA GE E N T E R E D " : GO TO 3 0 0
2 8 0 PRIN T “ I NVA LID I E E E C O M M A N D " : GOT O 3 0 0
2 9 0 PR INT "CO MPONENT O U T OF TES T R A N G E " : G O TO 30 0
3 0 0 .. .(Rest o f P r o g r a m )
F ig . 3 2 - A s im p l e BASIC su br out ine all ow s a n y e rro rs
t o be id en tifie d .
L i n e 2 1 0 in F ig u r e 3 2 c a u s e s th e pr o g ra m t o ju m p over
t he error m e ssa ges fo r any Header e x c e p t “ E R R ” . The
ne x t li n e ta k e s ad vantage o f t h e ON ..GOT O fu n ct io n
o f B A S I C wh ich s e n d s t h e program t o lin e n um be r 2 3 0
i f A N S W E R = 1 , t o l i n e 2 4 0 i f A N S W E R = 2 , e t c .
N O T E : E r r o r s detecte d b y th e L C 1 0 2 d o n o t c a u s e a
s e r v i c e r e q u e s t ( S R Q ) o n t he b u s . T h e L C 1 0 2 d o e s not
r e s p o n d t o s e r i a l o r pa ral lel po l ls b e c a u s e er ro rs a r e sen t
a s p a r t o f the n o r m a l d a t a s t r i n g , in ste ad o f w i t h a
s e r v i c e r e q u e s t .
G O O D / B A D R e s u l t s
The s tr in g - v a r i a b le G O O D $ in Fi gu re 3 1 w i l l co nta in
a si ng le A S C I I ch a r a c t e r , e i t h e r G or B . The co n te n ts
o f GOO D$ c a n be te st ed w i t h sim pl e I F st at em en ts a n d
u s e d t o p r o d u c e any d e s ir e d o u t p u t . I f t h e GO O D /B AD
Indic ator F i e l d is bl a n k , the pr og ram c a n i nd ic ate t ha t
the resu lt is not a v ai la b le b e c a u s e the L C 1 0 2 h a s in suf
fic ie n t d at a to m ake a c o m p a r i s o n . I f t h e fi e ld co n ta in s
t he l e tt e r “ G ” o r “ B ” , t h e co ntrolle r c a n p r in t a me ss a ge
c o n c er n in g th e q u a l it y o f the p a r t . Figure 3 3 lists a
B A S I C s u br ou ti ne w h ic h c a n b e u s e d t o c h ec k t h e
G O O D / B A D tes t r e s u lt .
T a b l e 1 1 - E r r o r c o d e s r e t u r n e d b y t h e L C 1 0 2 d u r i n g
I E E E o p e r a t i o n .
3 7
1 4 0 G O SU B 2 0 0 0 : R E H SEPARATE DA TA I N T O P A R T S
1 5 0 I F G O O D $ * * " " T H E N PR INT " N O GO OD/BAD T E ST ”
1 6 0 I F GO OD $ *” G " T H E N PRIN T " T HE RES U LT I S G O O D "
1 7 0 I F GO OD $ =” B ” T H E N PRI NT " T HE RESU LT I S B A D "
1 8 0 . . . { R e s t o f P r o g r a m )
F i g . 3 3 - T h i s s u b r o u t i n e c a n b e u s e d t o r e a d t h e r e s u l t
o f t h e L C 1 0 2 a u t o m a t i c G O O D / B A D t e s t
S h o r t e d C a p a c i t o r s :
T h e L C 1 0 2 au to m at ic al ly s e n s e s i f a ca p a ci t o r i s
s h o r t e d b e f o r e p erf or m in g a capa cit or va lue t e s t . I f a
s h o r t i s d e t e c t e d , t h e LC1 02 s e n d s the lette rs “ S H T ”
a s t h e He ader F i e l d o f th e ret urn ed da ta a n d di sp la ys
“ S H O R T ” i n the L C D di splay. A d d i n g o n e line o f p ro g
ra m c o d e w i l l te st for th is co n d it i o n . Th is li n e s h o u l d
a p p e a r b ef or e any part o f th e softw are pr ogram w hi c h
d e p e n d s o n a v al u e rea ding , s o th a t the v alu e test w i l l
b e s k i p p e d in c a s e o f a sh orted c a p a c it o r . T h e progra m
s e c t i o n li ste d in F ig u r e 3 4 tests for s h o r t s , prin ts a n
e rror m e s s a g e o n the C R T , a n d ju mp s to l in e 4 0 0 , w h ic h
h a n d le s t h e e r r o r .
2 0 0 G OS U B 2 0 0 0 : R E M SEPAR AT E DA TA I N T O P A R T S
2 1 0 I F HEAD$*” S H T " TH EN PR INT " C A P I S S H O R T E D " : GOTO 4 0 0
2 2 0 _ _ ( R e s t o f P r o gr a m) . ..
4 0 0 . . . ( E r r o r Ha n dl i ng Fun cti ons )
F i g . 3 4 - T h e L C 1 0 2 r e t u r n s a “ S H T ” d a t a H e a d e r w h e n
a s h o r t e d c a p a c i t o r i s t e s t e d . T h i s s a m p l e s u b r o u t i n e
c h e c k s f o r t h e s h o r t i n d i c a t i o n .
M a k i n g L e a k a g e T e s t s w i t h I E E E :
W h e n te s ti n g for leakage o n l a r g e c a p a c i t o r s , t h e fir st
r e a d in g retu rne d b y the LC 1 02 ma y be o u t s i d e t h e n o r
mal le a k a g e limits b e c a u s e t h e capa cit or i s c h a r g in g .
I n the c a s e o f elec tro lytic s, se ve r al read ings m a y b e
n ee d ed be fo re t h e ca p a c it o r d r o p s t o a “ GO O D” lev e l,
s in c e a n ele ctroly tic a l s o g o e s through a re -fo rm in g
p r o c e s s e v e r y tim e it i s c h a r g e d fro m z e r o . This m e a n s
t h a t the contr oller softw are s h o u l d ign or e t h e first f e w
r ead in gs in o rd e r t o a c c e p t a m e a ni ng fu l r e ad in g .
T h e r e a re sev eral w ays t o h a n d le th is i n th e s o f t w a r e .
F or ex am pl e, t h e pr og ra m c o u l d place t h e L C 1 0 2 i n t o
the le a k a g e f u n c t i o n (w i t h t h e “L K I ” lis te ne r c o d e ) a n d
then s e t a so ftw ea r ti m e r t o insert t h e c o rr ec t d el a y
(b ase d o n t h e n o r m a l ch arging t i m e o f t h e c a p a c it o r )
befo re rea ding the leak ag e v a lu e. D u r in g th is t im e, t h e
c on tr o lle r c o u l d work w it h o th er in st ru m en t s o n t h e
b u s to ke e p t h e delay fr om s lowin g d o w n o th er s t e p s
i n th e a u to m a t e d s y s t e m . Ra th er t han a fixed ti m e
d elay, the so ft w ar e c a n be w r it t e n to igno re a c e r t a i n
numb er o f re ad in g s be fo re recor din g t h e o n e w h i c h i s
t o b e c h e c k e d fo r va l u e .
I n e i t h e r c a s e , the con troller c a n b a s e i t s d e c i s i o n o n
w h e t h e r t h e c a p a c it o r is g o o d or b a d b y u si n g t h e
GO O D/ B AD Ind ica to r in t h e retu rned d a t a . For t h e
auto ma tic G O O D / B A D test t o fun cti on t h e c a p a c i t o r 's
va lu e , vo lta ge, a n d type m u s t b e se n t t o th e L C 1 0 2
p ri o r t o the t e s t . Th is allo w s t h e LC102 m i c r o p r o c e s s o r
t o co m p a r e t h e lea kag e re ad in g s t o th e int ern al fo r
mula s a n d t a b l e s . T h e p r o g r a m , s t e p s l is te d i n Figure
3 6 c a n b e u s e d t o rep ort o n t h e cap acitor’s c o n d i t i o n .
T h e program t h e n j u m p s t o lin e 2 0 0 f o r further t e s t i n g .
I f GOO D$ c o n t a i n s ne ith e r a “ G ” nor a “ B ” t h e n t h e
s t e p s fro m 1 4 0 t o 1 9 9 tak e t h e s te ps n e e d e d t o w o r k
w i t h a n o n - G O O D / B A D t e s t .
1 0 0 . .. ( P r o g r a m wi th l e a k a g e d e l a y )
O p e n I n d u c t o r s :
The L C 1 0 2 autom atica lly s e n s e s i f a n in d u c t o r i s o p e n
(o r i f t h e te st l e a d s are no t c o n n ec t ed t o the coil) bef ore
pe rformin g a n in du ct or v a l u e t e s t . I f a n o p e n i s d e
t e c t e d , t h e LC 1 02 s e n d s th e le tte r s “ O P N ” a s th e
Head er a n d di sp la y s “ O P E N ” in the L C D di s p l a y . O n e
a dd it io na l pr ogram li n e w i l l te st for t h is c o n d i t i o n .
Pla ce th i s l in e b e f o r e an y por tion o f the pr ogram w hic h
d e p e n d s o n a n in d u c t o r v a l u e readin g, s o tha t the va lu e
tes t w i l l b e s k i p p e d i n c a s e o f a n o p e n i n d u c t o r . The
p ro g ra m s e c t io n listed in F i g u r e 3 5 t e s t s f o r o p e n s ,
p ri nt s a n error m e s s a g e o n th e C RT, a n d ju m ps to l ine
3 0 0 , w hic h h a n d le s t h e er ror .
1 0 0 GOS U B 2 0 0 0 : R E M SEPARATE D A T A I N T O PAR TS
1 1 0 I F H E AD $ »" O Pt T T H E N PRINT " C O I L I S O P E N : G O T O 3 0 0
1 2 0 . . . ( R e s t o f P r o g r a m ) . . .
3 0 0 . . . ( E r r o r H an dli ng Fun cti ons )
F i g . 35 - O p e n t e s t l e a d s o r a n o p e n i n d u c t o r c a u s e s
t h e L C 1 02 t o r e t u r n t h e d a t a h e a d e r “ O P N ” . T h i s s i m p l e
s u b r o u t i n e m a y b e u s e d t o c h e c k f o r a n o p e n c o n d i
t i o n .
1 1 0 GOSU B 2 0 0 0 : R E M SE P AR A TE D AT A IN TO P A R T S
1 2 0 I F G O O D $ = " G ' * T H E N P RI NT " L E A KA GE I S O K A Y " : GOT O 2 0 0
1 3 0 I F G00D $= " B" T H EN PRI N T "L EA KA G E I S B A D " : G OT O 2 0 0
1 4 0 . .. ( Pr o g r a m s t e p s f o r n o G / B t e s t ) . . .
2 0 0 .. . ( R e s t o f P r o g r a m )
F i g . 3 6 - T he G O O D / B A D i n d i c a t o r F i e l d R e t u r n e d b y
t h e L C 1 0 2 c a n b e c h e c k e d t o t e s t c a p a c i t o r l e a k a g e .
M a k i n g E S E T e s t s w i t h I E E E :
T h e ca pa ci to r test fo r Equ iv ale nt Se r i e s R e s is t a n ce m a y
c a u s e u n e x p e c t e d program er ro rs i f your softw are d o e s
n o t hand le t h e re tu rn ed da ta corr ect ly. Rem emb er t h a t
E S R te st s a re only v a l id o n e le c t ro ly ti c c a p a c it o r s w it h
va lu es l a r g e r t h a n 1 m i c r o fa r a d . A l s o rem em ber t h a t
s o m e ca p a c i t o rs ma y have s u c h h ig h lev el s o f ESR t h a t
the v al u e i s a b o v e t h e meas urin g r ang e o f t h e t e s t .
T h e r ef o re , m a k e cer ta in th a t yo ur softw are t e s t s f o r
th e f o ll o w in g c o n d i t i o n s .
1 . A n “ E R R 1 . ” o c c u r s i f a n y c o m p o n e n t typ e o th er t h a n
A L M , D B L, o r T A N h a s b e e n s e n t to t h e L C 1 0 2 in i t s
li s te n e r m o d e .
3 8
2 . A n “ E R R 3 ” o c c u r s i f the c a p a c i t o r u n d e r tes t meas
u r e s l e s s t ha n 1 mic rofara d.
3 . An “ E R R 7 ” o c c u r s i f the a m o u n t o f E SR i s a b o v e
2 0 0 0 o h m s .
4 . T h e l e a d s m u s t b e z er o ed (e ith er manu ally o r by
u s i n g " t h e “ L D S ” l i s t e n e r func tion ) b e f o r e m a k in g E SR
t e s t s , o r the a d d e d lead resis ta nce m a y c a u s e e r r o n e o u s
r e s u l t s .
P r o g r a m m i n g E x a m p l e s
L i n e 1 0 0 0 0 w il l b e u n i q u e t o e a c h c o n t r ol le r . Re fer t o
the m a n u a l for t h e s p e c i f ic con tro lle r y o u a r e u si n g f o r
de tails o n h o w i t s e n d s da ta t o t h e I E E E b u s .
T h e s t e p s lis te d in F i g u r e 3 7 s e n d a ll t h e in fo rm a ti on
n e e d e d b y the L C 1 0 2 t o te st a n a lu mi num el ectrolytic
c a pa ci to r w it h a n ideal v al u e o f 5 0 u F , a wo rki ng v o l
tag e o f 1 5 volts a n d a to leran ce o f + 8 0 % a n d — 2 0 % .
T h e pri m ar y a d d r e s s o f t h e LC1 02 i s 8 . E a c h “ GO S UB
1 0 0 0 0 ” l in e s e n d s the dat a t o th e u n i t .
It w o u l d b e im p o ss ib le t o w r i t e a p r o g ra m th a t w ou ld
w o r k fo r e v e r y L C 1 0 2 u s e r . Fi rst , the re a re n u m e r o u s
t y p e s o f b u s co nt ro ll er s. A d d it io n a ll y , d o z e n s o f p er
s o n a l c o m p u t e r s ( P C ’ s ) c a n b e co nv er te d t o b u s co ntrol
l e r s b y a dd in g a G P IB cont ro l c a r d o r ex p a n s i o n d e v i c e .
E a c h PC c o u l d u s e any o f s e v e r a l di ffe re nt G P I B c a r d s .
B u t i n a dd it io n t o h a rd w ar e di ff e re n c e s , t h e appl ica ti on
of t h e LC1 02 w i l l be d i f f e r e n t for e a c h b u s s y s t e m . F o r
e x a m p l e , a R e l i a b i l it y L a b w i l l r u n d if fe r e nt te st s t h a n
a n Inco ming Insp ec tion system will.
S e v e r a l pro gr am m in g hin ts a r e p r o v i d e d in this s e c t i o n
t o h e l p yo u g et yo u r LC 102 b u s s y s t e m u p a n d ru n ni n g.
T h e f ir s t e x a m p le s a re “ b u il d in g b l o c k ” pr og ra m s w hi c h
a ll o w y o u t o pl u g the specific deta ils for you r con trolle r
i n t o a n L C 1 0 2 A U T O - Z tes t p r o g r a m . Two co m p l e te
p r o g r a m s a r e in c l u d e d at th e e n d o f t h is s e c t i o n . Th os e
p r o g r a m s a r e rea dy t o ru n , p rov id ed y o u have the s a m e
h a r d w a r e fo r w hi c h th e y w e r e w ritten .
S e n d i n g L i s t e n e r C o d e s
T h e sp e c i fi c s t e p s n ee de d to s e n d listen er c o d e s t o in
s t r u m e n t s o n the b u s d ep en d o n t h e con troller yo u a r e
u s i n g . S o m e contr ollers o n l y requ ire t h e ad di ti on o f a
s p e c i a l c o d e ( s u c h a s a con trol ch a ra ct er ) in to a s t a n d a r d
P R I N T s t a t e m e n t . M os t, h ow ev er, re quire s e ve r al ad di
t io n a l i n it ia li z a ti o n s t e p s t o t e l l , t h e con trolle r’ s micro
p r o c e s s o r w hic h ex pa ns ion slo t o r me m o ry loc ation c o n
t a i n s th e inter face c a r d , the a d d r e s s o f t h e instrument
b e i n g a d d r e s s e d , wh ich meth od is u s e d t o a d d r e s s th e
t a lk e r s o r li st en er s , a n d s o o n .
T h i s d o e s n ’ t hav e t o co mplicate pr ogramm ing, ho wever,
i f y o u u s e s u b r o u t in e s to ta k e c a r e o f a ll t h e s e de ta il s.
Y o u si m pl y d e b u g th e se su br ou ti ne s o n c e , a n d ca ll th e m
e a c h tim e y o u s e n d in fo rm a ti o n over t h e b u s . Y o u r
m a i n pr og ra m p la c e s a c o u p le o f p i e c e s o f info rma tio n
i n t o va ri ab les be fo re t u r n i n g c o n t r o l oy er t o t h e s u b
r o u t i n e w h i c h , i n t u rn , han dle s al l t h e d etails o f c o m
m u n ic a ti n g w it h the b u s .
F i g . 3 7 s h o w s a n e x a m p le o f a pr ogr am w hic h u s e s a
s u b r o u t i n e a t lin e 1 0 0 0 0 to s e n d inf ormation t o a n y
in st ru m en t o n the b u s . T h i s s u b r o u t in e n e e d s tw o p i e c e s
of i n fo rm a ti on : t h e li s t e n e r a d d r e s s o f t h e inst rum en t
a n d th e da ta t o s e n d t o i t . T h e pri m ar y a d d r e s s i s p la c e d
i n t o th e va ri ab le A D D R E S S , a n d t h e da ta into t h e
string-variable CO DE $ befo re c a ll in g t h e s u b r o u t i n e .
O n c e A D D R E S S h a s been l o a d e d , i t d o e s n o t n e e d t o
b e c h a n g e d u n l e s s the c o n tr o ll e r n e e d s t o wo rk w it h a
different in s t ru m e n t . T h i s i s the r e a s o n line 1 0 0 i s t h e
o n l y o n e w h ic h u s e s the v a r i a b l e AD DRESS.
1 00
1 10
1 2 0 G O S U B 1 0 0 0 0 :
1 3 0
1 4 0
1 5 0
1 6 0 G O S U B 1 0 0 0 0
1 7 0
1 8 0 G O S U B 1 0 0 0 0
1 9 0
2 0 0
F i g . 3 7 - T h is s a m p l e p r o g r a m u s e s a s u b r o u t i n e t o
s i m p l i f y s e n d i n g d a t a o v e r t h e b u s t o t h e L C 1 0 2 . Th e
s u b r o u t i n e c a l l e d u p i s u n i q u e t o e a c h c o n t r o l l e r .
A D D R E S S - 8 ·: R E M P R I M A R Y A D D R E S S O F L C 1 0 2
C OD E$="50 U F '
C 0 D E $ ~ ' * 1 5 V " :
G O S U B 1 0 0 0 0
C O D E $ = ” A L M M :
C O D E $* "8 0 +Z ·’ :
C O D E $ = , * 2 0 -% ’ · : : R E H N E G A T I V E T O L E R A N C E
G O S U B 1 0 0 0 0
* : R E H I D E A L V A L U E
R E H S E N D V A L U E T O L C 1 0 2
R E M W O R K I N G V O L T A G E
R E M C A P A C I T O R T Y P E
: R E M P O S I T I V E T O L E R A N C E
S e n d i n g T a l k e r C o d e s
A s w ith sen di n g li stener c o d e s , a ll t h e s t e p s n e e d e d t o
t ransfer inf ormation fr o m th e L C 1 0 2 b a c k t o t h e c o n
t r o l l e r c a n b e d o n e in a s u b r o u t in e w h ic h i s c a l le d ever y
ti m e the pr og ram r e q u e s ts a re ading. In t h e ex a m p le
list ed in F ig u r e 3 8 , th e s u b r o u t in e i s at l ine 1 2 0 0 0 . The
l is te ne r s u b r o u t i n e i s st ill at l in e 1 0 0 0 0 .
S o m e co nt ro ll er s re quire a d if fe r e n t t a l k e r a n d listener
a d d r e s s , b u t t h e s e a d d r e s s e s c a n b e c a l c u la t e d b y t h e
p ro g ra m . T he s u b r o u t in e a t l i n e 1 0 0 0 0 c a lc u la t e s t h e
n e c e s s a r y lis te n e r a d d r e s s , w h i l e the s u b r o u t i n e a t li n e
1 2 0 0 0
ca lc u la te s t h e n e e d e d ta l k e r a d d r e s s fr o m t h e
va lue alr ead y s t o r e d in the v a r i a b le ADDRESS. T h u s ,
i t i s n o t n e c e s s a r y t o p l a c e a new va lue i n t o t h e A D
DRE SS variable.
The last l in e o f th e s u b r o u t in e st ar tin g a t li n e 1 2 0 0 0
in c lu d e s a n I N P U T stat eme nt whi ch c o l le c t s t h e L C 1 0 2
rea ding a n d p la c e s i t in to the s tr i n g v a r i a b l e R E S U L T ! .
R E S U L T $ i s t h e n p r o c e s s e d t hr ou g h a n o t h e r s u b
ro u ti n e t o s ep ar a te t h e d a t a in to it s thre e p a r t s .
3 9
2 1 0 C O D E $ * * ” C A P " : R E M L IS T E N E R C O D E F O R C A P VA LU E
2 2 0 G O S U B 1 0 0 0 0 : R E M S E N D C O D E T O U N I T
2 3 0
G O S U B
1 2 0 0 0 : R E M R E Q U E S T R E A D I N G F R O M U N I T
2 4 0 CVALUE$“ R E S U L T $ : R E M T R A N S F E R F R O M SUBRO UT INE
2 5 0 C OD E$= ” L K I “ : R E M L I S T E N E R C O D E F O R L E A K A G E
2 6 0 G O S U B 1 0 0 0 0 : R E M S E N D C O D E T O U N I T
2 7 0 G O S U B 1 2 0 0 0 : R E M R E Q U E S T R E A D I N G F R O M U N I T
2 8 0 L E A K $ = R E S U L T $ : R E M T R A N S F E R F R O M S U B RO UT IN E
2 9 0 C O D E $ - ” D / A ” : R E M C O D E F O R D I E L E C T R I C AB S OR B .
3 0 0 G O S U B 1 0 0 0 0 : R E M S A M E A S B E F O R E
3 1 0 G O S U B 1 2 0 0 0
3 2 0 DA$“ R E S U L T $
3 3 0 C 0 D E $ = ” E S R ‘· : R E M C O D E F O R E S R TE S T
3 4 0 G O S U B 1 0 0 0 0
3 5 0 G O S U B 1 2 0 0 0
3 6 0 E S R $ * » R E S U L T $
F ig . 3 8 - A s u b r o u t i n e c a n b e u s e d t o s i m p l i f y r e a d i n g
t h e d a t a s e n t o v e r t h e b u s b y t h e L C 1 02 . T h e s u b r o u t i n e
c a l l e d i s u n i q u e f o e a c h c o n t r o l l e r .
S a m p l e P r o g r a m s
T h e two sa mp le prog ram s w hi c h f o l lo w a r e r e a d y t o
r u n . H o w e v e r , th ey w i l l only wo rk for t h e ty pe o f b u s
c on tr o ll e r sta t ed in the o p e n rem ar k s e c t io n o f th e p r o g
ra m . Use them a s a guid e fo r c o n n ec t in g the LC 10 2
into your I E E E b u s s y s t e m .
1 R E M T H I S P R O G R A M A L L O W S T H E U S E R T O E N T E R TH E
2 R E M S T A N D A R D V A L U E S F O R A N Y C A PA C I T O R / S E N D S T H E
3 R E M V A L U E S T O T H E LC I0 2 , A N D T H E N S H O W S T H E R E S U L T S
4 R E M A S G O O D O R BA D. C O P Y R I G H T ( C ) S E N C O R E F I E L D
5 R E M A P P L I C A T I O N DE PA R T M E N T , 1987. T H I S P R O G R A M M A Y :
6 R E M M A Y B E U S E D A S IS O R M O D I F I E D B Y A N Y L C 1 0 2 O W N E R
7 R E M W I T H O U T F U R T H E R P E R M I S I O N F R O M SENCORE, I N C . '
1 0 R E M
2 0 D $ = C H R $ ( 4 ) : R E M D O S C O M M A N D C H A R A C T E R
3 0 Z $ « C H R$ ( 2 6 ) :
4 0 Q $ = C H R $ ( 1 7 ) : R E M S C R E E N T O 4 0 C O L U M N S
5 0 G $ = C H R$ ( 7 ) : R E M R I N G S B E L L
6 0 F O R X = 1 T O 1 9 : B L $ = B L $ + " N E XT X : R E M
F O R M S 2 0 B L A N K S P A C E S
7 0 D A T A AL M ,D BL, TAN ,CE R,A OC
8 0 F O R X = 1 T O 5 : R E AD C T $ ( X ) : N E XT X
1 0 0 0 R E M * ** * ** * I N P U T D E S I R E D V A L U E S ** ** ** *
1 0 1 0 HOM E : GOS U B 1 0 2 0 0 : R E M S E L E C T P R I M A R Y AD DR ES S
1 0 2 0 R E M * * ** * ** B E G I N I D E A L I N P U T ** * * * * *
1 0 3 0 H O M E : V T A B 7 : I N V E R S E : H T A B 6 : P R I N T * ’ E N T E R
I D E A L V A L U E S : N O R M A L
1 0 4 0 P R I N T : H T A B 6 : I N P U T . " V A L U E : " ; V $
1 0 5 0 V - VA L ( V $ ) : R E M C ON V ER T T O N U ME R IC VALU E
1 0 6 0 I F V = 0 G O T O 1 0 2 0 : R E M Z E R O VAL U E N O T ACC EP TE D
1 0 7 0 V T A B 9 : H T A B 1 6 : P R I N T V ; "
1 0 8 0 V T A B 1 1 : H T A B 1 : I N V E R S E : P R I N T " M U L T I P L I E R : ' 1 ; :
N O R M AL : P R I N T " [ 1 ] P F , [ 2 ] U F , [ 3 ] F " ; : G ET K $
1 0 9 0 MU $ = " F " : V M = 1
1 1 0 0 I F K $ = " 1 “ T H E N M U $ = " P F " : V M = I E - 1 2
1 1 1 0 I F K $ = ” 2 " TH EN M U $ = " U F ' · : V M = I E - 6
R E H I E E E
C A R D CO M M A N D C H A R A C T E R
1 1 2 0 I F K $ < " 1 ” O R K $ > ' ' 3 ” G O T O 1 0 8 0 : R E M R E P E A T U N T I L
V A L I D
1 1 3 0 V T A B 1 0 : P R I NT B L $ ; B L $ : RE M C O V E R W I T H B L A N K
S P A C E S
1 1 4 0 V T A B 9 : H T A B 2 5 : P R IN T M U $ : R E M E C H O S E L E C T I O N T O
S C R E E N
1 1 5 0 V $ = S T R $ ( V ) + M U $ : R E M P RE P AR E S T R I N G T O S E N D T O
MET E R
1 1 6 0 H T AB 6 : I N P U T " + % : " ; P P $
1 1 7 0 P P = VA L ( P P $ ) : R E M R EM OV E N O N - N U M E R I C C H A R A C T E R S
1 1 8 0 P P $ = S T R $ ( P P ) + R E M P R E P A R E S T R I N G T O S E N D
T O MET E R
1 1 9 0 H T A B 6 : I N P U T " " ; P N $
1 2 0 0 P N = VAL ( P N $ ) : R E M R E MO V E N O N - N U M E R I C C H A R A C T E R S
1 2 1 0 P N $ = S T R S ( P N ) +
1 2 2 0 H T A B 6 : I N P U T " V O L T A G E : " ; V T $
1 2 3 0 V T = VA L ( V T $ ) : R E M REM OVE N O N - N U M E R I C C H A R A C T E R S
1 2 4 0 V T $ = S T R $ ( V T ) + "V “
1 2 5 0 P R IN T : P R IN T " A R E T H E SE V A LU E S C O R R E C T ? ( Y / N )
1 2 6 0 I F K $ = V THEN K $ « " Y "
1 2 7 0 I F K $ < > " Y " T H E N 1 0 2 0
1 2 8 0 H O M E : V T A B 7 : I NV E R S E : H T AB 6 : P R I N T “ S E L E C T
1 2 9 0 P R I NT
1 3 0 0 H T A B 6 : P R I N T " [ 1 ] A L U M I N U M L Y T I C "
1 3 1 0 H T AB 6 : P R I N T " { 2 ] D O U BL E L A Y E R L Y T I C ”
1 3 2 0 H T AB 6 : P R I N T " ( 3 ] T A NT A LU M L Y T I C "
1 3 3 0 H T AB 6 : P R I N T " { 4 ] C ER A M I C C A P "
1 3 4 0 H T A B 6 : P R I NT " ( 5 ] A L L OTH ER C A P S "
1 3 5 0 PRI NT : H T A B 6 : P R I N T " S E L E C T N U M B E R F O R T Y P E :
1 3 6 0 I F AS C
1 3 7 0 T Y $ =
1 3 8 0 V T AB 1 9 : H T A B 6 : I N V E R S E : P R I N T " S E N D I N G V A L U E S
1 3 9 0 GOS U B 1 0 0 0 0 : R EM T U R N O N I E E E C A R D
1 4 0 0 P R I NT L A $ ; Z $ ; V $ : P R IN T L A $ ; Z $ ; P P $ : P R I N T
1 4 1 0 R E M - - L A $ = ° L I S T E N A D D R E S S , Z $ = C O N T R O L - Z
1 4 2 0 R E M * * ** * ** BEG I N T A K I N G R E A D I N G * ** * ** *
1 4 3 0 F G = 0 : R E M RES ET 'C OM P O N E N T B A D ' F L A G
1 4 4 0 G O SU B 1 0 1 0 0 : RE M R E T U R N CO M M U N I C A T I O N S T O
1 4 5 0 H O M E : V T A B 1 4 : H T AB 6 : I N V E R S E : P R I N T " T A K I N G
1 4 6 0 G O SU B 1 0 0 0 0 : REM T U R N S O N I E E E C A R D
1 4 7 0 D A $ = " D / A " : GOSU B 1 0 5 0 0
1 4 8 0 Z D $ = R Z $
1 4 9 0 D A $ * " C A P " : GOSU B 1 0 5 0 0
1 5 0 0 Z V $ = R Z $
1 5 1 0 D A $ = ■ " L K I " : GOSU B 1 0 5 0 0
1 5 2 0 Z I $ * R Z $
1 5 3 0 D A $ = " E S R " : GOSU B 1 0 5 0 0
1 5 4 0 Z R $ - R Z $
1 5 5 0 D A $ » " N F C " : GOSU B 1 0 5 0 0 : R E M C A N C E L P A N E L
1 5 6 0 GOSU B 1 0 1 0 0
1 5 7 0 R E M * * ** * ** PRI N T R E S U L T S * * * * * * *
1 5 8 0 H O M E : R E M C L E A R S S C R E E N
1 5 9 0 P R IN T " TH E RESU LT S OF T H I S T E S T A R E : " : P R I N T
1 6 0 0 P R I N T " I D E A L V A L U E : ” ; V $
1 6 1 0 R E $ = Z V $ ; R E M L O A D V A LU E I N T O S U B R O U T I N E
1 6 2 0 GOS U B 2 0 0 0 : RE M S E P A R A T E D A TA I N T O P A R T S
1 6 3 0 I F H E $ = " E R R " T H EN G O S U B 2 1 0 0 : G O T O 1 7 1 0
1 6 4 0 I F H E $ = " S HT ” T H EN P R IN T " C A P A C I T O R I S S H O R T E D " :
1 6 5 0 P RI N T " M EA SU R ED V A L U E : " A N
1 6 6 0 GOS U B 2 2 0 0 : R E M GET G O OD / BA D R E S U L T
1 6 7 0 P C = > 1 0 0 * ( A N - ( V * V M ) ) / ( V * V M ) : R E M
1 6 8 0 P C = I N T ( 1 0 * P C ) / 1 0 : R E M S E T DE CI M A L A T O N E
1 6 9 0 P R I N T " T HE 'VA LU E D I F F E R E D B Y " P C * ' % "
1 7 0 0 P RI N T : P R I N T " T H E L E A K A G E T E ST E D A T " V T " V OL T S”
1 7 1 0 R E $ = Z I $ : R E M L O A D L E A K A G E I N T O S U B R O U T I N E
1 7 2 0 G O SU B 2 0 0 0 : R E M S E P A R A T E D A TA I N T O P A R T S
1 7 3 0 I F H E $ = " E R R " T H EN G OS U B 2 1 0 0 : G O T O 1 7 7 0
1 7 4 0 L K = A N * 1 E 6
GET K $
C AP ACI TOR T Y P E : " : NO R M A L
G E T K $ : P R I N T K $
G $ ; G $ : GOTO 1 2 8 0 : RE M A CC EP T O N L Y 1 T H R O U G H 5
C O D E
T O Z MET ER NOR M AL
L A $ ; Z $; P N$ : P R IN T L A $ ; Z $ ; V T $ : P R I N T L A $ ; Z $ ; T Y $
KE YB OA RD
R E A D I N G S " : NO RM A L
VARIA BLE
GOTO 1 9 2 0
CA LCU LATE PERCE NTA GE
P L A C E
VARIA BLE
( K $ ) <
C T $ ( VAL
4 9 O R A S C ( K $ ) > 5 3 T H E N P R I N T
( K $ ) ) : R E M S EL E C T T H R E E - L E T T E R
4 0
1 7 5 0 PR IN T " W A S " L K " MICROA MPE RES . "
1 7 6 0 GOSU B 2 2 0 0 : R E M G E T GO O D/ B AD R E S U L T S
1 7 7 0 PR IN T : P R I NT " D / A T E S T : "
1 7 8 0 R E $ = Z D $ : R E M L O A D D/ A R E S U L T S I N T O SU BROU TINE
VARIABLE
1 7 9 0 GOSU B 2 0 0 0 : R E M S E P A R A T E D A TA I N T O P A R T S
1 8 0 0 I F H E $ = " E R R " T H E N G O SU B 2 1 0 0 : G O TO 1 8 4 0
1 8 1 0 A N = I N T ( 1 0 * A N ) / 1 0 : R E M S E T DECIMAL T O 1
PLA CE
1 8 2 0 PR IN T " D IE L E C T R I C A B S O R P T I O N : ’ Ά Ν " % . "
1 8 3 0 GOSU B 2 2 0 0 : R E M G E T GO OD / BA D R E S U L T
1 8 4 0 PR INT : P R IN T " E S R T E S T : "
1 8 5 0 R E $ * Z R $ : R E M L O A D E S R V AL U E I N T O SU BR OU T INE
VARIABLE
1 8 6 0 GOSU B 2 0 0 0 : R E M S E P A R A T E I N T O P A R T S
1 8 7 0 I F HE$ = " E R R " T H E N G O SU B 2 1 0 0 : GOTO 1 9 0 0
1 8 8 0 PRINT " S E R I E S R E S I S T A N C E : " A N " O H M S , "
1 8 9 0 G OS U B 2 2 0 0 : R E M G E T G OOD /BA D R E S U L T S
1 9 0 0 GB $ - ” G O OD I F F G - I T H EN G B $ = " BA D "
1 9 1 0 PRI N T : P R I N T " T H E C AP A C I T O R I S INV ERS E : P R I N T
G B $ : NORM AL
1 9 2 0 PRI NT : P R I N T " E N D O F R E S U L T S , P R E S S A N Y KE Y
GET K $
1 9 3 0 H O ME : VTA B 9 : H T A B 6 : I NV ER S E : PRI NT " SEL ECT
NEXT O P T I O N : N O R M A L
1 9 4 0 PRI NT : H T A B 6 : P R I N T ” [ 1 ] E N T E R NE W VAL U E "
1 9 5 0 HTAB 6 : P R I N T
1 9 6 0 H T A B 6 : P R I NT ’ * [ 3 ] R E P E A T P R I N T O U T "
1 9 7 0 PRI NT : HTA B 6 : P R I N T " SE LE C T N U M B ER O P T I O N :
G E T K $
1 9 8 0 I F K $ < " 1” O R K $ > " 3 " T H EN P R I NT G $ : GOT O 1 9 3 0
1 9 9 0 ON VA L ( K $ ) G O T O 1 0 2 0 , 1 4 2 0 , 1 5 7 0
2 0 0 0 R E M
2 0 1 0 H E $ = L EF T $ ( R E $ , 3 ) : R E M F I N D HE A D E R
2 0 2 0 A N = V A L ( M I D $ ( R E $ , 4 , 1 1 ) ) : R E M F I N D NU M ERIC
VAL U E
2 0 3 0 G D $ = M I D $ ( R E $ , 1 5 , 1 ) : RE M F I N D GOOD /BA D RESU LT
2 0 4 0 RET U RN
2 1 0 0 R E M W # # / / # S U B R O U T I N E F O R E R R OR H A N D L I N G # # # / / ) ' / # #
2 1 1 0 PRINT G $ ; " Z - M E T E R E R R O R # " A N * ' D E T E C T E D : "
2 1 2 0 O N A N GO TO 21 3 0, 2 140 ,21 50, 216 0,2 170 ,21 80, 219 0
2 1 3 0 PRI NT " CO M P O N E N T T Y P E S EL E CT I ON E R R O R " : RET U RN
2 1 4 0 PRI NT " VA L U E B E Y O N D R A N G E OF U N I T " : RE TU R N
2 1 5 0 PR IN T "V ALU E B E Y O N D R A N G E OF T E S T " : RE T U R N
2 1 6 0 PRI NT " VA L U E B E Y O N D Z E R O I N G L I M I T " : RE TU RN
2 1 7 0 PRI NT ” N 0 V O L T A G E E N T E R E D " : R E T U R N
2 1 8 0 PRI NT " I N V A L I D I E E E C O M M A N D " : R E T U R N
2 1 9 0 P RI N T " C O M P ON E NT O U T O F T E S T R A N G E " : RE TU RN
2 2 0 0 R E M # # # / / # # S U B R O U T I N E T E S T S G OOD /BA D RESU LT
I H H H H H t
"[2 ]
M A K E A NO TH E R T E S T "
S U B R O U T I N E S E P A R A T E S DATA
# # # # # #
mm
2 2 1 0 I F GD$ = " " T H E N P R I N T " N O G O OD / BA D TES T "
2 2 2 0 I F G D $ « " G " T H E N P R I N T ’ ’ THE RE SU L T I S GO OD "
2 2 3 0 I F G D $ = ” B " T H E N P R IN T " T H E R ES U L T I S IN V E R S E
: P R I NT " B A D " : N O R M A L : F G = 1
2 2 4 0 R ET U RN
9 9 9 7 R E M
9 9 9 8 R E M T H E F O L L O W I N G S U B R O U T I N E S A P P L Y T O
A D D R E S S I N G T H E A P P L E - B R A N D I E E E - 4 8 8 C O N T R O L L E R C A R D
F O R T H E A P P L E / / C O M P U T E R .
9 9 9 9 R E M
' k ' t r k 1 ( i ( i i 1 r f i ' k ' k i c i r k i r i r 1 e ' k ' k ' k 1 r k i c i t i c k & ' k ' k ' k i c ' k ' k i r k 1 e ' k i e ' k - k t f ( ' k - i r k i ( ' k ' k ' k i c ' k ' k
1 0 0 0 0 R E M / / / / # # ? ; SU B RO U TI N E E N A B L E S B U S W W
1 0 0 1 0 P R I N T D $
1 0 0 1 5 P R I N T D $ ; " I N / / 4 " : R E M C A R D I S I N S L O T F O U R
1 0 0 2 0 P R I N T D $; " P R / M " : R E M T U R N S O N S L O T F O U R
1 0 0 3 0 P R I N T "LF1" : R E M E N A B L E S L I N E F E E D F O R E O F
C H A R A C TE R
1 0 0 4 0 R E T U R N
1 0 1 0 0 R E M # / / # # # SU B RO U TI N E R E T U R N S T O K E Y B O A R D « « / /
1 0 1 1 0 P R I N T D $ ; " P R # 0 " : R E M R E T U R N S O U T P U T T O C R T
1 0 1 2 0 P R I N T D $ Ι Ν / / 0 " : R E M R E T U R N S I N P U T T O K E Y B OA R D
1 0 1 3 0 R E T U R N
1 0 2 0 0 R E M
# # # # #
1 0 2 1 0 R E M RETU RNS T A L K A D D R E S S I N VA R I A B L E T A $
1 0 2 2 0 R E M RE TU R NS L IS TE N A D D R E S S I N V A R I A B L E L A $
1 0 2 3 0 V T A B 7 : HTAB 6 : I N V E R S E : I N P U T * ’ E N T E R P RI M A R Y
A D D R E S S : " ; K $ : NOR M AL
1 0 2 4 0 A D = V A L ( K $ )
1 0 2 5 0 I F A D < 1 OR A D > 3 0 T H E N . H O M E : V T A B 9 : P R IN T
G $ ; G $ ; " ADD RES S M U S T B E B E T W E E N 1 A N D 3 0 " : F O R X - 1
T O 5 0 0 : NE XT X : GOTO 1 0 2 3 0
1 0 2 6 0 L A = A D + 3 2 : R E M C A L C U L A T E L I S T E N A D D R E S S
1 0 2 7 0 L A $ = " W T ” + C H R $ ( L A )
1 0 2 8 0 T A = A D + 6 4 : R E M C A L C U L A T E T A L K A D D R E S S
1 0 2 9 0 T A $ - " R D " + C H R $ ( T A )
1 0 3 0 0 R E T U R N
1 0 5 0 0 R E M i H H H H f S U BR OU T INE C O M M U N I C A T E S W I T H B U S
## #«
1 0 5 1 0 R E M D A TA MU S T B E I N D A $ B E F O R E C A L L I N G
1 0 5 2 0 R E M LISTEN A N D T A L K A D D R E S S E S AR E I N L A $ A N D T A $
1 0 5 3 0 I » 1 : R E M S E T L O O P C O U N T E R T O N O R M A L
1 0 5 4 0 I F D A $ = " L K I " O R D A S = " L K R " T H E N · ! = 3 : R E M
T A K E T H IR D LE AKA GE R E A D I N G
1 0 5 5 0 P R I N T LA $; Z$; DA$ : R E M S E N D L I S T E N A D D R E S S A N D
C O M M A N D
1 0 5 6 0 F O R N = 1 T O I
1 0 5 7 0 P R I N T TA $; Z $; : R E M S E N D T A L K A D D R E S S
1 0 5 8 0 I N P U T R Z $ : REM C O L L E C T R E A D I N G I N R Z $
1 0 5 9 0 N E X T N
1 0 6 0 0 RE T U R N
m i §
S U BR O U T I NE F I N D S T A L K / L I S T E N ADD RE S S ES
F i g . 3 9 — S a m p l e p r o g r a m u s i n g t h e A p p l e H e a s a c o n t r o l l e r w i t h a n A p p l e I E E E - 4 8 8 c o n t r o l l e r c a r d i n s t a l l e d . T o
u s e t h e A p p l e H e w i t h a d i f f e r e n t c o n t r o l c a r d c h a n g e l i n e s 1 0 , 0 0 0 - 1 0 , 6 0 0 a c c o r d i n g l y .
4 1
1 0 ,
1 5 ! I
2 0 I T h i s s am pl e pr o g r a m i s w r i t t e n f o r t h e F l u k e 1 7 X X A I n s t r u m e n t !
2 5 ! c o n t r o l l e r . I t i l l u s t r a t e s t h e bu s o p e r a t i o n o f t h e I C 1 0 2 and !
3 0 ! c o m m a n d s y n t a x nee de d t o a u t o m a t i c a l l y a n a l y z e a c a p a c i t o r s o r !
3 5 I i n d u c t o r s . W r i t t e n b y S e n c o r e , t h i s p r o g r a m m a y be u s e d ' a s i s ' !
k 0 ! o r m a y be m o d i f i e d as nee ded b y a n y L C 1 0 2 o w n e r w i t h o u t an y !
4 5 ! f u r t h e r p e r m i s s i o n f r o m S e n c o r e , I n c . !
5 0 ! ί
5 5 ! L C 1 0 2 i s a t I E E E a d d r e s s 1 0 !
1 0 0 D I M C ( 1 0 ) , C $ ( 1 2 )
1 1 0 T I M E O U T 0
1 2 0 I N I T
1 3 0 C L $ -C H R $ ( 2 7 ) + 1 1 2 J*
1 4 0 P R I N T CPO S(0,0)+CL$
1 0 0 0 ! * * * E n t e r C a p a c i t a n c e T e s t D a t a * * *
1 0 1 0 P R I N T CL*
1 0 2 0 P R I N T CP O S (5 ,3 0 ) + M Alu min um L y t i c ' ;
1 0 3 0 P R I N T C P O S (6 ,3 Q )+ '2 D o u b le L a y e r L y t i c s ' ;
1 0 4 0 P R I N T C P O S ( 7 r 3 0 ) + ' 3 T a n ta lu m c a p s ' ;
1 0 5 0 P R I N T C P O S (8 ,3 0 ) + ‘ 4 Ce ra m ic c a p s ' ;
1 0 6 0 P R I N T C PO S(9 ,30 >+ '5 A U o t h e r c a p s 1 ;
1 0 70 P R I N T C P O S C 1 1 , 3 0 ) + ' E n t e r t h e c a p a c i t o r t y p e ' ; \ I N P U T C t 1 )
1 0 80 ! C { 1 ) = c a p a c i t o r t y p e
1 0 9 0 IF C( 1 ) < > 1 A N D C ( 1 ) < > 2 A N D C<1 ) <>3 A N D C < 1 > < > 4 A N D C<1 ) <>5 T H E N 1 0 1 0
1 1 0 0 P R I N T C L *+ C P O S ( 8 , 0 ) + ' E n t e r t h e c a p a c i t o r w o r k i n g v o l t a g e ‘ ; \I N P U T C C 2 >
1 1 1 0 ! C ( 2 ) = c a p a c i t o r w o r k i n g v o l t a g e
1 1 2 0 P R I N T CLS+CPOS(8,0)+‘ E n t e r t h e c a p a c i t o r v a l u e ( , 0 1 u F ) < ;
1 1 3 0 I N P U T C $ (0 )
1 1 4 0 ! C $ < 0 > = c a p a c i t o r v a l u e
1 1 5 0 P R I N T C L $ + C P O S ( 8 ,0 ) + 'E n te r t h e c a p a c i t o r t o l e r a n c e * ; \ I i i R U T C ( 4 )
1 1 6 0 ! C ( 4 ) = c a p a c i t o r t o l e r a n c e
2 00 0 ! * * * L C 1 0 2 L e a d Z e r o * * *
201 0 L C $ = C H R $ ( 2 7 > + ' [ 2 K '\ C $ ( 5 ) = t C $ \ C $ ( 4 ) = L C $
2020 C $ (2 ) = L C $ \ C $ ( 3 ) = L C $
2030 P R I N T a iO . ' C P O '
2040 P R I N T C L $ + C H R $ { 7 )
2050 P R I N T C P O S {8 ,2 2 )+ 'O pe n t h e n l e a d s a nd t o u c h t h e s c r e e n *
2 0 60 W A I T F O R K E Y \ K % = K E Y
2 0 70 P R I N T C L $ + C H R J ( 7 % )
2 0 80 P R I N T a i 0 , ' l D 0 '
2 090 I N P U T 3 1 0 , 2 $
30 00 ! * * * L C 1 0 2 T e s t D a ta S e t - u p * * *
301 0 P R I N T C L $ + C H R $ ( 7 % )
3020 P R I N T C P O S C 8 , 1 0 ) ;
3030 P R I N T 'Ho ok th e le a d s t o t h e c a p a c i t o r t o t e s t a nd t o u c h t h e s c r e e n '
3040 W A I T F O R K E Y \ I O = K E Y
3050 P R I N T C L $ + C H R $ ( 7 % )
3060 T 1 $ = M I D ( ‘ A L M D 9 L T A N C E R A O C 1 , ( C ( 1 )*3 % )- 2% ,3 % )
3070 C $ ( 6 ) = "
308 0 F O R J % = 1 T O LEN( C$( 0) >
3090 T2$ =MI D(C $( 0> ,J% ,1 %)
31 00 IF IN S T R C 1 % , 'u p f U P F ' , T 2 $ ) T H E N C $ (6 ) = C $ { 6 )+ T 2 S
31 1 0 IF I N ST R( 1 % ,< .0 1 2 3 4 5 6 7 8 9 * , T 2 $ ) T H E N C $ C 7 ) = C $ < 7 ) + T 2 i
31 2 0 N E X T J %
31 30 P R I N T 3 1 0 , T 1 $
31 40 P R I N T 3 1 0 , C ( 2 ) ; 1 V ‘
31 5 0 P R I N T a i 0 , V A L ( C S { 7 ) ) ; C S ( 6 )
31 60 P R I N T 3 1 0 , C < 4 ) ; '+% ’
3 1 7 0 P R I N T 3 1 0 , C C 4 ) ; ‘
4 0 0 0 ! * * * C a p a c i t o r V a l u e T e s t R o u t i n e * * *
4 0 1 0 P R I N T 3 1 0 , 'C A P ·
4 0 2 0 I N P U T a i 0 , C $ < 1 >
4 0 3 0 IF M I D C C S d M S X . W - ' G ’ T H E N C $ ( 8 ) = 'G o o d ' E L S E C $ ( 8 } = l B a d'
4 0 4 0 IF L E F T ( C $ { 1 ) , 3 ) < > ' E R R ' T H E N C $ {1 )= M iO <C $ {1 ) ,4 % ,1 1 % )
4 0 5 0 Z 1 4 = M I D ( ‘ F u F p F 1 , { I N T( VA L( R IG H T (C $( 1 ) , 1 0% })/6% )*2%)+1 %, 2%)
5 0 0 0 ! * * * C a p a c i t o r Lea kag e T e s t R o u t i n e * * *
5 0 1 0 P R I N T a i 0 , < L K I '
5 0 20 I N P U T 3 1 0 , C $ ( 2 )
5 0 30 IF L E F T ( C $ ( 2 ) , 3 % ) = 'E R R 1 T H E N C${ 2)= CH RS (27 )+> C2 K'\G OT O 80 1 0
5 0 40 I % = I N S T R < 1 % , C $ { 2 ) , ' - ‘ )
5 0 50
I F I % < 4 % O R ! % > 1 0 % T H E N S % = 3 %
5 0 6 0 C$ (2 ) = N U M $ ( V A L (M !D (C $ < 2 ) , I % + 1 % , 1 0 % · I S ) ) )
5 0 7 0 P R I N T 3 1 0 , 'L K R *
5 0 80 I N P U T 3 1 0 , C $ ( 3 )
5 0 90 C $ ( 3 ) - N U M $ ( V A t ( M I D ( C $ < 3 ) ,4 % , 7 5 0 ) )
5 1 0 0 IF V A L C C $ ( 3 )) = 8 f i8 8 T H E N 0 $ { 3 ) = Ο Η Κ ί { 2 7 ) + ' [5m 888 8'+ CHR $< 27 )+'C m*
5 1 1 0 IF C ( 1 ) = 2 T H E N 606 0
6 0 0 0 i * * * C a p a c i t o r D e l e c t r i c A b s o r p t i o n T e s t R o u t i n e * * *
6 0 1 0 P R I N T 3 1 0 , ‘ D/A*
6 0 2 0 I N P U T 3 1 0 , C S ( 4 )
6030 IF M ID ( C $ ( 4 ) , 1 5 % , 1 % ) = * G ‘ T H E N C $<1 1 }='Good > E L S E C S C 1 1 5 = · Ba d'
6 0 4 0 IF L E F T < C S ( 4 } ,3 % ) = , E R R ' T H E N C $ < 4 ) = L C $ \ G O T O 6 0 6 0
6 0 5 0 C $ {4 )= N U M $ ( V A L (M ID ( C $ ( 4 ) , 4 % ,7 % ) ))
6 0 60 I F C ( 1 ) > 3 T H E N 801 0
7 0 0 0 ! * * * C a p a c i t o r E S R T e s t R o u t i n e * * *
7 0 1 0 P R I N T 3 1 0 , ' E S R >
7 0 2 0 I N P U T 3 1 0 , C $ < 5 )
7 0 3 0 IF M I O < C $ ( 5 ) , 1 5 % ,1 % ) = ’ G ! T H E N C $ < 1 2 )= < G o o d * E L S E C $ { 1 2 ) = , 8 a d l
7 0 4 0 C t ( 5 )= N U M $ C V A L (M I 0 (C $ ( 5 ), 4 % , 7 % } ) )
8 000 ! * * * D i s p l a y R e s u l t s on S c r e e n * * *
8 0 1 0 P R I N T C L $
8 0 20 P R I N T 3 1 0 , 'C P O '
8 0 3 0 P R I N T C P O S < 4 , 2 5 ) + * V a l u e
8 0 4 0 P R I N T CPO S< 4, 65 )+C $ {8)
8 0 5 0 P R I N T CPOS{5 ,2 5 ) + ' Lea kage ( c u r r e n t )
8 0 6 0 IF C $ (2 ) < > L C $ T H E N P R I N T ‘ u A '; C P O S ( 5 , 6 5 ) ; C S ( 9 >
8 0 7 0 (P R IN T CP OS (5 ,65 )+ C $<9 )
8 0 8 0 P R I N T C P O S C 6 ,2 5 ) + ' L e a k a g e ( r e s i s t a n c e ) - · ' ; C $ ( 3 ) ;
8 0 9 0 I f C$ <3)<>LC$ T H E N P R I N T C H R $ <2 4 ); ! C P O S (6 ,6 5) ;C $( 1 0)
8 1 0 0 P R ! N T C P O S ( 7 , 2 5 ) + ' D i e l e c t r i c A b s o r p t i o n - ' ; C $ ( 4 ) ;
8 1 1 0 I F C $ ( 4 ) o l C $ T H E N P R I N T '% ’ ;C P O S ( 7 , 6 5 ) ;C $ ( 1 1 )
8 1 20 P R I ff T C P O S ( 8 ,2 S ) + ‘ E S R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ; C $ < 5 > ;
8 1 30 IF C S ( 5 > « L C $ T H E N P R I N T C H R $ ( 2 4 ) ; C P O S ( 8 , 6 5 ) ;C $ ( 1 2 )
8 1 40 P R I N T C P O S ( 1 4 ,2 5 ) + 'T o u c h t h e s c r e e n t o r e r u n t h e p r o g r a m *
8 1 50 W A I T F O R K E Y \ K % * K £ Y
8 1 60 P R I N T C H R $ ( 7 7 .)
8 1 70 G O T O 1 3 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ; V A L ( L E F T ( C $ < 1 ) ,7 % ) ) ;Z 1 $ ;
. . . . . . . . .
‘ ; C $ ( 2 ) ;
F i g . 4 0 — S a m p l e p r o g r a m u s i n g a F l u k e c o n t r o i l e r .
4 2
A P P L I C A T I O N S
Introd uct ion
T he p r o c e d u r e s expla ine d in the O P E R A T I O N s e c t i o n
o f t h is m a n u a l explain how to u s e th e LC 1 02 A U T O -Z .
O n c e y o u b e c o m e f a m i li a r w i t h th e b a s i c o pe ra ti o n o f
t h e A U T O -Z , yo u w i l l disco ver m a n y ad ditional app li
c a t i o n s o f t h e u n it . Th is s ec tio n w i l l provide yo u wit h
f urther inf ormation o n using th e LC1 02 fe a tu re s fo r
ex t en d ed ca p a c it o r a n d in du cto r t e s t s , a s w e l l a s o th e r
s p e c ia l a p p li c a t i o n s .
Id en tif yi n g Capacitor T y p es
C a p a ci t o rs are of te n gr o u p e d according to the ki n d o f
di electric tha t is u s e d t o sep arate the p la t es , a n d a r e
n a m e d a c co rd in gl y . For exa mple, a n a l u m in um el ec
tr o ly ti c ca p a ci t o r h a s a n alum inum oxide d ie le ct ri c.
W h i le a m y l a r ca p a c it o r u s e s m y l a r di ele ct ric . (R e fe r
t o th e A P P E N D I X f o r a n e x p l a n a ti o n o f die lec tr ic a n d
other ca p a c it o r t h e or y) .
M a n y d if fe r e nt t ype s o f ca pac it or s are u s e d in ele c
t r o n i c s . E a c h type h a s cert ai n pro per tie s th a t make i t
b e t t e r su it ed fo r p ar tic u la r a p p lic a t io n s. P rop ert ie s
s u c h a s tempe rat ure co effic ient , ES R, di el ect ri c a b s o r p
tion , lea k ag e, v o lt a g e break d o w n , a n d fr eq ue nc y
chara cteris tics a re taken in to a c c o u n t when sele cting
th e ca pa cit or typ e t o b e u s e d . When tr ou bles hoo ting a
ci rcuit, i t is n o t im portant to k n o w w h y a certain t y p e
o f capacitor w a s s e l e c t e d . I t is b e s t to sim ply re pl a ce a
bad ca pa ci to r w it h a g o o d ca p a ci t o r o f th e s a m e ty pe
v a l u e a n d v ol ta ge r a ti n g . Thi s is espe ci all y tr u e w h e n
t h e c o m p o n e n t i s in a “ S a fe ty C r i t i c a l ” ci r cu it. B e c a u s e
d i f f e r e n t c a p a c it o r t ype s have d if fe r e n t ch a ra ct er is ti c s,
i t is im portant tha t yo u kn ow wh at ty p e o f c a p a c it o r
y ou are tes tin g in o rd e r to k n o w i f the L C 1 0 2 t e s t r e su lt s
ar e a cc e p ta b le o r n o t .
Ca pacitors a r e d ivided into f i v e d i f f e r e n t t yp e s f o r test
i n g w i t h the L C 1 0 2 . E a ch h a s d i f f e r e n t param eters
wh ic h re q ui re d if fe r e nt G O O D / B A D limi ts. These f iv e
cap acit or t ype s have d i f fe r e n t physic al ch a ra ct er is tic s
to d e te rm in e a n u n k n o w n c a p a c i t o r ty p e. Th ese ch a r a c
t e r i s t ic s are explaine d i n t h e f o l lo w i n g parag rap hs a n d
ar e s u m m a ri z ed in f ig u r e 4 1 .
Aluminu m E lec tr o lyt ic C a p a c i t o r s
Θ
Ε Ξ Η
2 _ 1
L , m t
T a n t a lu m C a p a c i t o r s
+ P o l a r i t y I n d i c a t o r
1 j ^
Q
C e r a m i c C a p a c i t o r s
+ P o l a r i t y I n d i c a t o r
D o u b l e L a y e r E l e c tr o l y t ic C a p a c i t o r s
( T y p i c a l l y m u c h s m a l l e r p h y s i c a l l y t h a n s i m i l a r
©
v a l u e A l u m i n u m L y t i c s . V a l u e u s u a l l y m a r k e d
i n F . )
r
- Po la rit y I n d i c a to r
- h P o la r it y I n d i c a to r
No r o u n d e d
c o rn er s , fang
le a d i s p os it iv e
F i g . 41 — E a c h c a p a c i t o r t y p e m a y b e i d e n t i f i e d b y i t s u n i q u e p h y s i c a l c h a r a c t e r i s t i c s .
44
A l u m i n u m E l e c t r o l y t i c s
A l u m i n u m - e le ct rol yti c c a pa ci to rs ( A L U M I N U M L Y
TICS) a r e t h e ea siest capa cit or type t o ide nti fy . T h e y
a r e m o s t c o m m o n ly c yl in d er s h a p e d a n d h a v e r a d ia l o r
a x ia l l e a d s . L a r g e v a l u e al u m in u m lytics often have
s c r e w te rminals o r so lde r l u g s . T h e c a s e o f a n a lumin um
lvtic us u a lly i s rolled in or fo r m e d o u t nea r t h e le a d
e n d t o h o l d t h e e n d c a p a n d s e a l . A l l alumin um lytics
h a v e a s e a l tha t i s s o ft a n d ru bb er li ke t o a llo w g a s s e s
t o v e n t . D ep e nd in g o n th e physical s i z e o f the c a s e , t h e
s o f t s e a l ma y ma ke u p the e n t ir e e n d o f the c a s e , o r it
m a y b e just a s m al l s ec tio n o f a h ard e n d c a p . A lu m in u m
l y t ic s ha v e t h e l a r g e s t phy si cal s i z e t o capacity r a ti o o f
a l l c a p a c i t o r t y p e s . T he se ca p a c it o rs ma y a ls o ha ve sev
e r a l s e c t i o n s , w it h e a c h s ec tio n h a v in g a d if fe r e n t
c a p a c i t a n c e v al u e bu t s h a r in g th e s a m e n e g a t i v e t e r m i
n a l , u s u a lly th e c a s e . T h i s is u n iq u e t o alumin um ele c
t r o l y t ic s , a n d w h en e ve r yo u e n co u n t er a ca pacitor h a v
i n g se v er a l d if fe r e n t cap a ci ta nc e value s e c t i o n s , i t w i l l
b e a n a lu m in u m e le ctr o lyt ic .
B e c a u s e o f th e ir u n iq u e phy sica l ch a ra ct er is ti c s, m o s t
a l u m i n u m ly tic s us ua lly ar en’ t eas ily c o n f u s e d w i th
o t h e r c a p a c it o r t y p e s . A x i a l le ad al u m in u m lyt ics, how
e v e r , may p o ss ib ly b e m is t ak en for axial l e a d tan talum
l y t i c s . Th e lea d weld, s h o w n in fi gu re 4 3 , i s a n i d e n t if y
ing ch a ra ct er is tic o f the tan tal um in e l e c t r o l y t i c a n d
i s a q u i c k way to d i f f e r e n t i a t e bet w een a n a x i a l lea d
a l u m i n u m ly ti c a n d a ta n ta lu m l y ti c . A lu m in u m l ytics
d o n o t ha ve a lead w e l d o n e i t h e r terminal.
l e a d s . Lead pola rization i s often th e only w a y t o distin
guish a tantalum ly ti c fr om ano the r type o f c a p a c i t o r .
O n c e y o u b e c o m e f a m i li a r w it h t h e p olarity mar king s
u s e d , tantalum lyt ic s a re not d i f fi c u l t t o id en ti fy . Th e
p o la r i ty marking s a re n o t m ean t t o b e dif fic ult t o n o t i c e
o r u n d e r s t a n d , a lt h o u gh i f yo u are n o t a w a r e o f t h e m ,
th e y m i g h t b e o v e rl o o k e d . P a y ca re fu l at te nt io n s o th at
yo u d o n o t ove rlo ok t h e p o l a r i t y in d ic a t io n a n d m i s -
i d e n t i f y a tantalum ca pa ci to r a s an other t y p e .
T h e sim pl est a n d m o s t c o m m o n p o la r it y in d ic a t o r i s a
“ + ” sign near o n e o f th e l e a d s . T h is i s oft en u s e d along
w it h a s e c o n d type o f i n di ca to r . F i g u r e 4 4 s h o w s se veral
exa mple s o f lea d ide nt if ic at io n u s e d i n t a nt a lu m
c a p a c it o r s . In a d d it io n t o the “ + ” s ig n , e a c h c a p a c i t o r
s h o w n h a s a s e c o n d ind ica tio n o f t h e “ + ” l e a d : a l e a d
weld, a ta pe re d c a s e , a ro u n d e d c o r n e r , a l i n e , o r a n
e x tr a ridg e near th e “ + ” l e a d .
F i g . 4 3 — A x i a l l e a d t a n t a l u m c a p a c i t o r s , l i k e t h e o n e
s h o w n h e r e , a r e e a s i l y i d e n t i f i e d f r o m a x i a l l e a d
a l u m i n u m e l e c t r o l y t i c s b y a s o l d e r w e l d o n o n e e n d .
F i g . 4 2 — A l l a l u m i n u m e l e c t r o l y t i c s h a v e a r u b b e r
s e a l .
T a n t a l u m E l e c t r o l y t i c s
D ip p e d tan talu m e le c t ro l y ti c s are r epl aci ng al u m in um
ly ti cs in m a n y el ectronic ci r c u it s . T h e y ha ve l e s s l e a k
a g e a n d h ig h e r v alue tolera nce s t h a n alumin um ly t ic s .
Tan talu m e le ct ro ly tic c a pa ci to rs a r e a b o u t o n e h a l f t h e
s i z e o f a s im il ar alumin um el e ct ro ly tic o f the s a m e
va lu e a n d v o l ta g e r a ti n g .
A “ + ” in dic at or i s n ot prin ted o n all tan ta lu m
c a p a c it o r s . In m a n y c a s e s the p ol ar ity in di ca to r w i l l
si m p ly b e t h e lead w eld , a tape re d c a s e o r r o u n d e d
c o r n e r , a lin e, o r a n e x tr a r i d g e o n the c a s e . Seve ral
oth er p o la r it y i d e nt if ie rs ar e a l s o u s e d . Th e e n d o r s i d e
nearest th e p l u s lea d m ay b e pain ted o n e c o l o r . Also a t
tim es , jus t a d o t o r a li n e o n th e s id e o f t h e p a c k a g e
w i l l b e u s e d .
N O T E : T a n t a lu m ca pac it or s may u s e d o t s or s t r ip e s t o
in d ic at e valu e o r t o le r a n c e . D o n o t c o n f u s e t h e v a lu e
c ol o r c o d e f o r t h e p o l a r i t y in d i c a to r o f a ta n ta lu m
capa cit or . T he p o l a r i t y in d i c a t o r w i l l b e l a r g e r an d iso
la te d fro m t h e colo r c o d e .
Th e m o s t c o m m o n s h a p e s o f ta nta lu m ca p a c i t o rs a r e
il lustr ated i n f i g u r e 4 4 . W h i l e they ma y have m a n y
s h a p e s , tantalum c a pa ci to rs alwa ys h a v e po la riz ed
F i g . 4 4 — T a n t a l u m e l e c t r o l y t i c c a p a c i t o r s a l w a y s
h a v e a p o l a r i t y i n d i c a t o r .
F i g . 4 5 — A t a n t a l u m c h i p c a p a c i t o r ( l e f t ) c a n b e i d e n
t i f i e d f r o m a c e r a m i c c h i p c a p a c i t o r b y i t s p o s i t i v e
l e a d .
T a n t a l u m ca pac it or s a r e a l s o a v a i la b le in th e sm al l
s u r f a c e mo unt o r ‘ ‘ chip’ ’ t y p e . T antalum c h ip c a p s c o u l d
b e co n f u s e d w i t h t h e c e r a m ic c h i p c a p , si n ce th ey a r e
s i m i la r in siz e a n d a p p e a r a n c e a t f i r s t glan ce. Bu t a s
f i g u r e 4 5 s h o w s , a tanta lu m c h ip capac ito r is pola rized
a n d h a s a n e a s i l y i d e nt if ia b le pos iti ve le a d . The p o la r it y
id e n t i f ic a t io n th at may g i v e y o u t h e mo st d if f i c u l t y in
i d e n t i f y in g a tan talum c a pa ci t o r i s le a d leng th. The
only id e n t i f i c a t io n o f t h e pos itive lead o n s o m e tan
talu m capacito rs i s tha t i t i s lo n ger t h a n the ot he r l e a d .
O f c o u r s e , th is p r es en t s n o pr ob le m w he n th e cap ac it or
i s n ew , bu t o n c e i t h a s b e e n ins talled i nt o a cir cu it
b o a r d , the leads a re c u t o f f ' t o t h e s a m e le ng th . In t h i s
situ ati on , u s e th e ci rc u it a s t h e c l u e t o the ca p ’ s typ e
a n d p o l a r i ty .
D o u b l e L a y e r E l e c t r o l y t i c s
Do uble l a y e r el e ct ro ly tic c a p a c it o r s a r e com m on ly
kn own by tr a d e n a m e s s u c h a s “ Su p er ca p” or “ Go ld
Cap” . The se c a pa ci to rs are qu ite e a s y to id e n tif y . D o u
ble l a y e r ly t i c s have a n ex tr e m e ly la r g e ca p a c it a n c e
v a lu e for t h e i r ph ysi cal s i z e . T h e y ar e fo u n d in various
phy sical s h a p e s a n d s i z e s , a s s h o w n i n f i g u r e 4 6 . T h e i r
v a lu e is m ar k e d in F a r a d s , rathe r than in pic o fa ra ds
o r micro farad s.
C e r a m i c C a p a c i t o r s
Ce ram ic ca p a c i t o rs m ay b e fo u n d i n m a n y differ ent
s i z e s a n d s h a p e s . The m o s t c o m m o n t y p e o f c e r a m i c
ca p a c it o r i s the f la t, r o u n d ce ra mi c d i s c , a s s h o w n i n
fi gu re 4 7 . The cer amic d i s c i s u n iq u e in i t s s h a p e , a n d
i s e as ily id e n ti f i a b l e fr om other c e r a m i c s , a n d oth er
t ype s o f c a p a c it o r s . T h e ce ra mi c d i s c i s a l s o u n i q u e fr om
other type s o f ceramic ca p a c it o rs in th at i t m a y have
sm all a m o u n t s o f no rmal leaka ge.
f t
R M C
.0 1
t c %
F i g . 4 7 — T h e m o s t c o m m o n t y p e o f c e r a m i c c a p a c i t o r
i s t h e c e r a m i c d i s c . I t h a s u n i q u e p a r a m e t e r s w h i c h
r e q u i r e i t t o b e t e s t e d d i f f e r e n t l y t h a n o t h e r c e r a m i c ,
o r f i l m c a p a c i t o r s .
T w o ot her kin d s o f cer amic c a p a c i t o r s w hi c h a r e e as i ly
id e n tif ie d from ot h e r cap a ci to r ty p e s a r e th e axial lead
a n d c h i p t y p e s . A s f i g u r e 4 8 s h o w s , s o m e axi al lead
cer amic ca p a c it o rs m a y lo o k th e s a m e a s re s i s t o r s a n d
in d u c t o r s w hich a ls o u s e th e s a m e c a s e ty p e . You c a n
e as ily de ter m ine i f th e c o m p o n e n t i s a r e s is t o r ,
ca pa ci to r o r i nd uc tor from its lo c a t i o n in t h e ci r c u it .
T h e LC1 02 c a n a l s o b e u s e d to h e lp id e nt if y t h e s e u n
kn ow n c o m p o n e n t s , a s expla ine d in a fo ll o w in g s e c t i o n ,
“ I d e n t i f y i n g U n k n o w n C o m p o n e n ts ” (page 4 8 ) .
T h e p o l a r i t y o f a d o u b l e la y e r l y ti c i s oft en pri nt ed o n
the c a s e , alt h ou gh a longer lea d ma y a l s o b e u s e d t o
id e n t i f y th e p o s it iv e ter m in al . S o m e d o u bl e l a y e r lytics
u s e a l i n e n e x t t o o n e le a d w h ic h ma y b e e i t h e r “ + ” o r
I f t h er e i s n o o th er ma rkin g, the te r m i n a l th a t i s
p ar t o f th e m e t a l c a s e i s t h e n e g a ti v e le a d .
F i g . 4 6 — D o u b l e l a y e r l y t i c c a p a c i t o r s h a v e a v e r y
l a r g e a m o u n t o f c a p a c i t a n c e f o r t h e i r p h y s i c a l s i z e .
T h e i r v a l u e i s u s u a l l y m a r k e d i n F a r a d s .
F i g . 4 8 — C e r a m i c c a p a c i t o r s m a y a l s o i n c l u d e a n
a x i a l l e a d a n d c h i p - t y p e p a c k a g e . A x i a l l e a d c e r a m i c s
o f t e n l o o k l i k e o t h e r a x i a l l e a d c o m p o n e n t s .
Cer am ic c h i p c a pa ci to rs a re u n i q u e i n a p p e a r a n c e , a s
s h o w n in f i g u r e 4 5 . Ta nt alu m c h i p c a p a c i t o r s have a
p o la r it y in dic at or , ce ra mi c c h i p c a p a c i t o r s d o n o t .
T h e r e are a fe w oth er ki n d s o f ce r a m ic c a p a c i t o r s b e
s i d e s th e three ty p es id e nt if ie d h e r e . Th es e t y p e s , s u e t
a s m o ld ed cer am ics a n d e n c a p s u l a t e d c e r a m i c s , a r e
v e r y s im il a r in ap pe a ra n ce t o f i l m c a p a c i t o r s , a n d an
d if fi c u lt t o d i f f e r e n t i a t e from films by p h y s i c a l a p p e a r
a n c e . This p r ese n ts n o p r o b le m t h o u g h , w h e n t e s t i n g
t h e s e ce r a m ic s w i t h t h e L C 1 0 2 , s i n c e a ny l eak ag e o i
D / A in a c er a m ic ca p a c it o r, o th er tha n a c e r a m i c d i s c
i s n o t allo wable. I f yo u a r e u n a b l e t o ide nti fy t h <
ca pa ci to r a s a ce ra m ic , t e s t i t a s a n “ A L L O T H E I
C A P S ” t y p e .
46
A l l O t h e r C a p a c i t o r s
Th e fina l c a p a c it o r type gr oup ing fo r LC1 02 A U T O - Z
G O O D / B A D te s tin g i s “ A L L O T H E R C A P A C I T O R S ” .
As it s n a m e im p li e s , c a p a c i t o r s i n t h i s c at e g o r y d o n o t
h a v e t h e el ectrical (o r ph ys ic al ) ch ara cteristics t o f i t
i n t o a n y o f t h e o t h e r ca t e g o r ie s . C a p a ci t o rs included in
t h i s gr ou pi n g a r e fil m s, m i c a s , a ir die lectrics , p a p e r s ,
o i l fi l le d c a p a c i t o r s , a n d other similar t y p e s . ( T h e r e a r e
n u m e r o u s ty p e s o f f il m c a p a c it o r s s u c h a s m y l a r , p oly es
t e r . p o ly c a r b o n a t e , po lysty rene, a n d poly pro pyle ne).
T h o u g h e a c h o f t h e s e c a p a c it o r t y p e s ha ve d i f fe r e n t
di el e ct ri cs a n d s o m e w h a t dif fer ent par ame te rs , th e y
a r e a l l sim ila r i n tha t w h e n t e s t e d w it h th e L C 1 0 2 ,
t he y s h o u l d have n o di electric a b s o r p t io n or le aka ge.
A ls o , b e c a u s e o f t h ei r r e l a t i v e l y low ca pa ci ta nc e va lue,
E S R i s o f l i t t l e im p o r ta n c e a n d i s n o t meas ura ble. I f
y o u m e a s u r e any lea kage, or D / A in a n “ A L L O T H E R
C A P A C I T O R ” type i t is b a d .
N O T E : W h e n r e p l a c i n g a n y o f th es e c a p a c i t o r s , a l w a y s
replac e i t w i t h t h e s a m e ty pe orig ina ll y u s e d in the c i r
c u i t . F o r e x a m p l e , a m y l a r fi lm c ap ac i t o r s h o u l d o n l y
b e r e p l a c e d , w i t h a n o t h e r m y l a r f i l m . T h i s i s es pec ial ly
i m p o r t a n t f or c o m p o n e n t s in a r e a s o f the s c h e m a t i c d e
si g n a t e d ' ■ a s “ S a f e t y Cr it i c a l " ,
I d e n t i f y i n g I n d u c t o r T y p e s
I n d u c t o r s , l i k e c a p a c i t o r s , may b e f o u n d in m a n y s h a p e s
a n d s i z e s d e p e n d i n g o n t h e ap pl ica ti on in w h ic h th ey
a r e u s e d . The L C I 0 2 w i l l provide a n accu rat e R i n g e r
t e s t o n a l l ty p e s o f a i r c o r e a n d f e r r i te c o r e i n d u c t o r s ,
prov ide d t h e p r o p e r In du ct o r C O M P O N E N T T Y P E
s w it ch i s s e l e c t e d . E a c h i n d u c t o r type h a s a normal
ra ng e o f im p e d a n c e , a n d th e In d u ct o r C O M P O N E N T
T Y P E s w it ch es m a t c h t h e im p e d a n c e o f th e L C I 0 2
R i n g e r c ir c u it s t o th e par ticu lar i n d u c t o r ty p e b ei ng
t e s t e d . W i t h the pr op e r C O M P O N E N T T Y P E sw it ch
s e le c t e d , a n i n d u c t o r w it h jus t a sin gle shorted turn
w i l l p r o d u c e a “ B A D ” ind ica tion in t h e R i n g e r t e s t .
A i r a n d fe r r i te c o r e in d u c t o r s break into th re e , easy t o
id e n ti f y t y p e s : Y ok e s a n d F ly ba ck s, S w i t c h in g T ra n s
fo rm er s, a n d C o il s . Se le ct o n e o f t h e s e t h re e In du ct o r
C O M P O N E N T T Y P E sw it c h e s w h e n p e r f o r m in g th e
R i n g e r t e s t .
F i g . 4 9 — Y o k e s ( t o p ) a n d f i y b a c k s ( b o t t o m ) a r e i n d u c
t o r t y p e s w h i c h a r e e a s i i y i d e n t i f i e d .
S w i t c h i n g T r a n s f o r m e r s
Sw itc hi ng trans for mer s a re u s e d in p o w e r su pp ly c ir
c u i t s t o s t e p v o l ta g e s u p o r d o w n . H o we ver , th ey a re
m u c h d i f f e r e n t f ro m co nv en ti on al po w er tra n sf o rm e rs
in b o t h a pp ea ran ce a n d o p e r a t i o n , a n d s h o u l d not b e
m istaken f o r a p ow er t ra n sf o rm e r. P o w e r tran sfo rm er s
usua lly operate at 6 0 H z , a n d therefore c o n t a i n a l a m i
nat ed iron co r e wh ich i s oft en visi bl e. B e c a u s e t h e iron
c o r e i s lo w Q and a b s o r b s a l l r in g in g e n e r g y , p ow e r
tr ansformers ca n no t b e te st ed wi th the L C 1 0 2 .
Sw itc hi ng tr ansformers, o n t h e o th er h a n d , a re m u c h
sm a lle r a n d l i g h t e r t h a n power t r a n s f o r m e r s . T h e y are
w o u n d a ro u n d a f e r r i t e c o r e w h i c h eas ily ri n gs wh en
g o o d . S w i tc h in g tran sfo rm er s o p er a t e a t m u c h lo w e r
cu rr en ts a n d m u c h h ig h e r fr e q u e n c i e s t h a n p ow e r
tra ns fo rm er s. T w o c o m m o n sw itching t r a n s fo r m e r s , P C
b o a r d m o u n t a n d tor oid t y p e s , a re s h o w n i n fig ur e 5 0 .
Y o k e s a n d F l y b a c k s
Y o k e s are u s e d exc lus iv el y in video ap plications t o d e
fl e ct a C R T election b e a m . A s sh o w n in f i g u r e 4 9 , they
c a n not b e e as ily mistaken f o r a n y o th er t y p e o f in d u c
t o r . Y o k e s have a f e r r it e c o r e , s u r r o u n d e d by t w o pa ir s
o f wi ndings, w h ic h fits o v e r t h e C R T n e c k . I t i s he ld in
p la c e w i t h a pl a st ic sh ell a t ta c h e d t o the C R T n e c k .
Flybac k tra n sf o rm e rs a re a l s o ea sy t o id e n ti f y . T h e y
t o o a r e u s e d ex c lu s iv e ly in v id eo a pp li ca ti o ns , a n d pro
d u c e high v o l ta g e for the CRT . A flyback h a s s e ve r a l
ter mi na ls w h i c h a r e o ft en so l d e r e d t o a P C bo ard c h a s
s i s . On e o r t w o h e a v i l y in su la ted l e a d s e x i t th e fl yb ac k
t o ca rr y h ig h v ol ta ge t o a tri pl er, o r t o the C R T d ir e c tl y .
F i g , 5 0 — T h e t o r r i o d ( i e f t ) a n d P C m o u n t a r e t w o
c o m m o n t y p e s o f s w i t c h i n g t r a n s f o r m e r s .
C o i l s
A l l n on -i ro n c o r e i n d u c t o r s wh ich c a n n o t b e c la ss if ie d
a s y o k es , f ly b a c k s , o r sw itc hi n g trans for mer s a re t e s t e d
w it h t h e “ C O IL S ” I N D U C T O R C O M P O N E N T T Y P E
switch s e l e c t e d . T h e s e in cl u d e R F / IF t ra n sfo rm er s, R F
c h o k e s , p o s t a g e s t a m p i n d u c t o r s , a x i a l le a d i n d u c t o r s ,
f r e e form c o i l s , a s w e l l a s s o m e othe r t y p e s .
%
F i g . 5 1 - A i r a n d f e r r i t e c o r e i n d u c t o r s a r e t e s t e d w i t h
t h e “ C O I L ” c o m p o n e n t t y p e s w i t c h s e l e c t e d .
I d en tif y in g Un known
C om po n en ts
Oc casionally y o u m a y en co u n te r sm all v al u e i n d u c t o r s
a n d a x ia l l e a d c e r a m i c c a pa ci to rs w hi c h l o ok l ik e t h e
more c o m m o n ax ial le a d f i l m re sistor. I f thes e c o m p o
ne nt s g e t m i x e d u p in you r pa rts b i n , yo u m a y ha v e
d i f f i c u l t y ide nti fy ing t h e c o m p o n e n t . T h is m a y a l s o b e
a c o n c e r n with c h i p ca p a c i t o rs , c h ip in d u c t o r s , a n d a
f e w other axial le a d i n d u c t o r s a n d cap a ci to rs o n w h ic h
th e markin gs a r e dif fic ul t t o i n t e r p r e t or are n o t vis ib le.
You c a n u s e the L C 1 0 2 t e s t s t o s o r t th e se c o m p o n e n t
t y p e s fro m e a c h o t h e r . F ig ur e 5 3 s h o w s , in fl ow c h a r t
f o r m , th e p r o ce d u re y o u n e e d t o fol low . B ef o re be gi n
ning th e tes t, z e r o th e t e s t l e a d s in b o t h the “ S H O R T ”
a n d “ O P E N ” po sit ion o f the L E A D ZE RO s w i t c h . Y o u
be gin i d e n t i f y in g the c o m p o n e n t w it h a ca pa ci to r valu e
t e s t . D e p e n d i n g o n t h e r e ad in g , you either u s e t h e le a k
a g e te s t o r in du ct or valu e test to fur th er isola te t h e
c o m p o n e n t . F in a l l y , i f t h e c o m p o n e n t a p p e a r s t o b e a n
in d u c t o r , you u s e the ri n g i n g test a s conf irm at io n.
C o n n e c t U n k n o w n C a p a c i t o r i n d u c t o r o r R e s i s t o r
M e a s u r e C V a l u e
< 2 0 0 P * 'O OO O ^or trT ’ J > 2 Q ° 9 *
j
C o m p o n e n t m a y b e
J r e s i s t o r o r s m a i l c a p a c i t o r
M e a s u r e
I
I
l e a k a g e a t 1 0 V
j > O u A j O u A
C o m p o n e n t i s
r e s i s t o r
C o m p o n e n t i s c a p a c i t o r
o r r e s i s t o r > 1 0 0 m o h m
M e a s u r e L V a l u e
< o ! > 0 j “ O p e n ’ '
C o m p o n e n t i s
s m a i l v a l u e r e s i s t o r
I n d u c t o r R i n g e r T e s t
r _ _
C o m p o n e n t i s c a p a c i t o r
R e a d i n g i s v a l u e
( C o m p o n e n t m a y b e
| l a r g e r e s i s t o r
* 1 0 ! > 1 0
C o m p o n e n t m a y ti e
r e s i s t o r o r
v e r y t o w Q c o i l
C o m p o n e n t i s
i n d u c t o r
%
F i g . 5 2 - S o m e s m a l l v a l u e i n d u c t o r s ( l e f t ) c a p a c i t o r s
( c e n t e r ) , a n d r e s i s t o r s ( r i g h t ) m a y b e h a r d t o t e l l a p a r t .
T h e L C 1 0 2 p r o v i d e s a q u i c k t e s t t o i d e n t i f y s u c h u n
k n o w n c o m p o n e n t s .
F i g . 5 3 — U s e t h i s f l o w c h a r t t o h e l p i d e n t i f y s m a l l
a x i a l l e a d i n d u c t o r s , c a p a c i t o r s , a n d r e s i s t o r s f r o m
o n e a n o t h e r .
I M P O R T A N T
D o n o t a p p l y m o r e t h a n 1 0 v o l t s a c r o s s a n
u n k n o w n c a p a c i t o r r e s i s t o r o r i n d u c t o r . M o s t
c h i p , “ f i l m ” p a c k a g e , a n d a x i a l l e a d i n d u c t o r s
a n d c a p a c i t o r s w i l l h a v e v o l t a g e r a t i n g s
g r e a t e r t h a n 1 0 v o l t s . I f i n d o u b t a b o u t a n
u n k n o w n c o m p o n e n t ’ s v o l t a g e r a t i n g , u s e
a n o t h e r m e t h o d t o i d e n t i f y it , i f p o s s i b l e , o r
u s e a l o w e r t e s t v o l t a g e .
N O T E : T h i s t e s t i s o n l y i n t e n d e d t o h e l p y o u s o r t i n d u c
t o r s , c a p a c i t o r s a n d r e s i s t o r s i n “ fi lm r e s i s t o r ” t y p e , chi p
type o r s m a l l ax ia l l e a d p a c k a g e s w h i c h a r e d i f f i c u l t t o
i d e n t i f y b y p h y s i c a l a p p e a r a n c e or a n y o t h e r m e a n s .
4 8
C a p a c i t o r T e s t i n g
A p p l i c a t i o n s
C h e c k i n g L e a k a g e B e t w e e n S e c t i o n s
O f A M u l t i - S e c t i o n L y t i c
I n t e r p r e t i n g C a p a c i t o r
V a l u e R e a d i n g s
T h e L C 1 0 2 A U T O - Z au to m at ic al ly di sp la y s t h e th re e
m o s t c o m m o n c a pa ci t o r val u es o f p ic o fa ra ds ( p F ), micro
fa r a d s (u F) , a n d F a r a d s (F). W h e n me asuring c a p a c i t o r s
w it h t h e L C 1 0 2 , y o u may en co un te r s o m e c a p a c i t o r s
w it h a valu e ma rk ed with out a dec im a l, s u c h a s “ 2 5 0 0 0
pF” , b u t tha t re ad “ . 0 2 5 0 uF ” o n the LC1 02 d i s p la y .
Yo u m a y a l s o e n c o u n t e r , a s a n ex am pl e, a c a p a c i t o r
w h i c h i s m a r ke d “ 3 3 0 0 p F ” by s o m e m a n u fa c t u r e r s ,
y et a n iden tical re placement is mar ked “ . 0 0 3 3 uF ” b y
a n o t h e r m a n u fa c t u r e r.
A s t h e s e e x a m p le s illu s tr at e , ca p a ci t o rs c a n b e ma rk ed
i n p F , u F o r ev e n F . A four th v al u e mul tip li er, t h e
n a n o f a r a d (nF) i s se l d o m u s e d t o mark a c a p a c it o r , b u t
i s u s e d o cc a s io n a ll y in de si gn a n d in d u s t r y . T ab le 1 2
w i l l h e l p y o u t o e as ily co n ve rt fr om o n e rea di n g t o
a n o t h e r .
C h a n g e t o
F r o m
F a r a d s
M i c r o f a r a d s
N a n o f a r a d s
P i c o f a r a d s
F a r a d s M i c r o f a r a d s
m o v e d e c i m a !
6 p l a c e s l e f t
m o v e d e c i m a l
9 p l a c e s l e f t
m o v e d e c i m a l
1 2 p la c e s l e f t
M u l t i p l e s e c t i o n a lu m in u m e le c t ro l y ti c c a p a c it o r s a r e
c o m m o n , e specially in ma ny o ld er power s u p p l i e s . S u c h
ca p a c i t o rs a re actually se ve ra l ca p a c it o rs in s i d e o n e
c a n sh aring t h e s a m e n e g a ti v e term in al.
L e a k a g e so m e t im e s d e v e lo p s betwee n o n e o r t w o s e c
ti ons o f m u lt i- se c t io n ly t ic s . Th is l e a k a g e i s esp eci al ly
d if f ic u l t t o t ro u b l e s h o o t witho ut t h e LC1 02 lea ka ge t e s t
b e c a u s e sig nal s fr o m o n e s e c t i o n o f t h e c a p a c it o r a r e
c o u p le d t o a n o t h e r s e c t i o n . Th is res ults i n mu lt ip le
sy m p t o m s i n t h e o pe ra ti o n o f the d evi ce i n w h i c h t h e
capacitor i s u s e d . A n o hm m et er w i l l n ot s h o w leaka ge
b e tw e e n s e c t i o n s o f a m u lt i- la y er c a p b e c a u s e t h e le ak
ag e on ly o c c u r s n ea r t h e c a pa ci t o r’s op er ati ng voltag e.
T o isola te t h is type o f leak ag e w i t h t h e LC 1 0 2 y o u
s im p ly perform t h e s t a n d a r d le a k a g e t e s t . As y o u t e s t
e a c h s e c t i o n , s h o r t e a c h o f t h e r e m a i n i n g s e c t i o n s t o
g r o u n d . A n y in c re a s e in lea kag e w h e n a s e c t i o n i s
sh or t ed t o g r o u n d in d i c a t e s lea kag e be tween s e c t i o n s .
m o v e d e c i m a l
6 p l a c e s r i g h t
m o v e d e c im a l
3 p la c e s le f t
m o v e d e c im a l
6 p la c e s le f t
N a n o f a r a d s P i c o f a r a d s
m o v e d e c i m a !
9 p l a c e s r i g h t
m o v e d e c i m a l
3 p l a c e s r i g h t
m o v e d e c i m a l
3 p l a c e s l e f t
m o v e d e c im a !
1 2 p l a c e s to r i g h t
m o v e d e c i m a l
6 p l a c e s r ig h t
m o v e d e c i m a l
3 p l a c e s r ig h t
T a b l e 12 — C a p a c i t o r v a l u e c o n v e r s i o n c h a n .
D i e l e c t r i c S tr e s s
M any c e r a m ic c a p a c i t o r s ch ange valu e w h e n th ey a r e
D C b i a s e d . The ap pl ie d D C v o lt a g e c a u s e s p h ys ic a l
s t r e s s w ith in t h e c er a m ic d ie le c tr ic c a u s i n g i t t o d e
c r e a s e i n val ue. Th is v a l u e ch a ng e i s ca ll ed “ dielec tric
s t r e s s ” . N o r m a l ly a cer a mi c capa cit or w i l l re tu r n t o it s
n o r m a l va lue within seve ra l s e c o n d s af te r t h e v olt a ge
i s re m o v e d .
Y ou w i l l n o t normally notice d ie lec tr ic s t r e s s w h e n
c h e c k in g a ce r a m ic ca pa ci to r w i t h t h e A U T O - Z , u n l e s s
y o u a p p ly a v ol ta ge t o i t w i t h t h e ca p a ci t o r le akage
t e s t . Th en y o u m a y find th a t th e c a p a c i t a n c e v al u e h a s
d e c r e a s e d b y a s m u c h a s 5 0 % in c er a m ic c a p a c i t o r s
havin g values 1 0 pF o r smaller. Thi s i s a n ormal c h a r a c
teristic o f s m a l l valu e c e r a m ic s.
S f t o L ' & v r
7 ^ U x a ' ! : \ '
F i g . 5 4 — T e s t t h e l e a k a g e o f o n e s e c t i o n o f a m u l t i
s e c t i o n l y t i c , t h e n s h o r t o n e o f t h e r e m a i n i n g s e c t i o n s
t o g r o u n d . A n y i n c r e a s e i n l e a k a g e c u r r e n t i n d i c a t e s
l e a k a g e b e t w e e n t h a t s e c t i o n a n d g r o u n d .
49
- W A R N I N G -
T h i s t e s t s h o u l d o n l y b e p e r f o r m e d b y a p e r
s o n w h o u n d e r s t a n d s t h e s h o c k h a z a r d o f u p
t o 1000 v o l t s a p p l i e d t o t h e t e s t l e a d s d u r i n g
t h e c a p a c i t o r l e a k a g e t e s t . DO N O T h o l d t h e
c a p a c i t o r i n y o u r h a n d , o r t o u c h t h e t e s t l e a d s
o r c a p a c i t o r l e a d s w h e n m a k i n g t h i s l e a k a g e
t e s t .
Simp ly c o n n e c t the capa cit or t o th e L C 1 0 2 a n d m e a s u r e
its v a l u e . Then a p p ly he at t o th e c a p a c i t o r while y o u
c o n t in u e t o m e a s u r e it s va lue. A C O G o r N P O t y p e
c a p a c it o r w i l l n o t ch a ng e in value, o r c h a n g e very
s li g h t l y a s heat i s a p p li e d . A n N ty p e c er a m ic w i l l d e
c r e a s e i n val ue, w h il e a P ty p e c er a m ic w i l l i n c r e a s e
in c a p a c it a n c e .
C h e c k i n g C a p a c i t a n c e O f
S i l i c o n D i o d e s a n d T r a n s i s t o r s
To c h e c k f o r l e a k a g e b e t w e e n s e c t i o n s o f a m u l t i
l a y e r c a p :
1 . C o n n e c t o n e s e c ti o n o f the ca p a c it o r t o t h e LC 1 0 2
t e s t l e a d s . Be s u r e t o observe pr op er p olarity.
2 . En te r the w o rk in g v o l t a g e o f t h e s ec tio n being t e s t e d .
No te t hat a m u lt i- la y er l y t i c m a y have a d if fe r e nt wo rk
in g v o l t a g e fo r e a c h s e c t i o n .
3 . D e p r e s s t h e C A P A C I T O R L E A K A G E b u t t o n a n d
r e ad th e le a k a g e curr en t o n the L C D d is p la y . I t m u s t
b e w i th in the maximum all o wa b le l e a k a g e lim its fo r
i t s value a n d v o lt a g e ra tin g.
4 . C o n n ec t o n e e n d o f a sh or t jumper t o t h e c o m m o n
ter mi n al o f th e c a p a c it o r .
5 . W h i l e de p re ss in g th e C A P A C I T O R L E A K A G E b ut
t o n , c o n n e c t t h e other e n d o f th e ju m p er to e a c h o f th e
ca p a c it o r ter mi na ls n ot a l r e a d y c o n n e c t e d t o the L C 1 02
t e s t l e a d s .
6 . A g o o d multi -se ct ion e le c t ro l y ti c w i l l s h o w n o i n
c r e a s e in th e le ak ag e r e a d in g a s the jumper i s c o n n e c t e d
t o e a c h terminal.
I n t e r m i t t e n t C a p a c i t o r s
Occas ion ally a n e le c t r o ly t ic ca p a c it o r ma y b e c o m e in
te rm itt e n t. A p o o r w e l d o f the lead t o t h e int ern al f o il
p la t es or other me cha ni ca l pr ob le m c a n c a u s e th e
c a pa ci t o r t o fu n ct io n ran domly. Oft en s u c h c a p a c it o r s
w i l l a l s o e x h i b it high E S R when th ey a re wo rking. ( T h e
int ern al c o n s tr u c t i o n o f a n e l e ct ro ly ti c c a pa ci t o r i s
s h o w n in th e A P P E N D I X ) .
I f yo u s u s p e c t a n i n t e r m it t e n t c a p a c i t o r , mo ve i t s le ads
a r o u n d a n d pull o n th em a s yo u perform a c a pa ci t o r
value t e s t . A c h a n g e in ca p a ci t a n c e i n di ca te s a n i n t e r
m it te n t c o m p o n e n t wh ich s h o u l d b e r e p l a c e d .
C h e c k i n g C e r a m i c C a p a c i t o r
T e m p e r a t u r e C h a r a c t e r i s t i c s
T h e c a p a c it a n c e o f silicon d i o d e s a n d t r a n s i s t o r s , a s
w e l l a s t h e rev e r se l e a k a g e p a t h s o f silic on a n d g e r
ma n iu m t ran sis tor s c a n b e e a s i ly m e a s u r e d u s in g t h e
L C 1 0 2 . F i g u r e 5 5 s h o w s th e c o n n e c t i o n s n e c e s s a r y f o r
t h e s e m e a s u r e m e n t s . I f the LC1 02 d is p l a y s h o w s “ 0 . 0
p F ” w he n te s ti n g c a p a c i t a n c e , o r flashin g “ 8 8 . 8 8 m A ”
w he n te s ti n g leaka ge, the c o n n e c t i o n s a re re v e r s e d . N o
s p e ci a l p r ec a u ti o n s are n ece ss ary w h e n m e a s u r i n g
ca p a c i t a n c e , h ow ev er b e s u r e t o foll ow t h e s e p r e c a u
ti o n s w he n te s ti n g le ak ag e:
1 . D o n o t apply m o r e than 3 v ol ts to a tra n sis to r w h e n
te s tin g I B E O .
2 . S e t t h e l e a k a g e s u p p l y to th e m a x im u m vol ta ge r a t
i n g o f the tr ansisto r w h en te s ti n g I C B O o r IC E O, b u t
d o n o t e x ce ed the rated v o lt a ge . Exceed ing t h e r a t e d
v o l t a g e may c a u s e t h e tr an s is to r t o z e n e r , a n d w i l l d a m
age the j u n c ti o n s.
N O T E : T h e c a p a c i t a n c e o f g e r m a n i u m t r a n s i s t o r s a n d
d i o d e s c a n n o t b e m e a s u r e d w i t h the L C 1 0 2 b e c a u s e of
t h e i r h i g h leakage . L e a k a g e t e s t s o f g e r m a n i u m d e v i c e s
a r e the s a m e a s fo r s i l i c o n d e v i c e s .
P N P
Bl a ck
IC B O a n d ^
8 to C C a p a c ity
/
R e d
i C E O a n d
*
R e d
Λ
I b e o and
, B t o £ C a p a c it y
" B l a c k ' * ’
E to C C a p a c ity
^ R e d - > .
fCBO an d
B t o C C a p a c it y
Bl a ck
4
Bl a ck
\
IB E O and
B to E C a p a c ity
N P N
B lac k
IC E O and
E to C C apa ci ty
' " R e d
Ce ram ic c a p a c i t o r s a re des igne d to have a wi de ra ng e
o f ca p a ci t a n c e valu e a n d tempe ra tur e ch a ra ct er is tic s,
(M ore deta ils a re g i v e n in the A P P E N D I X . ) R epl aci n g
a ca pa ci to r w i t h o n e t h a t h a s the s a m e ch ara ct eri st ic s
i s espe ci all y im portant i n ce rta in oscill at or s a n d other
temperature cri tic a l c i r c u it s . Y o u c a n qui ck ly d e te r
m in e the ba s i c tempe ra tur e ch ara ct er is tic s o f a ce r a m ic
u sin g the LC1 02 a n d a h e a t s o u r c e , s u c h a s a hea t g u n .
R e d
F i g . 5 5 — T h e c o n n e c t i o n f o r m e a s u r i n g t h e c a p a c i
t a n c e o f s i l i c o n j u n c t i o n s a n d l e a k a g e p a t h s f o r s i l i c o n
a n d g e r m a n i u m j u n c t i o n s .
R ev er s e
Le ak ag e
and
J u n c tio n
C a p a c i ty
B la c k
J u n c ti o n s ar e s h o w n R eve rs e b ia s. E x
c h a n g e R e d an d Black fo r for w ar d c o n
du ction .
5 0
H
T e s t i n g H i g h V o l t a g e D i o d e s
R e f o r m i n g E l e c t r o l y t i c s
High vo lt ag e d i o d e s , s u c h a s th o s e fo u n d i n vid eo high
v o lt ag e a n d f o c u s v o lt a g e se c ti o n s ma y re quire u p t o
2 0 0 v o l t s b ef or e th ey a r e f or w ar d bi a sed a n d begin t o
c o n d u c t . T hey c a n n o t b e t e s t e d w i t h a n o h m me ter s i n c e ,
w it h o n l y a fe w volt s a p p l i e d , a go o d h ig h v ol ta ge d i o d e
w i ll s i m p l y ind ic a te o p e n n o m a t t e r how t h e o hm m et er
i s c o n n e c t e d .
T h e c a p a c i t o r le a k a g e test o f the L C1 02 pr ov id es su ffi
c i e n t volt age t o b ia s hig h v o lt a g e d i o d e s into c o n d u c t i o n
a n d a l s o t o t es t t h e m , for r e v e r s e br ea kd o w n . T est th e
d i o d e f o r nor ma l for ward c o n d u c t i o n firs t. Then r ev er se
t h e t e s t l e a d s a n d c h e c k f o r r e v e r s e lea kage.
— j Η Η ' Ή Ή Η . H . —
Fig. 56 — T o t e s t a h i g h v o l t a g e d i o d e , e n o u g h v o l t a g e
i s n e e d e d t o f o r w a r d b i a s a l l t h e j u n c t i o n s ,
------------ - -------W A R N I N G
T h is t e s t s h o u l d o n l y b e p e r f o r m e d b y a p e r
s o n w h o u n d e r s t a n d s t h e s h o c k h a z a r d o f u p
t o 1000 v o l t s a p p l i e d t o t h e t e s t l e a d s w h e n
t h e C A P A C I T O R L E A K A G E T E S T b u t t o n i s
d e p r e s s e d . DO N O T h o l d t h e d i o d e i n y o u r
h a n d , o r t o u c h t h e t e s t l e a d s o r d i o d e l e a d s
w h e n m a k i n g t h i s t e s t .
T o t e s t a h i g h v o l t a g e d i o d e :
1 . C o n n e c t t h e r e d test lead to th e d i o d e a n o d e e n d )
a n d t h e b l a c k te st lead t o the di od e ’s c a t h o d e ( “ - f ” e n d ) .
2 . Ent er 5 0 volts int o the l e a k a g e s u p p l y a n d d e p r e s s
t h e C A P A C I T O R L E A K A G E te s t b u t t o n .
3 . I f the L C 1 0 2 display s h o w s n o leakage, ap ply m o re
vo ltage u nt il the d io d e begins to c o n d u c t , a s i n di ca t ed
b y a le akage cu rren t r e a d in g o f 1 0 0 uA o r grea te r.
- - - - - - - - - - - - - - - - - - - -
A lu m i n u m e le c t ro ly ti c c a p a c i t o r s often decr eas e i n
v a l u e a n d deve lop le ak ag e i f th ey sit u n u s e d f o r long
per iods o f time. ( T h i s is o ft e n the c a s e w i t h e le ct ro ly ti c s
o n st o ck ro o m shelve s o r in p a r t s b in s ). Th e s e sy m p t o m s
a re c a u s e d by the l o s s o f s o m e o f th e ox ide di electric.
T h e ox ide is formed by a ch e m ic a l rea ct ion in th e el e c
t r o l y t e wh en v o l t a g e i s ap pl ie d t o the pla tes. W i t h t im e,
thi s oxide deter iorates. I n m a n y c a s e s the e l e c t r o ly t e
h a s no t d ried u p a n d the o xi de co atin g c a n b e reformed
b y a p p l y in g a DC v o lt a g e to t h e ca pacitor f o r a pe r io d
o f tim e.
Y o u c a n u s e the LC1 02 le ak ag e test p o w e r s u pp ly t o
r ef o rm th e dielectric. R e fo rm in g m ay t a k e a n h ou r o r
lo n g e r be fore the ca pac it or re for ms a n d the le a k a g e
d r o p s to a normal a m o u n t .
Us e the 3 9 G 2 0 1 T E S T B U T T O N H O L D D O W N ROD
su pp li ed w it h th e L C 1 0 2 t o h ol d the C A P A C I T O R
L E A K A G E but ton d e p r e s s e d w h il e you are r e f o rm in g
the ca p a c it o r. T h e h o ld d o w n ro d f its b e tw e e n t h e
C A P A C I T O R L E A K A G E te st b u tt on a n d the c a r r y i n g
han dle, a n d c a n b e a d ju s t e d l on ger o r s ho rte r a s n e e d e d .
A ho ld d o w n ro d r a t h e r than a lo c k in g but ton i s u s e d
a s a r e m in d e r t o y o u a n d o th e r s t h a t v o l t a g e i s being
ap plied to the te st l e a d s .
- - - -
—
- - - - - - - -
— W A R N I N G
- - - - - - - - - - - - - - -- -- --
U s e t h e 3 9 G 2 0 1 T e s t H o l d D o w n R o d w i t h e x
t r e m e c a u t i o n . D o n o t t o u c h t h e t e s t l e a d s o r
t h e c a p a c i t o r l e a d s w h i l e t h e T e s t H o l d D o w n
R o d i s b e i n g u s e d . V o l t a g e u p t o 1 0 0 0 v o l t s i s
p r e s e n t w h e n t h e C A P A C I T O R L E A K A G E
T E S T b u t t o n i s d e p r e s s e d . M a k e s u r e t h a t t h e
c a p a c i t o r b e i n g r e f o r m e d w i l l n o t t o u c h o r
c o m e i n c o n t a c t w i t h a n y m e t a l o b j e c t w h i l e
v o l t a g e i s a p p l i e d t o it.
j f c 0 I T d H « I H 0 U C T O f i i & ! $ i & L Y Z E R
I &
4 . O n c e t h e d io d e beg ins to c o n d u c t , d o n ot ap ply a n y
higher volt ag e a s t hi s w i l l c a u s e ex cess ive cu rr en t fl ow
t h r o u g h th e d io d e a n d da mage it .
5 . I f y o u a p p ly 9 9 9 . 9 vo lts to the d i o d e a n d i t s t i ll s h o w s
n o c o n d u c t i o n , i t is o p e n a n d y o u d o n o t n e e d to c o n t i n u e
t h e t e s t .
6 . W he n t h e d i o d e beg ins to c o n d u c t , re lease t h e
C A P A C I T O R L E A K A G E bu tt on a n d reverse the t e s t
l e a d c o n n e c t i o n t o t h e d i o d e .
7 . S e t t h e le ak ag e power s u pp ly to the P I V (pea k in verse
• v o l t a g e ) o f the d io d e s h o w n in a re pla cem en t g u i d e . I f
t h e P I V i s g r e a t e r t h a n 1 0 0 0 V ( a s i t w i l l b e for m o s t
d i o d e s ) s e t the le a k a g e power s u p p ly to 9 9 9 . 9 vo lts .)
8 . D e p r e s s the C A P A C I T O R L E A K A G E b u t t o n a n d
r e a d t h e le ak ag e c u r r e n t . A go o d high v o l ta g e d i o d e
wi ll typi cal ly s h o w l e s s tha n 2 u A o f reverse c u r r e n t .
F i g . 5 7 - T h e TE ST B U U O N H O L D D O W N R O D k e e p s
t h e C A P A C I T O R L E A K A G E b u t t o n d e p r e s s e d w h e n r e
f o r m i n g c a p a c i t o r s .
5 1
T o r e f o r m a n e l e c t r o l y t i c :
1 . C o n ne c t the c a p a c it o r t o b e refor med t o the tes t l e a d s .
2 . E nt e r the rated volt ag e o f t h e capa cit or in to t h e
L C 1 0 2 .
3 . D ep r e s s t h e C A P A C I T O R L E A K A G E b u t t o n , a n d
w h i l e hold ing i t i n , p l a c e t h e 3 9 G 2 0 1 T E S T B U T T O N
H O L D D O W N ROD b e t w e e n the b u t t o n a n d the h a n d l e .
4 . Ad just the leng th o f t h e r o d b y ho ld in g o n e e n d a n d
t u r n in g the other until t h e h o ld d o w n ro d k ee p s t h e
C A P A C I T O R L E A K A G E b u t t o n d e p r e s s e d .
5 . A f t e r the ca p a c it o r h a s re for me d for at le a s t o n e h o u r
a n d the l e a k a g e h a s d r o p p e d t o a n or m a l am o u n t , al lo w
i t t o s e t fo r 3 0 m i n u t e s . Then re ch e ck th e v a l u e a n d
l e a k a g e t o s e e i f refo rming h a s im proved th e c a p a c it o r .
O fte n a n in du ct or m o u n t e d in- cir cu it h a s l e a d s w h ic h
ar e t o o sh or t t o attac h th e test l e a d c l ip s t o . T h e (o p
t io n al ) 3 9 G 8 5 T O U C H T E S T PR O BE i s espe cially u s e
ful for mea su rin g s u c h c o i l s . I t pro vi d es 2 n e e d ie -s h a rp
po in t s w hi c h w i l l pier ce t h r ou g h t h e co ati ng o n the foils
a ll o w in g co nt a ct t o the c o i l s l e a d s .
)$ϊ ν
- - - - - - - - - - - - - - - - - - - -
W A R N I N G --- --- --- --- --- --- ---
N E V E R u s e t h e T E S T B U T T O N H O L D DOW N
R O D t o h o l d i n a n y b u t t o n e x c e p t t h e
C A P A C I T O R L E A K A G E b u t t o n . D a m a g e t o
t h e L C 1 0 2 m a y r e s u l t i f i t i s u s e d t o l a t c h
a n o t h e r b u t t o n s i n c e t h e p r o t e c t i o n c i r c u i t s
i n s i d e t h e LC102 a r e b y p a s s e d w h e n a t e s t
b u t t o n i s d e p r e s s e d . T h e w a r r a n t y w i l l b e v o i
d e d i f t h e LC102 i s d a m a g e d b y c o n n e c t i n g a
c h a r g e d c a p a c i t o r o r a n y o t h e r v o l t a g e t o i t
w i t h a n y o f t h e o t h e r b u t t o n s h e l d i n w i t h t h e
T E S T B U T T O N HO LD D OW N R O D .
I n d u ct o r Test ing A p p l i c a t i o n s
T e s t i n g I n d u c t o r s I n - C i r c u i t
T h e LC1 02 A U T O - Z c a n b e u s e d t o m ea su re th e in d u c
tance o f a co il w it h t h e c o m p o n e n t s t i l l in cir cuit . In- cir
cu it in d u ct an ce m e a s u r e m e n t s , howe ver , m ay b e a f
fected by th e im p e d a n c e o f t h e ci r c u i t. L o w values o f
p a r a l l e l res is ta nc e w i l l lo w er the circ uit im p ed a nc e a n d
c a u s e the LC 1 02 t o m e a s u r e a lo w er in du ct an ce va l u e .
T a b l e 1 3 lists th e a m o u n t o f p a r a ll e l res ist anc e w h ic h
w i l l c a u s e a 1 0 % o r l e s s c h a n g e in the me asured in d u c
ta n c e . R es ist an ces la r g e r t ha n the a m o u n t s s h o w n w i l l
not ha ve a si gn if ica nt ef fect o n the i n duc tan ce t e s t .
I n d u c t o r
1 u H t o 1 8 u H
1 8 u H t o 1 8 0 - u H
18 0 u H t o 1 . 8 m H
1 . 8 m H t o 1 8 m H
1 8 m H t o 18 0 m H
18 0 m H t o 1 . 8 H
1 .8 H t o 2 0 H
T a b l e 13 — I n d u c t o r s m a y b e m e a s u r e d i n - c i r c u i t i f
t h e p a r a l l e l r e s i s t a n c e i s g r e a t e r t h a n t h e a m o u n t s
l i s t e d h e r e .
N O T E : G o o d i n d u c t o r s m a y n o t n o r m a l l y r i n g i f c o n
n e c t e d i n - c i r c u i t , u n le ss the p a r a l l e l e d i m p e d a n c e i s
quite hig h. H o w e v e r , i f a n i n d u c t o r d o e s r i n g i n - c i r c u i t ,
i t i s g o o d .
Value M in im u m P a r a l l e l R e s is ta n c e
1 0 to 100 o h m s
25 to 2 0 0 o h m s
5 0 t o 5 0 0 o h m s
15 0 o hm s t o 1. 3 k o h m s
4 0 0 o h m s t o 3 k:ohm s
800 o h m s t o 7 k o h m s
5 k t o 2 5 k o h m s
F i g . 5 8 — - U s e t h e o p t i o n a l t o u c h t e s t p r o b e t o m e a s u r e
i n d u c t o r s m o u n t e d o n P C b o a r d s .
M u t u a l I n d u c t a n c e
M utu al in d u ct an ce o c c u r s w h e n t w o o r m o r e co ils a re
w o u n d o n the sa m e fo rm a n d c o n n e c t e d tog eth er . In
s u c h c a s e s , the to ta l i n d u c t a n c e m e a s u r e d a c r o s s t h e
win dings w i l l n ot equ a l t h e s u m o f the m e a s u r e d in d u c
t a n c e s o f the i n d iv id u a l c o i l s . Th is i s d u e t o the mu tu al
i n d u c t a n c e o f th e c o i l s . The to ta l m e a s u r e d v a lu e may
be h ig h e r o r lo w e r t h a n th e in dividual i n d u c t a n c e s ,
dep endi ng o n w h et he r th e c o i l s a r e aid in g o r o p p o s i n g .
In a d d it io n , the eff ect s o f m u t u a l i n d u c t a n c e de p en d o n
the type o f c o r e m at eri a l, th e s p a c i n g o f t h e t u r n s , a n d
the ty p e o f t u rn s u s e d . The a m o u n t o f i n d u c t a n c e mea
s u r e d b y the A U T O - Z w i l l b e t h e s a m e in d u c t a n c e s e e n
b y t h e cir cu it.
0 _ ϊ _ ί Τ $ 7 Π Γ \ . _ _ L / w m _ _ o 0 j L _ j n n n r i n
T 1 0 00 u H T T l O O O u H J t 1 0 0 0 u H [ j 1 0 0 0 u H T
I i ■ i ■ ■
\
_ _ _ _ _ _ _
{ W h e n M u t u a l I n d u c t a n c e A d d s )
F i g . 5 9 — T h e e f f e c t s o f m u t u a l i n d u c t a n c e m a y a d d
o r s u b t r a c t f r o m t h e s u m o f t h e i n d i v i d u a l .
. . . . .
. . . . . . . . . . . .
*
I "
2 2 8 0 u H __ __ __ _ | \
. . . . . . . » '» ' " i t i n . — ■ m i . . . . . . . . .
_ _ _ _ _ _ _ 1 870 u H _ _ _ _ _ _ _ f
( W he n M u t u a l I n d u c t a n c e
_ _ _ _
\
_ _ 1 870 u H _
S u b t r a c t s *
R i n g i n g P e a k i n g C o i l s
P e ak in g co il s a re o ft e n w o u n d a r o u n d a r e s i s t o r . The
re si st or ser ves t o lower th e Q o f th e -c oil to pre ve nt
rin gin g. F o r t h is r e a s o n , s o m e g o o d peak in g co il s w i l l
n ot re a d g o o d o n t h e I N D U C T O R R IN G E R t e s t . Th e
lo w er t h e resist or va lu e, t h e few er ri n gs the co il w i l l
r e a d .
52
T h e b e s t t e s t fo r p eak ing c o i l s i s t o obs erv e t h e n u m b e r
o f r i n g s , ra th er t h a n t h e G O O D /B A D in di ca ti on , a n d
c o m p a r e t h e c o i l t o a n iden tical kn ow n go o d c o m p o n e n t .
K i n g i n g M e t a l S h i e l d e d C o i l s
S o m e t i m e s c o i l s , s u c h a s I F tra nsformers, may b e p la c e d
i n s i d e a sh ie ld to r e d u c e in-c ircu it interfe renc e. T h e s e
s h i e l d e d c o i l s m a y n o t r i n g go o d w he n te sted w it h t h e
I N D U C T O R R I N G E R test b e c a u s e th e m et al sh ie ld a b
s o r b s s o m e o f t h e r i n g ene rg y.
A s h i e l d e d co il i s go o d i f i t rin gs ten o r m o r e . Howe ver,
i f it rings l e s s t ha n t e n , remove th e m et al s h i e l d , i f
p o s s i b l e , a n d t e s t the c o i l ag a in . I f i t n ow rin gs 1 0 o r
m o r e , the c o i l i s g o o d . I f y o u a re unab le t o remove t h e
m e t a l s h i e l d , m a k e a c o m p a r is o n tes t us in g a n ide nti
c a l , k n o w n g o o d c o m p o n e n t .
R i n g i n g F l y b a c k T r a n s f o r m e r s
A flybac k trans form er i s a sp e ci a l ty p e o f tra ns fo rm er
w h i c h p r o d u c e s t h e f o c u s a n d s e c o n d a n o d e vol ta ges fo r
a C R T. M an y fl y b a ck s a ls o have s e v e r a l l ow er voltage,
r e l a t i v e l y high cu rr en t win din gs w h i c h po w er o th e r
c i r c u i t s a n d t h e C R T filam en t. Be cau se o f the h ig h
voltages p r e s e n t , a f lyb ac k tr a n s f o r m e r ma y de v el op
a n inter na l s h o r t e d t u r n . A sh or t ed tu r n r e d u c e s t h e
efficiency o f t h e transformer a n d u s u a lly c a u s e s se v e re
c ir cu it p r o b l e m s . In d u c t a n c e m easurem ents a r e o f l i t t l e
value w h e n tro u bl es h oo ti ng a flyba ck , s i n c e a s h o r t e d
t u r n c a u s e s l i t t l e c h a n g e i n i n du ct an ce val ue. I n a d d i
t i o n , the i n d u c t a n c e va lu e i s se ld om kn ow n . Th e L C 1 0 2
I N D U C T O R R I N G E R test w i l l detect a sh o r t e d tu rn in
a n y o f the primary o r se c o n d a ry w in d in g s o f a fl y b a c k .
R e d L e a d
A f ly b ac k trans form er m a y b e t e s t e d in o r o u t o f c i r c u i t
w it h the L C 1 0 2 R in g e r t e s t , a lt h o u g h s e v e r a l ex ter na l
lo a d s m a y n e e d t o b e d i s c o n n e c t e d bef ore a g o o d f l y b a c k
w i l l r in g . C o n n e c t t h e L C 1 0 2 t o t h e p r i m a r y o f t h e
fl yb ac k a n d se le ct t h e “ Y O K E S & F L Y B A C K S ' ’ C O M
P O N E N T T Y P E s w i t c h . D e p r e s s t h e Induc tor Ri nger
te st bu tton a n d r e a d t h e c o n d it i o n o f the flyback a s
“ G O O D ” o r “ B A D ” in t h e L C 1 0 2 di s p la y . I f th e fl y b a c k
r i n g s “ B A D ” , d i s c o n n e c t a n y l o a d s u n ti l th e d is p la y
re ad s “ G O O D ” . I f t h e fly bac k i s c om pl ete ly d i s c o n
nec ted a n d s t i ll rin gs “ Ba d” t h e flyback h a s a s h o r t e d
t u r n , o r the win ding t o w h ic h t h e tes t le a ds a re c o n
nect ed i s o p e n . In ei the r c a s e , t h e flyback s h o u l d b e
cons ide re d b a d .
N O T E : C e r t a i n f l y b a ck s h a v e r e m o v e a b l e c o r e s . T h e f e r
r i t e c o r e m u s t b e i n s t a l l e d ins ide t he w i n d i n g s i n o r d e r
f or the f l y b a c k t o r i n g “ G O O D ”.
A f e w fl ybacks u s e d in s o m e s m a l l s o li d state c h a s s i s
ha ve a lo w im p e d a n c e pri m ar y w h ic h w i l l not r i n g w h e n
g o o d . H o w e v e r , t h e s e fly ba ck s will al wa ys have a s e c
on d ar y w in d in g w h ic h w i l l r in g g o o d i f the tr ansform er
i s g o o d . Sim ply r in g t h e s e c o n d a r y wi ndings. I f o n e
r in g s good the fl y ba ck d o e s n o t h a v e a n y sho rt ed t u r n s .
I f n o w i n d i n g rin gs g o o d t h e fly b a c k i s b a d .
A co il in th e s e c o n d a r y o f a fly b a c k ma y o cc a si o n a lly
o p e n , r a th e r t h a n s h o r t . A n o p e n co i l w i l l not lo ad t h e
ot her w in d in g s a s a s h o r t d o e s . I f th e operation o f t h e
c h a s s is i nd ica te s t h e possibility o f a n o pe n wind ing ,
l e a v e t h e L C 1 0 2 c o n n e c t e d t o t h e pri m ar y w i n d in g a n d
sh or t e a c h o f t h e windings wit h a ju m p e r. Sh or tin g o u t
a w i n d i n g w i l l re fl e c t b a c k t o t h e p ri m a r y a n d c a u s e
the r i n g te st t o g o fr o m “ G OO D” t o “ B A D ” . I f the ri ng
tes t d o e s n o t c h a n g e , t h e wi nd in g b ei ng sh or t ed with
the ju m p e r i s o p e n .
- - - - - - - - - - - - - - - - -
W A R N I N G
- - - - - - - - - - - - - - - - - -
D am per
H . O p t T ub e
B la ck L e a d
T u b e
F i g . 6 0 — C o n n e c t t o t h e p r i m a r y s i d e o f a f l y b a c k t o
d o t h e r i n g i n g t e s t
D o n o t c o n n e c t t h e L C 10 2 t e s t l e a d s t o a
f l y b a c k i n - c i r c u i t u n t i l a l l p o w e r t o t h e c h a s
s i s h a s b e r e m o v e d , a n d t h e AC l i n e c o r d h a s
b e e n d i s c o n n e c t e d .
F i g . 61 — U s e a j u m p e r t o d e t e r m i n e i f a f l y b a c k w i n d
i n g i s o p e n . A n o p e n w i n d i n g w i l l n o t c a u s e t h e r i n g i n g
t e s t t o c h a n g e w h e n a j u m p e r i s p l a c e d a c r o s s i t .
53
T o R i n g a f l y b a c k t r a n s f o r m e r :
1 . C o n n e c t th e re d test le ad to t h e co llector o f t h e ho ri
z on t a l o u t p u t tr a n s i s t o r , o r to t h e pl at e c a p o f a h or izo n
ta l o u t p u t t u b e .
2 . C o n n e c t t h e b l a c k t es t le ad t o B + s i d e o f the pri m ar y
w in d in g . In a t u b e s e t c o n n e c t t o t h e c a t h o d e o f t h e
d a m p e r d i o d e o r a n o d e o f th e b o o s t rect if ie r.
3 . P ull t h e s o c k e t o f f the C R T (r e m o v e t h e high v o lt a g e
re c ti f ie r t u b e i n a t u b e c h a s s i s ) t o pre v e nt th e fila men ts
f r o m load ing the s e c o n d a ry a n d g i v i n g a fals e r i n g i n g
in d ic a t i o n .
4 . D e p r e s s t h e I N D U C T O R R I N G E R tes t b u t t o n . I f th e
L C 1 0 2 d is p la y r e a d s “ G O O D ” the f lyb ack i s g o o d , a n d
t h e rem ain ing s t e p s are n ot n e c e s s a r y .
C R T , s i n c e a s h o r t e d windin g m ay b e c a u s e d b y t h e
pr es su re o f t h e yo ke m o u n t in g . R e l i e v i n g th e p r e s s u r e
m ay c a u s e t h e s h o r t t o g o a w a y .
A d efl ec tio n yo ke h a s tw o s e t s o f win dings (h ori zon tal
a n d v e r t i c a l ) w h ic h m u s t b o t h te st g o o d . Th e yoke l e a d s
must b e d i s c o n n e c t e d fr o m the ci r cu it. Th is i s o ft e n
a cc o m p li s h e d b y sim pl y pu lling t h e y ok e pl u g f r om t h e
c h a s s i s . T h e v e rt ic al w in d in g s ma y often h a v e d a m p in g
resistors a c r o s s th e m w h ic h a l s o must b e d i s c o n n e c t e d .
The se re si st or s m a y b e o n t h e c h a s s i s , i n w hi c h c a s e
si m p ly p u ll in g t h e y o k e pl u g w i l l d i s c o n n e c t t h e m .
T h e y ma y a l s o b e s o l d e r e d r i g h t t o t h e y o k e , m e an in g
you w i l l n ee d t o u n s o l d e r o n e s i d e o f t h e r e s is t o r . Tes t
b o t h y ok e wi nd in gs wit h t h e “ Y O K E S & F L Y B A C K ”
C O M P O N E N T T Y P E b u t t o n se le c t e d .
A “ B A D ” rea ding indi ca tes th a t e it h e r the f ly b ac k h a s
a s h o r t e d t u rn o r tha t i t is b e i n g lo ad ed d o w n . T he
fo llo w in g s t e p s w i l l lo ca te th e d e f e c t . C o n tin u e d i s c o n
necting th e l o a d s i n t h e f o l l o w i n g orde r u n ti l the fly b ac k
rings “ GOOD” . I f the fly b ac k r in g s “ GO OD ” a f te r y o u
d i s c o n n e c t a l o a d , d o u b le c h e c k th a t load t o m ak e s u r e
i t is n o t de fe cti ve.
5 . D is c o n n e c t t h e ho riz ont al y ok e win dings a n d repeat
th e ri n g in g t e s t .
6 . I f t h e ri n g i n g tes t s t i ll read s B A D , rem ove o n e e n d
o f t h e d a m p e r d i o d e in solid sta te c h a s s i s a n d repeat
the t e s t .
7 . I f t h e r i n g i n g test s t i l l reads B A D , u np lu g the c o n
vergen ce c o il s a n d repe at th e t e s t .
8 . I f t h e r i n g in g te st s t i l l in dicates B A D , d is c o n n e c t
any rem ai n in g low v ol ta ge , A G C o r other win dings o n e
a t a t i m e .
9 . I f all t h e lo a d s a re di sc on n e ct ed a n d th e r i n g i n g test
s ti ll i n d ic a t es B AD , t h e f ly b ac k h a s a s h o r t e d t u r n .
M any fly ba ck s u s e d i n soli d state c h a s s i s ha ve th e high
v o lt a g e r e c ti f i e r d i o d e s ( t r i p l e r ) b u i l t in to th e s e c o n d a r y
w in d in g . Th es e fl yb ack s are ca ll e d I n t e g r a t e d H i g h V o l
t ag e Tr ans fo rm ers ( I H V T s ) . T h e R i n g i n g te st w i l l lo
c a t e de fective t u r n s in thes e t ype s o f fl yb ack s a s well.
A p r o b le m w i th th e d io d e s w i l l r es u lt i n pr ob le m s w ith
t h e high vo lta ge, even though th e R i n g i n g tes t indic at es
“ GOOD” . I f th e f lyb ack r in g s “ G O O D ” bu t p r o d u c e s n o
high vol tage, o n e o f t h e d io de s i s o p e n . I f the h ig h v o l
tage i s sev eral t h o u s a n d v o lt s t o o lo w a n d the flyb ack
rings g o o d , o n e or m o re o f the d i o d e s i s s h o r t e d . I n
ei th e r c a s e , t h e flyback is d e fe c ti v e a n d m u st b e r e
p l a c e d .
N O T E : T e s t th e v e r t i c a l w i n d i n g s i n d i v i d u a l l y o n y o k e s
t ha t h a v e s e r i e s c o n n e c t e d v e r t i c a l w i n d i n g s . T h e v e r t i
cal w i n d i n g s s h o u l d r e a d w i t h i n 3 r i n g s o f e a c h o t h e r ,
b u t m a y n o t nec es sar ily r i n g “ G O O D ” w i t h 1 0 o r m o r e
r i n g s . A n y s u c h y o k e that h a s a r i n g d i f f e r e n c e gre ate r
t h a n 3 r i n g s , o r a n i n d u c t a n c e v a l u e d i f f e r e n c e gr ea te r
t h a n 1 0 % w i l l gi ve p r o b l e m s in th e c h a s s i s .
------------------- W A R N I N G
- - - - - - - - - - - - - - - - - -
D o n o t c o n n e c t t h e LC 10 2 t o t h e y o k e i n th e
c h a s s i s u n t i l a l l p o w e r ha s b e e n r e m o v e d a n d
t h e A C p l u g h a s b e e n d i s c o n n e c t e d .
F i g . 6 2 — T e s t d e f l e c t i o n y o k e s w i t h t h e r i n g i n g t e s t
w h i l e t h e y o k e i s s t i l l m o u n t e d o n t h e CRT.
R i n g i n g D e f l e c t i o n Y o k e s
V id eo de fl ec ti on yo ke s are sp ec ia l i n d u c t o r s whi ch a r e
u s e d t o m o ve a C R T ele ctro n beam b o t h v e r t i c a l l y a n d
hor izon tally . As w i t h flyba cks , t h e LC1 02 R i n g i n g te st
p r o vi d es a q u i c k a n d r e l i a b l e G O O D / B A D t e s t . Yokes
s h o u l d b e t e s t e d w h i le th e y ar e s t il l m o u n t e d o n t h e
T o t e s t h o r i z o n t a l y o k e w i n d i n g s :
1 D i s c o n n e c t t h e y o k e f r o m t h e c i r c u i t b y p u l l i n g t h e
y o k e p lu g o r u n s o l d e r i n g t h e w i r e s .
2 C o n n e c t t h e t e s t le a d s t o the h or iz o n ta l w ind ing .
3 . S e l e c t t h e “ Y O K E S & F L Y B A C K S ” C O M P O N E N T
T Y P E b u t t o n .
4 . D e p r e s s t h e I N D U C T O R R I N G E R tes t b u t t o n a n d
r e a d t h e test resu lt in the LC 1 02 d is p l a y .
5 i f t h e h or izo n ta l w in di n gs t e s t s “ GOOD” , c o n t i n u e
o n a n d t est t h e ve rt ic a l wi nding. T h e v e rt i c a l w indings
m u s t a l s o t e s t “ GO OD ” bef ore y o u c o n s id e r the yok e
g o o d . I f t h e ho ri zo n ta l w i n d i n g t e s t s “ B A D ” the yo k e
i s d ef ect ive a n d the re is n o n e e d t o test the v e r ti c a l
w i n d i n g s .
T o t e s t t h e v e r t i c a l w i n d i n g s :
6 . I f t h e yo ke h a s d am ping res ist ors a c r o s s the v e r ti c a l
w i n d i n g , u n s o l d e r o n e e n d o f the r e s is t o r .
7 . C o n n e c t t h e test l ead s t o t h e v e r t i c a l w ind ing .
8 . D e p r e s s t h e I N D U C T O R R I N G E R te st b u t t o n a n d
r e a d t h e test result in the LC102 d i s p la y .
9 . I f t h e v e rti c al win dings d o not test “ GOOD” , the yo ke
i s de f e c t i v e .
S p e c i a l N o t e O n S o l i d
S tate Y o k e s A n d F l y b a c k s :
A fe w y o k es a n d flyback s ha ve v e r y low Q for u s e in
c e r t a i n s o l i d s t a t e c h a s s i s . Thes e c o m p o n e n t s ma y n o t
rin g “ GOOD” b u t m ay r a th e r r i n g only 8 o r 9 t im es .
T o de te r m in e i f they are go o d o r b a d sim ply a d d a
“ s h o r t e d tur n” a n d a g a in ch e c k the n u m b e r o f ri n g s . I f
t h e yo ke o r flyb ack i s g o o d , the n u m b e r o f rings w i l l
d r o p drastically w he n th e sh ort i s a d d e d , A defec tive
y ok e o r fly ba ck w i l l n o t b e af fe ct ed by t h e sh or t ed t u rn
a n d th e n u m b e r o f r in g s w i l l ch a ng e only 1 o r 2 c o u n t s
i f a t a ll .
L 1 = S e r i e s I n d u c t a n c e
C 1 = S h u n t C a p a c i t a n c e
= S h u n t R e s i s t a n c e ( d i e l e c t r i c l e a k a g e )
R2 = S e r i e s R e s i s t a n c e
F i g . 6 3 — A l e n g t h o f c o a x i a l c a b l e c o n s i s t s o f c a p a c i
t a n c e a n d i n d u c t a n c e d i s t r i b u t e d t h r o u g h o u t t h e
c a b l e ’ s l e n g t h .
D e t e r m i n i n g A C a b l e ’ s L e n g t h O r D i s
t a n c e T o A n O p e n
A leng th o f co a xia l c a b le o p e n at b o t h e n d s i s equiv alen t
t o a long c a p a c i t o r , w it h t h e tw o c o n d u c t o r s for min g
the p l a t e s . E v e r y type o f coa xia l ca b le h a s a n o r m a l
a m o u n t o f c a p a c i t a n c e pe r f o o t , spe cif ied i n p ic o f a r a d s
per fo o t ( p f / f t ) . T he ca p a ci t a n c e per foot v a lu e s f o r s o m e
c o m m o n co axial c a b le t yp es are listed in Table 1 4 . The
le ngt h o f a pie c e o f c a b l e , a s w e l l a s t h e d i s t a n c e t o a n
o p e n , i s f o u n d b y si m pl y m easuring th e c a p a c i t a n c e
bet w een t h e cen te r a n d outer c o n d u c t o r s a n d d iv id in g
this total c a p a c i t a n c e b y th e c a b l e 's c a p a c it a n c e p e r '
foot v a lu e. I f p o s s i b l e , me as ur e fr o m b o t h e n d s o f t h e
c a b le t o m o r e a cc u ra te ly pinpo int th e b r e a k . In m o s t
c a s e s , t h e le n g th o f a ca b le c a n b e de ter mi n ed wit h in
1 - 2 % .
A s i m p le “ s h o r t e d tu r n ” is a pi ec e o f s o ld e r o r h e a v y
g a u g e w ir e fo rm e d in to a l o o p . Press the l o o p c l o s e t o
t h e wind ing s o f t h e y ok e o r wrap i t a r o u n d the c o r e o r
w in d in g s o f t h e fly ba ck .
C a b l e Te sti ng A p p l i c a t i o n s
T e s t i n g C o a x i a l C a b l e
C o a x i a l , c a b l e s a n d tra nsmission line s ha v e ch aracteris
t i c s o f b o t h a n in d u c t o r a n d a ca p a c it o r, a s il lu str at ed
i n figu re 6 3 . T h e LC1 02 A U T O - Z c a n b e u s e d t o d e te r
m i n e t h e le n g th o f a pie c e o f coa xia l c a b l e (o r the di s
t a n c e t o a br ea k) a n d th e dis ta n ce t o a s h o r t betwee n
t h e ce n te r c o n d u c t o r a n d s h ie ld . A n y b r ea kd o w n in t h e
die le ct ric c a n a l s o be detected using the L C 1 0 2 l eak ag e
p o w e r s u p p l y .
F i g . 6 4 - U s e t h e L C 1 0 2 t o m e a s u r e t h e d i s t a n c e t o
b r e a k s o r s h o r t s i n b u r i e d c a b l e .
T o m e a s u r e t h e l e n g t h o f a c a b l e :
1 . Ze ro the LC 1 02 test l e a d s .
2 . C o n n e c t the r e d test le ad to the center c o n d u c t o r a n d
th e b la ck tes t lead t o t h e bra ided sh iel d o u t e r c o n d u c t o r
o f a n o p e n (un terminated) c a b l e .
5 5
3 . Press the C A P A C I T O R V A L U E test bu tt on a n d re ad
t h e t o t a l c a p a c i t a n c e o f t h e c a b l e .
LO C A T IN G A S H O R T I N C O A X I A L C AB LE
4 . D i v i d e t h e LC1 02 ca p a c it a n c e rea ding by the c ab le ’ s
c a pa ci ta n c e p e r foot va lu e. T h is g i v e s t h e l e n g th o f th e
c a b le , o r t h e d is t a n ce t o t h e b rea k in f e e t.
Y ou c a n a l s o u s e t h is test t o deter min e th e l e n g th o r
t o pi npoint a break in m u lt ic o n d u c to r c a b l e t h a t h a s 3
o r more c o n d u c t o r s . D u e t o v ar ia tio n s in c o n d u c t o r s p a c
in g a n d n o i s e p i c k u p , h ow eve r, t h e a c c u ra c y w i l l n o t
b e a s g o o d a s for co a xia l c a b l e . F o l lo w the s a m e pro ce
d u r e a s a b o v e , except tie al l b u t o n e o f the c o n d u c t o r s
to ge th er t o form the o ut er “ shield” . Measure th e capa ci
t a n ce between th is “ sh ield” a n d t h e r e m a in in g si ng le
wi re . Y o u c a n d etermine the c a p a c i t a n c e per fo ot fo r
t h e cab le us in g th e p r o c e d u r e in t h e s ec tio n “ D e t e r m i n
in g Ca pa cit a n ce An d I n d u c t a n c e P e r F oo t” .
N O T E S : 1 . T h e a c c u r a c y o f these m e a s u r e m e n t s d e
p e n d s o n t he c a b l e t o l e r a n c e . T h e va l u e s l i s t e d in T a b l e
1 4 a r e n o m i n a l a m o u n t s w h i c h m a y ve ry s l i g h t l y ( w i t h i n
2 % ) w i t h cab le m a n u f a c t u r e r . 2 . E x c e s s i v e c r i m p i n g o r
c l a m p i n g a l o n g t he cab le w i l l c h a n g e t he t o t a l c a p a c i
t a n c e re a d i n g .
50 -5 5 Oh m
A c oa x ia l c a b l e whi ch h a s a s h o r t bet w een i t s cen ter
c o n d u c t o r a n d ou te r c o n d u c t o r i s simi lar t o a ve ry lo n g
in d u c t o r . The LC 1 02 c a n b e u s e d t o de te r m in e t h e d is
t a n c e t o a s h o r t u s in g the I N D U C T O R V A L U E t e s t .
The a m o u n t o f in d u c t a n c e per fo ot o f a co a x ia l c a b le is
n o t usu ally pu blish ed b y t h e c a b le m a n u f a c t u r e r , a n d
t h e a m o u n t for th e s a m e type o f c a b l e m a y v a r y s i g n if ic
an tly from o n e manufacturer t o a n o t h e r . The re fore , t o
ca lcula te t h e d is t a n ce t o a sh or t y o u m u s t first u s e a
s a m p le le n g th o f ca bl e t o d etermine t h e i n d u c t a n c e per
f o ot va lu e , a s exp lai ned in the f o l lo w in g s e c t i o n . Rec or d
t h is a m o u nt in T ab le 1 4 for e a c h ty p e a n d ma n u fa ctu re r
o f c a b l e yo u e n c o u n t e r .
T o d e t e r m i n e t h e d i s t a n c e t o a sh o r t :
1 . Ze ro t h e LC1 02 te st l e a d s .
2 . C o n ne c t th e red t e s t lead to th e c e n t e r c o n d u c t o r a nd
the blac k test l e a d t o t h e braided s h ie ld o u t e r c o n d u c t o r
o f a sh or t ed c a b l e .
7 0 - 7 5 O h m
N om in a l N o m in a l
R G /U C a b l e T y p e
5B /U
8 U
8 U F oa m
8A/U
10A /U
18A /U
5 8 /U
5 8 /U Fo am
58A/U
5 8C /U
58C /U F oa m
7 4A /U
1 7 4 /U
1 7 7 /U
21 2/ U
2 1 3 /U
2 14 /U
215 /U
21 9/ U
22 5/ U
224/U
T a b l e 1 4 — C a p a c i t a n c e p e r f o o t v a i u e s f o r c o m m o n
c o a x i a l c a b l e t y p e s .
I m p e d a n c e
5 0
5 2
5 0
5 2
5 2
5 2
5 3 . 5
5 0
5 0
5 0
5 0
5 2
5 0 3 0 - 3 0 . 8
5 0
5 0
5 0
5 0
5 0
5 0
5 0
5 0
C a p i n p F / F T
2 9 . 5
2 9 . 5
2 8
2 9 . 5
2 9 . 5
2 9 . 5
2 8 . 5
2 6
3 0 . 8
2 9 . 5
2 6
2 9 . 5
3 0
2 9 . 5
3 0 . 5
3 0 . 5
3 0 . 5
3 0
3 0
3 0
N o m i n a l
I n d u c t a n c e
R G / U Ca ble T y p e
6 A / U
6 A / U F o a m
1 1 U
1 1 U Foam
1 1 A / U
1 2 A / U
1 3 A / U
3 4 B / U
3 5 B / U
5 9 / U
5 9 / U F o a m
5 9 / B U
1 6 4 / U
2 1 6 / U
R G / U Ca b le T y p e
6 2 / U
6 2 A / U
6 3 B / U
7 1 B / U
7 9 B / U
N o mi na l
I m pe da nc e
7 5
7 5
7 5
7 5
7 5
7 5
7 4
7 5
7 5
7 3
7 5
7 5
7 5
7 5
9 0 - 1 2 5 O h m
No min al
I m pe da nc e
9 3
9 3
1 2 5
9 3
1 2 5
N o m in a l
C a p i n p F
2 0
2 0
2 0 . 5
1 7 . 3
2 0 . 5
2 0 . 5
2 0 . 5
2 0
2 0 . 5
2 1
1 7 . 3
2 0 . 5
2 0 . 5
2 0 . 5
No m in a l
N o m in a l
I n duc tance u H /F T
N o m in a l
C a p i n p F I n du ct an ce u H /F T
1 3 . 5
1 3 . 5
1 0
1 3 . 5
1 0
3 pr e s s t h e I N D U C T O R V A L U E tes t but to n an d read
t h e t o t a l in d u c t a n c e o f t h e c a b l e .
4 D i v i d e the L C 1 0 2 i n d u c t a n c e r e a d i n g b y th e ca b le ’s
i n d u c t a n c e p er f o o t v a lu e. Th is g i v e s the distan ce t o
t h e s h o r t i n f e e t .
N O T E : T o h e l p p i n p o i n t t h e s ho r t w i t h g r e a t e r a c c u r a c y ,
m e a s u r e t h e i n d u c t a n c e f r o m b o t h e n d s o f th e c a b l e .
D e t e r m i n i n g C a p a c i t a n c e
A n d I n d u c t a n c e P e r F o o t
T h e c a p a c i t a n c e a n d in d u c t a n c e p er fo ot v a lu e s f o r a
pa rti cu la r type o f co a x ia l c a b l e c a n b e d e te rm in e d by
m e a s u r i n g a s a m p l e c a b l e o f kn own le ngth. A f t e r you
m e a s u r e t h e a m o u n t o f c a p a c i t a n c e a n d ind u ct an ce
w it h th e L C 1 0 2 , sim pl y di vi de the to tal amou nt by th e
l en gt h o f th e s a m p l e . A s a m p l e le n g th o f at le a s t 1 0
fe et i s re c o m m e n d fo r a n a c c u r a t e cap a ci ta nc e m eas ur e
m e n t , a n d 2 5 fe e t for a c c u r a t e in d u ct a n ce m easure
m e n t .
T o d e t e r m i n e c a p a c i t a n c e a n d i n d u c t a n c e p e r f o o t
a m o u n t s :
Th e L C 1 0 2 le a k a g e po w er s u p p l y a ls o p r o v i d e s a g o o d
test o f a c a b le 's co n d it io n . Si m pl y m e a s u r e t h e am o u nt
o f leak ag e th ro ugh t h e diele ctric bet we en t h e c o n d u c
t o r s . M o s t c a b l e s have a m a x im u m o p er a t in g v o l t a g e
o f 1 0 0 0 volts o r m o re a n d s h o u l d b e t e s t e d with the
L C 1 0 2 le ak ag e s u p p ly s e t t o 9 9 9 . 9 v o lt s . A few " ‘ a i r
s p a c e ’ ' diel ect ri c types o f co a x ia l c a b l e , s u c h a s R G 3 7 ,
R G 6 2 , R G 7 1 , a n d R G 7 2 h av e a m a x im u m op er at in g
v ol ta ge o f 7 5 0 v o l t s a n d s h o u l d b e tes te d a t t h i s lo w e r
voltag e.
------------------W A R N I N G
--- --- --- --- - --- --
T h i s t e s t s h o u l d o n l y b e p e r f o r m e d b y a q u a l
i f i e d p e r s o n w h o u n d e r s t a n d s t h e s h o c k a n d
s a f e t y h a z a r d s o f u p t o 1 0 00 v o l t s a p p l i e d t o
t h e t e s t l e a d s a n d o p e n e n d s o n t h e c o a x i a l
c a b l e .
A g o o d p i e c e o f cabl e s h o u l d h a v e n o leakag e w h e n th e
v ol ta ge f r o m the L C 1 0 2 i s a p p l i e d b et w ee n t h e cent er
c o n d u c t o r a n d o ut si d e s h i e l d . The length o f t h e ca ble
bei ng t e s t e d w i l l m a k e n o di ff er en ce o n t h e l e a k a g e
r e a d in g . A n y l e a k a g e readin g in d ic a te s t h e d ie lect ric
i s br eaking d o w n .
1 . Z e r o th e L C 1 0 2 t e s t l e a d s .
2 . C o n ne c t th e re d t e s t lea d t o the center c o n d u c t o r a n d
t h e blac k te st lea d t o t h e br aid ed shi eld ou ter c o n d u c t o r
a t o n e e n d o f t h e s a m p l e c a b l e .
3 . L e a v e t h e o t h e r e n d o f the c a b l e o p e n to me as ur e
c a p a c it a n c e o n . S h o rt t h e m to g e th e r t o me asure induc
t a n c e .
4 . P re ss th e C A P A C I T O R V A L U E o r I N D U C T O R
V A L U E te st b u t t o n a n d r e a d the to ta l ca pac it anc e o r
in d u c t a n c e o f t h e c a b l e .
5 . D i v id e the L C 1 0 2 re ading by the l e n g th o f t h e s a m p l e
c a b l e .
U s i n g T h e LC 1 02 T o F i n d A g i n g C a b l e
A l l co axia l c a b l e s even tua lly degrade t o th e poi nt wh ere
th ey n eed t o b e r e p l a c e d . The LC1 02 c a n b e u s e d fo r
p r e v e n ta ti v e m a i n t e n a n c e c h e c k s o f c oa x ia l c a b le t o
determine i f deter iora tion is b e g in n in g t o o c c u r . A s a
c a b le begins t o fail, the die lec tr ic se pa ra ti ng th e c o n d u c
t o r s b e c o m e s co n t a m i n a t e d ca usin g a chan ge in th e
c a b l e ' s c a p a c it a n c e a n d t h e D C le a k a g e th rou gh th e
dielec tri c.
H i g h P o t e n t i a l T es ti n g
The L C 1 0 2 A U T O - Z c a n b e u s e d t o l o c a t e l ea ka ge cur
r e n ts a s lo w a s . 1 uA, s u c h a s t h e leak age b e t w e e n PC
b o a r d f o i l s , le a k a g e be tw een w in d in g s of a tr a n sf o rm e r,
a n d leakage b e tw e e n s w it c h c o n t a c t s a n d s h a f t s . T he se
leakage cu r r e n ts are m u c h t o o sm a ll t o b e m e a s u r e d
with a n o hm m ete r, b u t a re m e a s u r a b l e w h e n a h ig h
v olta ge potential ( H i P ot ) i s a p p li e d with t h e L C1 02
lea kag e p o w er s u p p l y .
1 C Q R E L C 1 Q 2 A U T O .Z
C A ( * C 1 T 0 B . | | * D U C t 0 H A H A U I S R
“ “ Γ · ι J _ _
A l l ca ble h a s a no rm a l a m o u n t o f cap a ci ta nc e per fo ot
a n d an y sign ifica nt c h a n g e th a t o c c u r s o v e r a period o f
tim e in dicates a dev eloping p r o b l e m . T h e best c h e c k
fo r a g i n g c a b le i s t o m e a s u r e a n d re co r d th e t o t a l ca pa ci
t a n c e o f t h e ins tallation w h e n i t is f ir s t inst al led . I f th e
in i t ia l v a lu e i s n o t k n o w n , yo u c a n m u l t i p l y the le ng th
o i the ca ble by it s n om in a l c a p a c i t a n c e per f o o t . Then
co m p a r e periodic c a p a c i t a n c e m eas ur em en ts b a c k t o
t h e i n i t i a l a m o u n t a n d lo o k fo r any c h a n g e s . A s th e
d ie le c tr ic b e c o m e s co n t a m i n a t e d , t h e L C10 2 ca pa ci
t a n c e r e a d i n g w i l l i n c r e a s e .
F i g . 65 - S m a l l l e a k a g e p a t h s c a n b e d e f e c t e d w i t h t h e
L C 1 0 2 H i P o t t e s t
5 7
---- --- --- --- --- - W A R N I N G
- - - - - - - - - - - - - - - - -
T h e s e t e s t s a r e o n l y t o b e p e r f o r m e d b y a p e r
s o n w h o u n d e r s t a n d s t h e s h o c k h a z a r d o f up
t o 1 00 0 v o l t s a p p l i e d to t h e t e s t l e a d s a n d t o
t h e c o m p o n e n t u n d e r t e s t w h e n t h e C a p a c i t o r
L e a k a g e b u t t o n i s d e p r e s s e d . D o n o t h o l d t h e
t e s t l e a d s o r t h e c o m p o n e n t u n d e r t e s t i n y o u r
h a n d s w h e n m a k i n g a n y H i P o t t e s t .
Traces o n a b a r e pr int ed cir cuit bo a rd s h o u l d s h o w n o
le ak ag e wh e n t e s t e d at 1 0 0 0 v o l ts w i t h the L C 1 0 2 . A n y
l e a k a g e in d i c a t e s co nta mina tion o n the b o a r d , o r f in e,
h a ir - li k e p r o j e c t i o n s fr om t h e e tc h ed t ra ce s s h or ti ng
be tween t h e t r a c e s . The (o p ti o n a l ) 3 9 G 8 5 T O U C H
T E S T P R O B E m a y b e u s e d t o m a k e ea sy c o n n e c t i o n t o
t h e fo ils . I t pr ov id es n ee d le -s h a rp points th a t a r e a d ju s t
a b le for dif fer ent t r a c e s p a c i n g s .
O H M S
T a b l e 1 5 — T o m e a s u r e r e s i s t a n c e v a l u e s u p t o 1
g i g o h m , e n t e r t h e n e c e s s a r y l e a k a g e v o l t a g e a m o u n t
t o p l a c e t h e r e s i s t a n c e v a l u e w i t h i n t h e s h a d e d a r e a .
A C powe r t ra n s fo rm e rs s h o u l d be te sted t o m a ke s u r e
they pr ovide p r o p e r iso la tion f ro m the A C li n e. Tra ns
form ers s h o u l d b e tes te d for le a k a g e between t h e p r i
mary a n d s e c o n d a r y , a s w e ll a s f o r le ak ag e b et w ee n
t h e windings a n d the me tal c o r e or fr am e. T o t e s t fo r
le a k a g e b et w ee n prima ry a n d se c on da ry d i s c o n n e c t al l
transformer l e a d s fr om the cir cu it. C o n ne c t o n e o f t h e
LC 1 02 te st l e a d s t o o n e o f the p r i m a r y le a d s a n d th e
othe r L C 1 0 2 le a d t o o n e o f the sec ond ary l e a d s . I f th e
transformer h a s m o r e than o n e se c on da ry wi nd ing ,
e a c h s h o u l d b e t e s t e d fo r lea k ag e. M ost tr a n sf o rm e rs
u s e d t od ay have a 1 5 0 0 v o l t b re a k d o w n r a ti n g a n d
s h o u l d h ave 0 m ic r o a m p s o f le a k a g e whe n t e s t e d at
1 0 0 0 volts w i th t h e L C 1 0 2 . A n y le a k a g e in d i c a t e s a
pot en tia l s h o c k a n d sa fet y h a z a r d .
M ea su ri ng R e si st o r s T o 1 G i g o h m
F o c u s a n d hig h v ol ta ge res ist ors u p to 1 Gigohm may
b e m e as u r ed u s i n g the l e a k a g e p ow er s u p p ly i n th e
L C 1 0 2 . Th ese re s i s t o r s are often m u ch t o o la r ge in va lu e
t o b e m e a s u r e d w it h a n y other tes t. T h e A U T O - Z w i l l
re a d the r e s is t a n c e o f th e se resistors w ith ou t a n y c a lc u
la ti on s.
T h e ra nge o f r e s is t a n c e w hic h the LC1 02 w i l l m e a s u r e
d e p e n d s o n t h e a p p li e d v ol ta ge . T a b le 1 5 s h o w s th e
a m o u nt o f a p p li e d v o lt a g e n eed ed to p r o d u c e a u s a b l e
res is ta nc e r e a d in g . Sim ply pl ace th e fro nt p a n el L E A K
A G E s w it ch in t h e “ O H M S ” po sition , s e t t h e le ak ag e
power s u p p l y t o a v o l ta g e jus t h i g h e n o u g h t o re a d th e
a nticipated re s i s t a n c e , a n d de p re ss t h e C A P A C I T O R
L E A K A G E test b u t t o n . Th e A U T O - Z w i l l dis p la y t h e
a m o u n t o f r e s i s t a n c e d ir e c tl y in o h m s .
A p p l i c a t i o n s O f T h e
Le a ka ge P o w e r S up ply
M a n y times a v a r ia b le v o lt a g e D C pow er s u p p ly i s
n ee d ed in tro u bl es h oo ti ng a n d o th er app li cat io ns s u c h
a s a p p l y i n g a b i a s v o lt a g e o r p ow er in g a ci r cu it. Th e
LC 102 le ak ag e p o w er s u p p l y m a y b e u s e d in th e s e a p
pl ic ati on s t o prov ide v olt ag es in 0 . 1 v o l t s t e p s fr o m 1 . 0
t o 9 9 9 . 9 volts D C . Simp ly en te r t h e des ired volta ge
u sin g th e C O M P O N E N T P A R A M E T E R S keypa d a n d
u s e the 3 9 G 2 0 1 T E S T B U T T O N H O L D D O W N RO D
t o k e ep the C A P A C I T O R L E A K A G E b u t t o n d e p r e s s e d .
The amo unt o f c u rr e n t be in g draw n b y t h e ci rcuit c o n
n ec te d to the L C 1 0 2 w i l l b e d is p la y e d i n the L C D d i s -
p la y u p t o 1 9 . 9 mi ll iam ps . (C u r re n t s g r e a t e r t h a n 2 0
m A w i l l c a u s e the L C D dis p la y t o o ve rra n ge) . The le a k
age p ow er s u p p l y i s curr en t lim ite d a n d w i l l n o t b e
dama ged by ex ce ss iv e cu rr en t d r a w . Wh en o ve rl o a de d,
t h e out put v o l ta g e w i l l d r o p t o a le v e l th a t w i l l n o t
damage the s u p p l y . T ab le 1 6 s h o w s th e a m o u nt o f c u r
re n t wh ich the le ak ag e p o w er s u p p l y ca n p rov ide w it h
l e s s th an a 1 0 % re d u c t io n in o u t p u t v o lt a ge .
- - - - - - - - - - - - - - - - - - -
W A R N I N G
- - - - - - - - - - - - - - - - - - -
T h i s t e s t i s o n l y i n t e n d e d t o m e a s u r e h i g h v o l
t a g e r e s i s t o r s . S o m e r e s i s t o r s h a v e v o l t a g e
r a t i n g s o f 20 0 v o l t s o r l e s s a n d w i l l b e d a m
a g e d b y h i g h t e s t v o l t a g e s . A p p l y o n l y e n o u g h
v o l t a g e t o t h e r e s i s t o r ( a s s h o w n i n T a b l e 1 5 )
t o p r o d u c e a r e a d i n g .
V o l t a g e f V o r t e )
T h b l e 16 - C u r r e n t o u t p u t c a p a b i l i t i e s o f t h e A U T O - Z
l e a k a g e p o w e r s u p p l y .
58
M A I N T E N A N C E
I n t r o d u c t i o n
T h e L C 1 0 2 i s d e s i g n e d t o provide r e l i a b l e s ervice with
v er y li ttl e m a i n t e n a n c e . A f u l l y e q u ip pe d Factory Se r
v ic e D e p a r t m e n t i s re ad y t o b a c k the LC1 02 s h o u l d a n y
p r o b l e m s d e v e l o p . A s c h e m a t i c , pa rts li st , a n d c i r c u it
b o a r d l a y o u t s a r e i n c l u d e d alo ng w i t h this ma n u al o n
s e p a r a t e s h e e t s .
R e c a li b r a t i o n A n d S e r v ic e
R e c a l i b r a t i o n o f t h e L C 1 0 2 i s re co m m en de d o n a y e a r ly
b a s i s , o r w he ne v er t h e per fo rm a n ce o f th e unit is noti ce
a b l y a f f e c t e d . P r e c i s e s t a n d a r d s a re req ui red t o i n s u r e
a c c u r a t e a n d N a ti on a l Bure au o f S ta n d a rd s ( N B S )
t r a c e a b l e c a li b r a t io n . F or t h is re as on i t is re c o m m e n d e d
t h a t t h e L C 1 0 2 b e r e tu r n e d t o the S en c or e Fac tor y Ser
v ic e D e p a r tm e n t for recalibr ation. The a d d r e s s o f t h e
S e r v i c e D e p a r tm e n t i s listed be lo w . N o ret ur n authori
z a t i o n i s r e q u ir e d t o return the LC1 02 for calibr ation
o r s e r v i c e . In m o s t c a s e s , t h e un it w i l l b e o n it s way
b a c k t o y o u w ith in 3 d a y s a f t e r i t is r ec e iv e d b y th e
S e r v i c e D e p a r tm e n t a t : S e n c o r e F a c to r y Serv ic e
3 2 0 0 S en c or e D r i v e
S io u x F a ll s , S D 5 7 X 0 7
(6 0 5 ) 3 3 9 - 0 1 0 0 .
1 - 8 0 0 - 8 4 3 - 3 3 3 8 — US
1 - 8 0 0 - 8 5 1 - 8 8 6 6 — C a n a d a
b lo w s o r the di s c h a rg e ci r cu it s o p e n . I f e i t h e r o f t h e s e
co nd iti o n s o c c u r a n L E D w i l l f l a s h a n d a n a u d ib le alarm
w i l l b e ac ti va te d.
W h e n alarm i s act ivated yo u s h o u l d :
1 . S hut o f f Z M et er .
2 . Dis cha rge ca p a ci t o r thr oug h a 1 0 k 1W r e s is t o r .
3 . D e te rm in e c a u s e o f t h e a l a r m .
4 . Rep lace t h e f u s e i f b l o w n .
5 . R es um e te s t in g .
-------------------- W A R N I N G
- - - - - - - - - - - - - - - - - - -
W h e n S T O P T E S T I N G a l a r m s o u n d s , s t o p a l l
t e s t i n g w i t h t h e LC 10 2. T h e c a p a c i t o r b e i n g
t e s t e d m a y b e c h a r g e d .
F u s e Re pl a ce m en t
T h e fu se f o r t h e test le a d i n pu t i s lo ca ted b e h i n d t h e
B N C inp ut jack . Rem ove t h e f u s e h o ld e r by turning t h e
B N C c o n n e c t o r c o u n t e r c lo ck w is e a n d unscrewing t h e
c o nn ec to r un til the f u s e i s fr e e . The B N C c o n n e c t o r o f
the t e s t l ead s ma y b e u s e d a s a “ W rench” t o a i d i n t h e
C i r c u i t Des crip tion And
C a l i b r a t i o n P r o c e d u r e s
A c o m p l e t e c ir c u it d e s c r ip t io n , a n d a d eta il ed cali bra
t i o n p r o c e d u r e l is ti n g t h e n ec es s ar y st a n d a r d s a n d
e q u i p m e n t , a r e av ail ab le for the LC 1 02 A U T O - Z . Th ese
i t e m s m a y b e p u r c h a s e d sepa rat ely th ro ug h t h e S e n c o r e
F a c t o r y S er vi c e Parts Dep artm ent at th e a d d r e s s a n d
p h o n e n u m b e r l i s t e d a b o v e .
R ep la ce m e n t L ea d s
T he 3 9 G 2 1 9 Te st Le a ds o n the LC 1 02 a re m a d e fr o m
a s p e c i a l lo w c a p a c i t y c a b l e . R e p la c in g t h e test l e a d s
wit h a c a b l e o t h e r t h a n t h e lo w capacity test lead w i l l
re su lt i n m e a s u r e m e n t e r r o r s . Re placement 3 9 G 2 1 9
T e st L e a d s a r e ava il abl e fr om the S en c or e Ser vice Par ts
D e p a r t m e n t .
“ S p a r e ” B u t t o n
Th e “ S P A R E ” b u t t o n o n t h e f r o n t pan el i s pr ovi de d t o
k e e p y o u r L C 1 0 2 A U T O - Z fro m bec oming o b s o l e t e . I f
a n e w o r different ty p e o f co m p o n e n t is in tr o d u c e d in
t h e c o m in g y e a r s , y o u r LC 1 02 ma y b e u p d a t e d b y
c h a n g i n g t h e E P R O M c h i p o r b y cha n gi n g t h e E P R O M
m e m o r y i t se lf . B e s u r e t o return the w a r r a n ty c a r d s e n t
wit h t h e L C 1 0 2 s o th a t y o u c a n b e n o ti f i e d i f a n u p d a t e
t a k e s p l a c e .
F i g . 6 6 — R e m o v e t h e T E S T L E A D B N C j a c k t o r e p l a c e
t h e i n p u t p r o t e c t i o n f u s e .
r e m o v a l o f the f u s e h o ld e r . W he n repla cin g th e f u s e
h ol de r, make s u r e i t i s s c r e w e d i n t i g h t l y t o p rev en t
t he co nn ec to r fr o m tu r ni n g w he n co nne cti ng a n d di s
co nnecting test l e a d s . R ep la c e t h e f u s e w i t h a 1 Am p
Sl o-Blo ( 3 A G ) f u s e o n l y .
D i s p l a y T es t
T h e L C D disp lay o f the L C 1 0 2 A U T O - Z m ay b e t es t ed
a t an y t i m e b y perfo rm ing t h e bat te ry te s t a n d p u s h in g
the C L R bu t t o n a t t h e s a m e ti m e . A l l the s eg m en t s o f
t h e L C D re ad ou t w i l l mo m ent ar ily t u rn o n followed b y
a seq ue ntia l r e a d o u t o f al l the n u m b e r s a n d s y m b o l s
o n th e d is p la y . A n y m is sin g s e g m e n t s , s y m b o l s , or n u m
b e r s indic ate a d ef ec t ei th er in t h e disp lay i t s e l f o r a n
i n t e r n a l ci r c u it . In this c a s e the S e n c o r e F ac to r y Serv ice
D e p ar tm e nt s h o u l d b e cal led for s e r v i c e in s t ru c t io n s .
T e s t L e a d Fu se
A 1 a m p , S l o - B l o (3A G ) f u s e is l oc ate d in the tes t lea d
i n p u t jack o n t h e fr on t o f t h e A U T O - Z . T h i s f u s e p r o t e c t s
e u n i t fr o m a c c id e n t a l e xt e r n al v o l t a g e o r c u r r e n t
o v e r l o a d s .
For y o u r s a fe ty t h e L C 1 0 2 i s eq u ip pe d w i t h a s t o p te s t
in g a l a r m . Th is alarm i s t r ig g e r e d when e it h e r the f u s e
p o w e r s w i t c h t o “ O N & B A T T T E S T ” t o c h e c k L C D
d i s p l a y .
59
A P P E N D I X
Int rod uct ion
The ca pa ci to r i s o n e o f th e m o s t c o m m o n c o m p o n e n t s
u s e d in el e c tr o n ic s, b u t l e s s i s k n o w n a b o u t i t th a n any
o th er co m p o n e n t in e le c tr o n ic s . The f o l l o w i n g i s a b r i e f
e x pl a na ti o n o f t h e ca p a c it o r, h o w i t w o r k s , a n d how th e
A U T O - Z m e a s u r e s the i mp or tan t para m ete rs o f th e
c a p a c i t o r .
Capac ito r Theory
A n d T h e A U T O - Z
t h e c a p a c i t o r i s a c tu a lly sto red in t h e diele ctric m a t e i
ia l. When t h e capa cito r is d is c h a r g e d , t h e elec tri c d
p o l e s b e c o m e re- oriented in a r a n d o m fa s h i o n , d i s c h a r ^
in g t h ei r s t o r e d en ergy.
Th e b a s i c ca pa ci to r is a p ai r o f m etal pla te s sep ar a te d
b y a n ins ul a tin g m a t e r i a l call ed the die le ct ric . T h e s iz e
o f t h e p la t es , the ty pe o f d ie le ct ric , a n d the t h ic k n e ss
o f t h e die lec tr ic dete rmine s t h e c a pa ci ty . To in cre as e
c a p a c it y , yo u c a n increas e t h e s i z e o f t h e p l a t e s , increase
t h e n u m b e r o f pl at es, u s e a d i f fe r e n t dielectric o r a
thinner dielectric. T h e c lo s e r th e p l a t e s , o r t h e t h in n e r
t h e dielectric, the l a r g e r t h e ca pa ci ty for a g iv e n s i z e
p l a t e . B e c a u s e f l a t p la t es a r e ra th e r imp ractical,
c a p a c i t o r s a re g e n e r a l l y m a d e by pu tti n g a n ins ul a tin g
m ate ria l (d ie le c tr ic ) betwe en two f o i l strip s a n d r o l l i n g
t h e com bi n a ti on into a ti g h t pac ka ge o r ro ll .
P T m T T m
• Ή 4“ 4 * 4 *
F i g . B — A p p l y i n g a p o t e n t i a l t o a c a p a c i t o r c a u s e
t h e d i p o l e s i n t h e d i e l e c t r i c t o a l i g n w i t h t h e a p p l i e
p o t e n t i a l . W h e n t h e c a p a c i t o r d i s c h a r g e s t h e d i p o l e
r e t u r n t o a n u n a l i g n e d , r a n d o m o r d e r .
W he n a c a p a c i t o r i s c o n n ec t ed t o a v ol ta ge s o u r c e ,
d o e s n o t b e c o m e f u l l y ch arged in s t a n t a n e o u s ly , b
ta ke s a d efi ni te a m o u nt o f time . T h e tim e re qu ir ed f
t h e c a p a c i t o r t o ch arge i s d et er m in ed b y t h e s i z e
capa cit y o f t h e ca p a c it o r, a n d t h e re si st or i n s e r ie s w i
the c a p a c i t o r o r it s o w n in t e r n a l se r i e s re s i s t a n c e . T f i
i s ca ll ed t h e R C time c o n s ta n t . C a pa ci t y i n F a r a d s m i
ti p li e d b y r e s is t a n c e in O h m s e q u a ls t h e R C tim e c o
st a n t i n s e c o n d s . T he curve o f th e c h a rg e o f t h e c a p a c i t
i s the RC c h a r g e cu rv e.
4 4 * 4 - 4
CH ARG ED
CA PAC ITO R
UN CH AR GE D
C APA C ITO R
F i g . A — M a n y c a p a c i t o r s a r e m a d e o f f o i l s e p a r a t e d
b y a d i e l e c t r i c a n d r o l l e d i n t o a t i g h t p a c k a g e .
The o ld exp lan atio n o f h ow a ca pa cit or w o r k s h a d th e
el ec tr o n s p i l i n g u p o n o n e plate for c in g the el ec tro n s
o f f o f th e othe r t o ch arg e a c a p a c it o r . Th is m a de it
d if fic ul t t o e x p la i n oth er a c t i o n s o f t h e c a p a c it o r . F a r a
day’s th eo ry m o re closely a p p r o a c h e s t h e w a y a
ca p a ci t o r r e a l l y w o r k s . H e st a t ed tha t t h e ch a rg e is in
t h e d ie le c tr ic m a t e r ia l a n d n o t o n the plat es o f th e
ca p a c i t o r . Inside the c a pa ci t o r’s die lec tr ic m a te ri a l,
there are ti n y e le c t ri c d ip o l e s . Wh en a v o l ta g e i s app li ed
t o the plates o f the c a p a c i t o r , the d ip o le s a r e s t r e s s e d
a n d fo rc e d t o li n e u p in ro w s c re a t in g s t o r e d e n e r g y i n
t h e dielectric. T h e die lec tr ic h a s u nd er g on e a p hy si ca l
ch a n g e s i m il a r t o th at o f s o f t iron w h e n , e x p o s e d t o
cu rr en t thr oug h a n in du ct or w he n i t b e c o m e s a magnet.
I f w e wer e able t o rem ove the die lec tr ic o f a ch arged
ca p a c i t o r , a m d then m e a s u r e the v o l t a g e o n t h e pl ates
o f t h e ca p a c it o r, w e w oul d fin d n o v ol ta ge . R e in s e rt in g
t h e die lec tr ic an d th en measuring t h e pl a t e s , w e would
fin d t h e v o l ta g e th a t t h e ca pa ci to r h a d b e e n charg ed
t o bef ore w e h a d re moved t h e diele ct ric . Th e charg e o f
O R C 1 R C
F i g . C — C a p a c i t o r s f o l l o w a n R C c h a r g e t i m e a s t t
c h a r g e t o t h e a p p l i e d v o l t a g e .
60
2R C
3 R C
4 R C
5R
Th e A U T O - Z m a ke s u s e o f this c h a r g e cu rv e t o m e a s u r e
t h e c a p a c i t y o f a ca p a c it o r. B y applying a pulsating D C
volta ge t o t h e capa cit or u nd er t e s t a n d me asu rin g th e
ti m e o n i t s R C ch arg e c u r v e , t h e capa cit y o f t h e
c a p a c i t o r c a n h e det erm ined v ery a c cu ra t el y .
C a p a c i t o r T y p e s
There a r e m an y d if fe r e n t typ es o f c a p a c it o r s , us in g d i f
feren t t y p e s o f di electrics, e a c h w ith i t s o w n b e s t ca p a
bilit y. W he n r ep la c in g c a p a c i t o r s , i t i s b e s t t o re p la c e
w it h a c a pa ci to r h a v i n g not only the s a m e ca pac it y a n d
t o l e ra n c e , b u t th e s a m e t y p e o f di electric a n d te m p e r a
t u r e ch a ra ct eri sti cs a s w e l l. Th is w i l l in su re o f c o n
t i n u e d per fo rm an ce equal t o t h e or iginal.
The c a pa ci t o r i s often nam ed a c c o rd in g t o the type o f
diele ctric w hi c h i s u s e d , s u c h a s p a p e r , m yla r, c e r a m ic ,
m i c a o r alumin um e le ctr ol yti c.
Pa per a n d mic a w e r e the st a n d ar d die lectr ic m at eri a ls
u s e d i n ca p a ci t o rs f o r year s. Ce ram ic b e c a m e p o p u la r
d u e t o i t s s t a b i l i t y a n d co ntrolled ch ara ct er is tic s a n d
lowe r c o s t o v e r m ic a . Tod ay , ther e ar e ma ny dielectrics
w ith d if fe r e n t r at in g s a n d u s e s in c a p a c i t o r s . Pl ast ic
film s o f poly ester, polyc ar bon at e, polyst yr en e, p oly p
r o p y le n e , a n d poly sulf one are u s e d i n ma ny o f the n e w e r
large valu e, small si z e c a p a c i t o r s . E a ch f i l m h a s it s
o w n sp e c ia l characteristics a n d is c h o s e n t o b e u s e d i n
t h e cir cuit fo r this spe cia l fe a tu re . S o m e o f th e pla st ic
film s a re a l s o m et al iz e d b y v a c u u m p la t in g t h e fi l m
with a me tal . Th ese are g e n e r a ll y call ed se lf- h e al in g
t y p e ca p a c i t o rs a n d s h o u ld n o t b e re pla ced w it h an y
o th er t y p e .
T E M P S R A T U R E " C
F i g . D — T e m p e r a t u r e c h a n g e v e r s u s c a p a c i t y c h a n g e
o f P 1 0 0 t o N 7 5 0 t e m p e r a t u r e c o m p e n s a t e d c e r a m i c
d i s c c a p a c i t o r s .
C e r a m i c s
C er am ic d ie le c tr ic i s th e m o s t v e rs a ti le o f al l. M a n y
var iat ion s o f capa city c a n b e c r ea te d b y a l t e r i n g th e
c e r a m i c m at e ri a l. C ap acitors tha t in cr ea se , st a y the
s a m e valu e, o r d ec re a se v a lu e w it h te mper ature
c h a n g e s c a n b e m a d e . I f a c er a m ic d i s c i s marked w i th
a l e tt e r P s u c h a s P 1 0 0 , th en th e v alue o f the c ap aci to r
w i l l in cr ea se 1 0 0 p a rt s per m illi o n p er de gre e c e n ti g
r a d e in cr ea se in tem peratu re. I f the ca pa ci to r i s mark ed
N P O o r C OG , th e n th e va lu e o f ca pa ci ty w i l l rem ain
c o n s t a n t w it h a n increas e in t h e tem pe rat ure .
Ce ramic d i s c c a pa ci to rs marked w it h a n N s u c h a s
N 1 5 0 0 w i l l d ec re a se in capa cit y a s t h e tem perature
i n c r e a s e s . T h e n e g a t i v e temper atu re coefficient is i m
po rt a n t in m an y circuits s u c h a s t h e t u n e d c i r c u i ts o f
t h e radio a n d t e l e v is i o n I F . T h e temperature coe fficien t
o f a n i nd uc tor i s p o s it iv e a n d the in d u c t a n c e w i l l i n
c r e a s e a s t h e te m pe r at u r e r is e s . I f the tun in g c a pa ci t o r
a c r o s s the co il is a n e g a t i v e co eff ic ien t, the n t h e net
re su lt w i l l b e a z e r o o r v e r y l i t t l e c h a n g e .
G en er a l ty p e ce ra mi c d i s c s ar e o ft en mar ked w it h s u c h
letters a s Z5U, Z 5 F , Y 5 V , X 5 V , a n d s o fo r t h . Th is i n d i
c a t e s the type o f te m pe ra tu re cu rv e for the p articular
c a p a c i t o r . Cer am ic ca pac it ors tha t a r e n o t N P O o r rat ed
with N o r P ty p e characteristics w i l l ha ve w i d e r te m pe r
a t u r e v a r i a ti o n s a n d c a n v a r y b o t h p os iti ve a n d n e g a -
- 5 0 *
- - - - - -
- - - - - -
- - - - - - - - - - - - - - - - - -
5 5 -45 3 5 - 2 ' - 1 5 - 5 5 I S 2 S 3 i 4 5 5 5 6 5 75 »5 95 1 0 5 H S 1 2 5
i — J
- - - - -
- - - - - - -
- - - - - -
- - - - - -
- - - - - -
T E M P E R A T U R E ’ C
- - - - - - -
- - - - - -
- - - - - -
- - - - - - -
- - - - - -
- - - - - - - - - -
— 1
F i g . E — T e m p e r a t u r e c h a n g e v e r s u s c a p a c i t y c h a n g e
o f N 7 5 0 t o N 5 6 0 0 t e m p e r a t u r e c o m p e n s a t e d c e r a m i c
d i s c c a p c i t o r s .
t i v e w ith temp eratu re c h a n g e s . The Z5U pr oba bly h a s
the g rea te st c h a n g e a n d w i l l on ly b e f o u n d in n o n - c r i t -
ic a l ap pl ic a ti o ns s u c h a s B + power s u p p l y d e c o u p l i n g .
Th ese type o f c a p a c it o r s s h o u ld n o t b e u s e d in critical
a p p li ca t io n s s u c h a s os c il la to r a n d t im i n g c i r c u i t s .
A c er a m ic ca p a c it o r marked G M V m e a n s tha t t h e v a lu e
ma rk ed o n the ca p a ci t o r is th e G ua ran tee d Minim um
V a lu e o f ca pa ci ty a t ro om t em p era tu re. Th e a c t u a l
va lue o f the c a p a c it o r c a n b e m u c h h igh er. T h is t y p e
6 1
T E M P E R A T U R E J C
S T A B L E T Y P E S
T E M P E R A T U R E
F i g . F — T e m p e r a t u r e c h a n g e v e r s u s c a p a c i t y c h a n g e o f n o n - t e m p e r a t u r e c o m p e n s a t e d c e r a m i c d i s c c a p a c i t o r s .
o f capacitor i s u s e d i n b y p a s s a p p li ca t io n s w h e r e th e
S E M I - S T A B L E T Y P E S
T a n t a l u m E l e c t r o l y t i c s
a ct u al v a l u e o f ca pa cit y i s n o t cr iti cal .
The tan talu m e l e c t r o ly t i c ca p a c it o r i s b e c o m i n g v e r y
Cer am ic ca p a c i t o rs have b e e n the m o st po pu la r
ca pa ci to rs in el ec tr on ic s b e c a u s e o f t h e v e r s a t i l i t y o f
the d if f e r e n t temperature co ef fic ie nt s a n d th e c o s t .
W h e n r ep la c in g a c e r a m ic d i s c c a p a c it o r , be s u r e t o
r eplace th e de fe c tiv e ca p a c it o r w it h o n e h a v i n g t h e
sa m e ch ara cteristics a n d v o l ta g e rating.
p o p u l a r . W h i l e th e le ak ag e i n t h e a l u m i n u m l y ti c is
v e r y high d u e to the n at u re o f it s c o n s t r u c t i o n , le a k a g e
in tan talu m c a pa ci to rs i s v e r y l o w . In a d d i t i o n , t a n
talum ca p a c i t o rs c a n b e c o n s t r u c t e d w it h m u c h t i g h t e r
tole ra nc es than th e a lu mi num ly tic. The tan ta lu m is
m u c h sm a lle r in size for t h e s a m e ca pa cit y a n d w o r k i n g
v o l t a g e than a n alumin um lyt ic . T ant alu m ly t ic s are
p o p u la r in cir cu its w h ere high ca pac it y a n d lo w l e a k a g e
A l u m i n u m E l e c t r o l y t i c s
i s re qu ir ed . T h e capacity a n d v o lt a g e r a ti n g o f th e t a n
ta lu m l y t i c i s li m it e d , a n d for e x tr e m e ly la rg e val ue s
T h e alum inum e le c t ro l y ti c ca p a c it o r o r “ L y t i c ” i s a v e r y
po pula r c o m p o n e n t . L a r g e va lue c a pa ci ty in a r e l a t i v e l y
o f cap ac it y a n d h i g h e r vol ta ges in pow er s u p p l y f i l t e r
i n g , t h e alumin um l y t i c i s s t i l l t h e fi rs t c h o i c e .
small c a s e w it h a f a i r l y high v ol ta ge r a t i n g c a n b e
obt aine d qu ite eas ily. The, a l u m in um l y ti c i s u s e d i n
powe r s u pp ly f i l t e r i n g , a u d io a n d vi de o c oup li ng a n d
in by p a s s a p pl ic a t io n s.
Catho de
E le c tr o d e
D i e l e c t r i c
O x i d e L ay e r
Anode
E lec tr ode
T he alum inum l y t ic i s m a d e b y u s in g a p u re aluminum
f o i l w ou n d w i t h a pa pe r s o a k e d i n a liquid e le c t ro ly te .
W he n a v o l t a g e i s ap pl ie d t o t h e co m bi n a ti on , a thin
l a y e r o f oxide f i l m , fo rm s o n the p u r e alumin um fo r m i n g
t h e d ielec tr ic. A s long a s the e le ct ro ly te rem ain s liq ui d,
the capacitor is g o o d o r c a n b e re formed a f t e r s it ti n g
fo r a w h il e . When t h e e le ctr ol yte dr ys o u t th e leakage,
g o e s u p a n d the ca p a c it o r l o s e s c a p a c i t y . T h i s c a n h ap
p e n t o aluminu m lyt ic s ju st s it ti n g o n t h e s h el f. Wh en
a n alu m inu m l y t i c s t a r t s d ry in g o u t , t h e cap ac itor b e
= Se rie s R es is ta nc e
{L ea ds , El e c tr o d e s ,
And E l e c tr o l y te )
- Le akage Resistance
O f D ie l e c t ri c Fil m
gins t o s h o w d ie le c tr ic a b s o r p t i o n . Ex cessive E S R i s
a l s o a c o m m o n fa i lu r e co n d it io n for aluminu m l y ti c
c a p a c i t o r s .
F i g . G — C o n s t r u c t i o n o f a n e l e c t r o l y t i c c a p a c i t o r a n d
i t s e q u i v a l e n t c i r c u i t .
62
A Cap acit or I s M o r e
T ha n A C a p a c it o r
A n id e a l ca p a ci t o r i s d e f in e d a s u a device consisting o f
tw o el ec tro de s, s e p a r a t e d b y a dielectric, for introducing
ca pa ci ta nc e in to a n el ec tr ic circuit.” U n fo rt u n a t e l y , w e
d o n 't w o rk w it h i d e a l c o m p o n e n t s . T h e ca pa cit ors w e
en co un te r e v e r y d a y in o u r se rvice wo rk are m u c h m o r e
c o m p le x t ha n t h is s i m p le def inition. In a n a c t u a l
ca pa ci to r, a cer tain a m o u n t o f cu rren t le ak s thr ou gh
t h e d ie l e c t r ic o r t h e i n s u la t i o n . Cap ac it or s ha ve in t e r
n a l serie s r e s i s t a n c e s , c a n ex h ib it a n e ffe c t c a ll e d d ie le c
tr ic a bs o rp ti o n, a n d t h e ca p a ci t a n c e c a n ch ange in
va lu e. I f w e we re t o dr aw a circ uit t o repr ese nt a n
a c t u a l ca pa ci to r, i t mig ht lo ok l i k e t h e c ir c u it in F ig u r e
H .
C a p a c i t o r
o u s leakage pat hs through t h e diele ct ric . T h u s , a s t h e
a m o u n t o f w a t e r in t h e e le ctr ol yte d e c r e a s e s , t h e
c a p a ci t o r w i l l b e l e s s c a p a b l e o f h e a li n g t h e l e a k a g e
p a t h s a n d t h e o v e r a l l leak ag e cu rr en t i n t h e ca pac itor
w i l l u l t im a t e l y i n cr ea se . The in cr ea se in le ak ag e cur
r en t w i l l g en e ra t e add itional h e a t , w h ic h w i ll sp e ed u p
the ch e m i c a l p r o c e s s e s in t h e c a p a c i t o r . T h is p r o c e s s ,
o f c o u r s e , w i l l u s e u p m o r e w at er a n d t h e ca pa ci to r w i l l
e v en tu al ly g o in to a r u n -a w a y m o d e . A t s o m e p o in t ,
the lea kag e cur rent w i l l f i n a l ly g e t large en ou g h t o
adv ersely aff ect the cir cuit t h e ca pa ci to r i s u s e d i n .
Die le ct r ic Ab so rp ti o n
O n e o f t h e m o s t c o m m o n ty p e s o f fa il u r e s o f e l e ct ro ly ti c
c a p a c it o r s i s d ie l e c t r ic a b s o r p t i o n . Di el ect ri c a bs o rp t io n
i s t h e res ult o f a capa cito r reme mbe ring a ch a rg e tha t
i s p l a c e d o n i t . T h e capac ito r c a n n o t b e com ple tel y di s
ch a rg e d a n d a v o l t a g e w i l l re ap pea r a ft e r t h e ca pacito r
h a s b e e n di sc ha rg ed. A n o th er n am e for die lec tr ic ab
so rp t i o n i s b a t t e r y ef fe ct . As t h is n a m e implies, a
ca p a c it o r w i t h excessive dielectric a b s o r p t io n w i l l a c t
l ik e a battery in the ci r c u i t. Th is w i l l u p s e t th e c ir c u it
by changing bias leve ls. A ca pa ci to r with exc essive
di el ect ri c abs orption w i l l a ls o have a dif fer ent e f f e c t i v e
ca p a c i t a n c e wh en i t i s ope ra tin g in a c i r c u i t . D i e l e c tr ic
a b s o r p t i o n w i l l not n or m all y s h o w u p in fi lm o r cer amic
c a p a c i t o r s , b u t i f th e A U T O - Z te st d o e s in d ic a t e d i e l e c
tr ic a b s o r p t i o n th e ca pa ci to r i s l i k e l y t o f a il in u s e .
D ie lec tr ic abso rpt io n i n t h e s e c a p a c i t o r s w i l l g e n e r a l l y
b e a s s o c ia t e d w i t h a h ig h le ak ag e a s w ell.
F i g . H — E q u i v a l e n t c i r c u i t o f a p r a c t i c a l c a p a c i t o r .
The cap ac itor C l r e p r e s e n t s the tr ue ca pa ci ta nc e, th e
resistance R p re p r e s e n t s t h e le ak ag e path th ro u gh th e
capa cit or, a n d th e r e s i s t a n c e R s , calle d th e E f f e c t i v e
S er ie s Resistance (ESR ) re pr es en ts a ll o f th e co m b in e d
i n t e r n a l se ri es r e s i s t a n c e s in t h e c a p a c i t o r .
L e a k a g e
O n e o f th e m o st c o m m o n ca pa ci to r fa il u r e s i s c a u s e d
b y c u r re n t le a k i n g t hr ou g h t h e ca p a c it o r. S o m e
ca pac it or s w i l l s h o w a gr adu al in cr ea se in le ak ag e,
wh il e ot he rs w i l l c h a n g e r ap id ly a n d e v e n shor t o u t
e n ti r e ly . In order t o e f fe c ti v e ly tes t a capacitor f o r l e a k
a g e , i t i s n ec es s ar y t o test t h e ca pa ci to r a t its rated
vol ta ge .
W hen a DC v o l t a g e i s a p p l ie d t o a ca pa ci to r, a certain
a m o u n t o f cu rrent w i l l flow thr oug h t h e ca pa ci to r. T his
cu rr en t is ca lled the lea kag e cu rr en t a n d is th e result
o f im per fec tio ns in t h e di el e ct ric . W h e n e v e r this le a k
a g e c u r re n t fl ow s t h r o u g h a n e le ct rol yti c ca pa ci to r, nor
m a l c he m ica l p r o c e s s e s tak e p l a c e t o r ep a ir th e da ma ge
d o n e by the cu rr en t f l o w . H e a t w i l l b e g e n e r a t e d fr om
t h e le a k a g e cu rr en t f l ow in g throu gh the capacitor a n d
w i l l spe ed u p the c h e m i c a l rep air p r o c e s s e s .
C a t h o d e
L e a d
R e s i s t a n c e
C a t h o d e
L e a d - T o - P I a t e
R e s i s t a n c e
R e s i s t a n c e O f
C a t h o d e P l a t e
R e s i s t a n c e
D u e T o
E l e c t r o l y t e
R e s i s t a n c e O f
A n o d e P l a t e
A n o d e
L e a d - T o - P I a t e
R e s i s t a n c e
A n o d e
L e a d
R e s i s t a n c e
As the cap ac itor a g e s , t h e a m o u n t o f w a t e r r e m a in in g
i n t h e e l e c t r o l y t e w i l l d e c r e a s e , a n d the capacitor w i l l
b e l e s s ca pab le o f healin g t h e da mage d o n e b y th e v a r i
F i g . I — T h e E f f e c t i v e S e r i e s R e s i s t a n c e ( E S R ) i s c o m
p o s e d o f a l l t h e c o m b i n e d i n t e r n a l r e s i s t a n c e s i n t h e
c a p a c i t o r .
E q u i v a l e n t S e r i e s R e s i s t a n c e
A n o t h e r p r o b l e m w h i c h d e v el o p s in ca p a c it o rs i s h ig h
E qu iv al e n t S er ie s R e s i s t a n c e (E S R ). A l l c a p a c i t o r s
ha ve a cer ta in a m o u n t o f E S R . S o u r c e s t h a t c o n t r ib u te
t o E SR in c lu d e le a d re s is t a n c e , diss ipation i n t h e dielec
tr ic m ateria l, a n d foil r e s i s t a n c e . Sm all, n o n -e le ct r o ly -
tic c a p a c i t o r s s h o u l d h av e e x tr e m e l y sm all a m o u n t s o f
E S R . A n e le ct rol yti c c a p a c it o r wh ich h a s ex ce ss iv e ESR
w i l l de ve lop internal h ea t whi ch g r e a t l y r e d u c e s t h e
l i f e o f the c a p a c i t o r . In a d d it io n , E S R c h a n g e s t h e im
p e d a n c e o f the ca p a c it o r in cir cuit s i n c e i t h a s t h e s a m e
e ffe c t a s ad di n g a n external resisto r in se ri es w it h t h e
c o m p o n e n t .
t h e i r ca p a ci t a n c e d u e t o t h e fa il ur e o f the a lu m in u m
oxid e f i l m m a k in g u p t h e d ie le ct ri c. A ch a ng e i n va lu e
in an alumin um ele ctroly tic w i l l oft en a ls o b e p r e c e d e d
by oth er d e f e c t s , s u c h a s hi gh leakag e, hig h diele ctric
abs orp ti on a n d / o r hi gh internal re s is t a n c e s .
O ut er Coating
— — Ce ram ic
D i e le c tr ic
— Ca pac it or
P la t e
Crack
(Fi ssure!
' L e a d soldered
t o c a p a c it o r
plat e
F i g . K — A c e r a m i c d i s c i s m a d e o f a s i l v e r c o a t e d
c e r a m i c d i e l e c t r i c w h i c h i s c o a t e d w i t h a p r o t e c t i v e
c o a t i n g . L a r g e c r a c k s o r f i s s u r e s i n t h e d i e l e c t r i c m a y
d e v e l o p w h i c h c h a n g e t h e c a p a c i t a n c e v a l u e .
A s F i g u r e L s h o w s , the E SR i s t h e c o m b in ed re s is t a n c e s
o f th e co nne cti ng l e a d s , the e le c tr o d e plat es, th e re si s
ta nc e o f th e lead t o plate c o n n e c t i o n s , a n d th e l o s s e s
a ss oc ia te d w it h t h e die le ct ric . A l l c a pa ci to rs ha ve s o m e
ES R. N o r m a l a m o u n t s o f E SR a r e to le r a te d b y t h e
capacitor a n d the ci rc u it i t i s u s e d i n . Defec ts c a n o c c u r ,
h o w e v er , in the ca p a c it o r w h ic h w i l l increas e the ES R
in t h e c a p a c i t o r . A n y i n c r e a s e in E S R c a n af fect t h e
circ uit in whi ch t h e c a p a c i t o r i s u s e d , a s w e l l a s t h e
capacitor itself.
F i g . J — T h e E q u i v a l e n t S e r i e s R e s i s t a n c e h a s t h e
r e s u l t o f i s o l a t i n g t h e c a p a c i t o r f r o m t h e p o w e r s u p p l y
l i n e , r e d u c i n g i t s f i l t e r i n g c a p a b i l i t i e s .
V a l u e C h a n g e
C a pa ci t o rs c a n c h a n g e v a lu e. O n s o m e m u lt i- la y er fo il
c a p a c i t o r s , p o o r w e ld in g o r so ld e rin g o f the f o il t o th e
le a d s c a n c a u s e a n o p e n t o o n e o f th e f o il s t o d e v e l o p
d u e t o s t r e s s o f v o l ta g e o r tem perature. T h i s c a n re su lt
in a l o s s o f al m o st one-half o f t h e ca pacitor’ s m a r k e d
c a p a c i t y . Ce ram ic d i s c c a p a c i t o r s c a n a ls o c h a n g e value
d u e t o f i s s u r e s o r c r a c k s . Sm all fis su re s o r c r a c k s i n
t h e c e r a m i c insula ting m at e ri a l c a n b e cr ea ted b y th er
m al s t r e s s fr o m e x p o s u r e t o h e a t a n d c o l d . S o m e t i m e s
v e r y sm all fi s s u r e s d ev el op wh ic h d o n o t ef fect t h e
c a p a ci t o r un til m u c h lat er. T h e cr ac k w i l l r e d u c e t h e
ca pa ci to r t o a sma ller v a lu e. A l t h o u g h t h e c er a m ic i s
s t i l l c o n n e c t e d t o the l e a d s , the actual v a lu e o f ca p a ci t y
c o u l d b e a v e r y s m al l po rt io n o f th e o r i g i n a l valu e d e
pendin g u p o n where t h e c r a c k o c c u r s . T h e A U T O - Z w i l l
l e t y o u kn ow wh at t h e valu e o f the ca pa ci to r i s r ega rd
l e s s o f it s m a r ke d va l u e .
E xc es siv e E SR c a u s e d h ea t t o bu il d u p w it h i n t h e
capa cit or, ca u s i n g i t t o f a i l a t a n a c c e le r at in g r a t e . ES R
al so r e d u c e s t h e a b i l i t y o f a c a p a c i t o r t o f i l t e r A C . As
the mode l in F ig u r e J s h o w s , t h e ser ies re sis ta nc e R S
isolat es the ca p a c it o r fr om t h e AC i t i s t o fi l te r.
E l e ct ro ly ti c c a p a c i t o r s a re an other ex am ple o f
c a p a c it o r s tha t c a n c h a n g e v a lu e in cir cuit o r o n th e
s h e l f . A s t h e s e c a p a c i t o r s d r y o u t , th e y e v e n tu a ll y l o s e
C olor
R at ed
V o i ta g e
C a p a c i
1 s t
F i g u r e
Pico)
D ippe d T a n ta l u m C a p a c i t o r s
t a n c e in
a r a d s
2n d
F ig u r e M u l t i p l i e r
B lack
Bro wn
R e d 1 0 2 2
O ra ng e 1 5 3 3
Y e ll o w
Green
Blu e 35 6 6
V io le t 5 0 7
G ra y
W h it e 3
4
6
2 0 4
2 5 5 5 1 00 ,0 00
_
0 0
1
8
9 9
-
1
4
7
8
—
—
—
1 0 ,0 0 0
1 ,0 0 0 ,0 00
1 0,0 00,000
—
—
Cer am ic D i s c C ap a c it o r s
M a n u f a c t u r e r ’ s
Co de
C a p a c i t y
V a i u e
T o l e r a n c e
* W o r k i n g
V o l t a g e
T e m p e r a t u r e
Ra nge
L ow
Tem p.
+ 1 0 °C
-3 0° C
-5 5 ° C
Typ ical C e ra m ic Dis c C a p a c i t o r Mar kings
5 F 1 0 0 J
L e t te r
Sy m bo l
2
Y + 6 5 ° C
X + 85 ° C
Hig h
Tem p.
+ 45 ° C
+ 1 0 5 °C
+ 1 2 5 °C
N u m e r i c a l
S y m b o l
2
4
5
6
7
T e m p e r a t u r e R a n g e I d e n t i f i c a t i o n o f
C e r a m ic D i s c C a p a c i t o r s
Ma x. Ca pa c.
C h a n g e Ov er
Te m p . Range
+ 1 .0 %
± 1 .5 % B
± 1 . 1 % C
± 3.3% D
± 4,7%
± 7 . 5 %
± 1 0. 0 % P
± 1 5.0 %
± 22.0% S
+ 22 %. -3 3%
+ 22 %, -5 6% u
+ 2 2 % , - 8 2 %
i f N o V o l t a g e M a r k e d ,
G e n e r a l l y 5 00 VDC
I r
1 s t & 2 n d
L e t te r
Sy m bo l
A
P
F
R
T
V
F ig . of
C a p a c i t a n c e
M u l t i p l i e r
1 ,0 0 0 3 d z 1 0 %
1 0, 0 0 0
1 00 ,0 00 5 + 1 0 0 % , -0 %
. 0 1 8
. 1
N u m e r ic a l
S y m b o l
1 0
1 0
1 0 0 2
1
4
—
9
T o le r a n c e o n
C a p a c i t a n c e
d f c 5 %
± 2 0 %
+ 8 0 % . - 2 0 %
C a p a c i t y V a l u e a n d T o l e r a n c e o f
C e r a m ic D is c C a p a c i t o r s
Le tte r
Sy m bo l
J
K
M
P
Z
6 5
F i l m T y p e C a p a c i t o r s
C e ra m ic F e e d T h r o u g h C a p a c i t o r s
M u l t i p l i e r
T o l e r a n c e
M U LT I P L I E R
F o r t h e
N u m b e r
M u l t i p l i e r
0
1 1 0
2 100 D
3 1 ,0 0 0
T OLE RAN CE O F CA PAC I TO R
L e t t e r
1
B ± 0 . 1 p F
C
1 0 p F o r L e s s
± .25 p F
± 0 .5 p F
F ± 1 . 0 p F ± 1 %
4 1 0, 0 00 G ± 2 . 0 p F
5 1 0 0 ,0 0 0
H
J
8 0 . 0 1
9
E X A M P L E S :
1 5 2 K = 1 5 x 1 0 0 = 1 5 0 0 p F o r . 0 0 1 5 u F , ± 1 0 %
7 5 9 J = 7 5 x 0 . 1 = 7 . 5 p F , ± 5 %
0 . 1
K
M ± 2 0 %
O v e r 1 0 p F
± 2%
± 3%
± 5%
± 1 0 %
S i g n i f i c a n t J 1 s t
f i g u r e \ 2 n d
S i g n i f i -
C o l o r
B l a c k 0
B r o w n
Red
O r a n g e
Y e l l o w
G re e n
B lu e
V i o l e t
G r a y
W h i t e
G o i d
S il v e r
c a n t
F i g u r e
M u l t i p l i e r
1
2
1 ,0 0 0
3
4
1 0, 0 0 0
5
6
7
8 0 . 0 0 1
9 0 . 1
_
— — —
o r L e s s
1 2 pF
1 0 0 . 1 p F
1 0 0
—
_
—
0 . 0 2 5 pF
_
1 0 p F
5 p F 5%
1 p F
T o i e r a n c e
_
-
_
—
_
T e m p e r a t u r e
c o e f f i c i e n t
O v e r
1 0 p F
0
20 %
1 % N 30
N 60
2%
N 1 50
2.5 %
_
N2 20
N 330
_
N4 70
—
N 750
_
P 3 0
+ 1 2 0 t o -7 5 0
1 0%
(RETMA)
+ 5 0 0 t o -3 30 (J AN)
_
P 1 0 0
—
B y p a s s o r c o u p l i n g
T e m p e r a t u r e
C o e f f i c i e n t
N O T E : T h e l e t t e r “ R ” m a y b e u s e d a t t i m e s t o s i g n i f y a d e c i m a l
p o i n t ; a s i n : 2 R 2 = 2 .2 ( p F o r u F) .
P o s t a g e S t a m p M i c a C a p a c i t o r s
M i c a c a p a c i t o r s - B l a c k
( A W S p a pe r c a p a c i t o r s -
s i l v e r )
C h a r a c t e r i s t i c
A W S a n d J A W f i x e d c a p a c i t o r s
( F i r s t d o t s il v e r o r b l a c k )
F i r s t
s i g n i f i c a n t f i g u r e
S e c o n d
. . . . . . . . .
s i g n i f i c a n t f i g u r e
F i r s t
s i g n i f i c a n t f i g u r e
{ N o t s i l v e r
o r b l a c k ) c =
V o l t a g e r a t i n g
o o o
- L - t
F i r s t
s i g n i f i c a n t f i g u r e
“ S e c o n d
s i g n i f i c a n t f i g u r e
L- D e c i m a l m u l t i p l i e r
- T o l e r a n c e
_ D e c i m a l
m u l t i p l i e r
S e c o n d
s i g n i f i c a n t f i g u r e
T h i r d
Ί
Ο
s i g n i f i c a n t f i g u r e
I i — D e c i m a l m u l t i p l i e r
T o l e r a n c e
C o lo r
Sla ck
B ro w n
R e d
O range
Ye ll ow
Gr e e n
B lue
V io le t
Gr a y
W h it e
G oid
Si lv er
N o c o l o r
S i g n i f i c a n t
F igu re M u l t i p l i e r
0 1
1 1 0
2 1 0 0
3 1 . 0 0 0
4 1 0 , 0 0 0
5 1 0 0 ,0 0 0 5
6 1 , 0 0 0 ,0 0 0 6
7 1 0 ,0 0 0 , 0 0 0
8
9 1 ,0 0 0 ,0 0 0 ,0 0 0
-
-
— —
1 0 0 ,0 0 0 ,0 0 0 8
0 . 1
0 . 0 1
T o l e r a n c e
(% )
_
1
2
3
4
7
9
5
1 0
2 0
V o lt a g e
Ra ting
—
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
1 0 0 0
2 0 0 0
5 0 0
6 6
S t a n d a r d B u tt o n M i c a
1 s t D O T 2 n d a n d 3 r d D O T S 4t h D O T
Identifier
Cap acit an ce i n p F Mul tiplier
1 s t & 2 n d
B l a c k
N O T E :
Id e n t if ie r i s
o m i t t e d if
ca pa cita nce
m u s t b e
s p e ci f ie d t o
th re e
si g n if ic a n t
f i g ur e s.
C o l o r
B la c k
B r o w n
R ed
O r a n g e
Y e l l o w
G r e e n
B lu e
V i o l e t
G ra y
W h i t e
G o i d
S i l v e r
Sig . F i g s .
0
1
2
3
4
5
6
7
8
9
0 . 1
Radial o r A x i a l L ead C e r a m ic C a p a c i t o r s
( 6 D o t o r Ba n d S y s t e m )
E it h e r
t y p e
le ad
1
1 0
1 0 0
1 000
5 th D O T
Ca pacitance
Tolera nc e
P erc en t
S y m b o l
± 2 0 %
± 1 %
± 2 % o r ± 1 p F
± 3%
± 5 % J
± 1 0% K
5 D o t o r B a n d C e r a m i c C a p a c i t o r s
T e m p e ra t u r e c o e f f i c i e n t —
8 th D O T
T em p.
Char ac teris tic
L e tte r
F
F
G o r B
H
+ 1 0 0
-2 0 P P M / ° C
a b o v e 5 0 p F
± 1 0 0 P P M / ° C
b e i o w 5 0 p F
( o n e w i d e b a n d )
- A - F i r s t s i g n i f i c a n t f i g u r e
- 8- S e c o n d s i g n i f i c a n t f i g u r e
-C -O e c im a l m u l t i p l i e r
^ D -C a p a c it a n c e tol erance
T e m p . C o e f f i c i e n t
T . C .
P 1 0 0
P 0 3 G
N P O
N 030
N 0 8 0
N 1 5 0
N 22 0
N 33 0
N 4 7 0
N 75 0
N 1 5 0 0
N 2 2 0 0
N 33 0 0
N 42 0 0
N 4 7 0 G
N 5 6 0 0
N 3 3 0
~ 50 0
N 75 0
± 1 0 0 0
N3300
= 2 5 0 0
t I E
1 s t
C o l O f
C o i o r
R ed
V io ie t
G ree n
B lue
B la c k
B r o w n
Re d
Ora ng e
Y e llo w
G ree n
B lu e
V i o ie t
O ra n ge
O ra n ge
Y e ll o w
Ora ng e
G ree n
O ra n ge
G ree n
Gre e n
O ra n g e
Bl a ck
Gree n
W h it e
Gray
Gray
Bla ck
2 n d
I s l a n d
2 n d S i g .
F I s .
0
1
2
3
' 4
s
6
7
8
9
C a p a c i t a n c e
M u l t i
p l i e r
1
1 0
1 0 0
1 , 0 0 0
1 0 ,0 0 0
. 0 1
. 1
N o m i n e ) C a p a c i t a n c e
1 0 p F
o r L e s s
C o l o r
Bl a ck
B r o w n
R ed
O ran ge
Y e ll o w
Green ± 0 .5 pF
Biu e
V io le t
Gr a y
W h it e ± 1 . 0 pF
± 2 , 0 p F
± 0 , 1 pF
± 0 .2 5 p F + 80% -2 0 %
T o l e r a n c e
O v e r
1 0 p F
± 2 0 %
± 1 %
* 2 %
± 3 %
+ 1 0 0 % - Q £
± 5 %
± 1 0 %
DO T S OR
B A N D S
C o i o r
B la c k
B r o w n
Red
O ra n g e
o Y e ll o w
Gre e n
B lu e
V io le t
Gray
W h it e
C o lo r
B la c k
B r o w n
R ed
O r a n g e
Y e l l o w
G r e e n
B lu e
V i o l e t
G ra y
W h i t e
F i x e d c e r a m i c c a p a c i t o r s , 5 d o t o r b a n d s y s t e m
C o l o r C o d e f o r C e r a m i c C a p a c i t o r s
C a p a c it a n c e
1 s t & 2 n d
S i g n i f i c a n t
F ig u r e
0
1
2
q
5
6
7
8
9
M u l t i p l i e r
1
1 0
1 00
1 0 00
0 .0 1
0 . 1 ± 1 0 %
T o le r a n c e
Ove r
1 0 p F
± 2 0 %
± 1 %
± 2%
± 5%
1 0 p F
o r L es s
2 .0 pF 0
0 .5 p F
0.25 p F
1 . 0 p F
Tem p.
Coeff.
N 30
N 8 0
N 1 5 0
N 220
N 33 0
N 47 0
N 750
P 3 0
P 5 0 0
6 7
5 B a n d C er am ic C a p a c i t o r s
( a i l b a n d s e q u a l s i z e )
c o l o r
1 s t , 2 n d B a n d M u l t i p l i e r
B la ck
Bro wn
R e d
O ra n ge
Ye ilo w
G ree n
Bl ue
V io le t
Gr e y
W h it e
Gold
S il v e r
M i l S p e c . I n d e n t . T o l e r a n c e
1 s t F l g - « . ' j 2n d Fig .
M u l t . a
T o l e r a n c e
0
1
2
1
± 2 0 % (M)
1 0 Y5S
1 0 0
3 1 K
4
5
1 0 K
N 3 3 0
6
7
8
9
-
0 . 1 ± 5 % (J )
- 0 . 0 1
± 3 0 % (N)
S L ( G P )
± 1 0% (K ) Y5P
T u b u l a r E n c a p s u l a t e d R F C h o k e s
S 1
§ 2
0 0
Ο Λ
* 5 3
C h a r a c t e r i s t i c
NP O
Y5 T
N150
N220
N4 70
N7 50
Y 5R
Y5F
B a c k
C o l o r
B la c k
Br o w n
R ed
O r a n g e
Y e l lo w
G r e e n
B lu e
V i o l e t
G ray
W h i t e
N o n e
S il v e r
G o ld
M u l t i p l i e r i s the f a c t o r b y w h i c h the t w o c o l o r f i g u r e s a re
m u l t i p l i e d t o o b t a in t h e i n d u c t a n c e v a l u e o f t h e c h o k e c o i i i n u H .
V a l u e s w i ll b e i n u H .
F i g u r e M u l t i p l i e r
0 1
. 1 1 0
2
3
4
5
6
7
8
9
1 0 0
1 ,0 0 0
T o l e r a n c e
20%
1 0%
5 %
| L J C 1 3 . | "
“ P O S T A G E S T A M P ” F I X E D I N D U C T O R S
1 st D i g it 2n d Di git
C o lo r
B la c k o r (B la nk )
Brow n
R e d
O r a n g e
Y e l lo w
G re en
Bl ue
V io le t
Gr ay
W h i t e
G old
S ilv e r
1 st S t r ip 2n d St rip
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
M u l t i p l i e r
3r d S t r i p
1
1 0
1 0 0
1 , 000
1 0,0 00
1 0 0,0 00
X . 1
X .0 1
6 8
G L O S S A R Y
A g i n g — op era ti n g a c o m p o n e n t o r instrument at c o n
t r o l le d c o n d i t i o n s f o r tim e a n d te m pe ra tu re t o s c r e e n
out we ak o r de fective u n i t s a n d , at the s a m e ti m e ,
s ta b il iz e t h e g o o d u n i t s .
A n o d e — t h e pos itive ele c tro d e o f a capacitor o r d i o d e .
C a p a c i t a n c e — t h e m e a s u r e o f th e size o f a c a p a c i t o r .
U s u a l ly e x p r e s s e d in mi c ro fa ra ds a n d p i c o fa r a d s . De
te r m in e d b y t h e s iz e o f t h e p la t es , a n d the dielec tric
m at e ri a l.
C a p a c i t i v e r e a c t a n c e — t h e op po si ti on to the fl o w o f
a pu lsatin g D C v o lt a g e o r A C v o lt a ge . M ea su r ed in
o h m s .
C a p a c i t o r — a n e le c tr on ic c o m p o n en t co ns is ti ng o f
t w o m et al p l a t e s s e p a r a te d by a die lectr ic. C a n s t o r e
a n d release elec trical en er g y, bl oc k th e f l o w o f D C c u r
r e n t o r f i l t e r o u t o r b y p a s s A C c u rr en ts .
C a t h o d e — t h e n eg at iv e elec trod e o f a ca p a c it o r o r
d i o d e .
C h a r g e — t h e qua ntity o f e le ct ri c al e n e r g y s t o r e d o r
hel d in a c a p a c i t o r .
C l e a r i n g — t h e rem ova l o f a f l a w o r w e a k s p o t in th e
d ie le c tr ic o f a metaliz ed c a p a c it o r . T h e st o re d ene rgy
i n the c a p a c it o r va po riz es the m a t e r i a l in t h e i m
m ed ia te v ic i n i ty o f th e flaw. A ls o c al le d s e lf- h e al in g o r
self-clearing.
C O G — s a m e a s N P O . V e r y sm all capacity ch a rg e fo r
l a r g e t em p era tu re c h a n g e s .
C o i l — a n i n d u c t o r w o u n d in a sp iral o r cir cular fa sh
io n . Ca n b e w o u n d o n a fo rm o r w it h o u t a form s u c h
a s a n a ir c o i l .
C V p r o d u c t — t h e c a p a c i t a n c e o f a capa cito r m ul tip
l i e d by its work ing vol tage. Used wh en d e te rm in in g
th e le ak ag e allowable in e le c t ro l y ti c c a p a c i t o r s . T h e
C V p r o d u c t i s a l s o eq u a l t o the c harge t h a t a c a p a c it o r
c a n st o re a t i t s ma x im u m vo lta ge.
D i e l e c t r i c — t h e insu lat ing o r n o n - c o n d u c t in g m a te r
i a l be tween t h e pl a t es o f a ca pa ci to r w h e r e the ele ct ric
cha rg e i s s t o r e d . T yp ic a l die lectrics i nc lud e a i r , im pre
gn at ed p a p e r , p la s t i c fil m s, o il, m ic a , a n d c e r a m i c .
D i e l e c t r i c a b s o r p t i o n — the m eas ur e o f the i n a b il it y
o f a cap a ci to r t o co mpletely dis c h a rg e. T h e ch a rg e that
re m ai n s af te r a de ter mi n ed di sc har ge t i m e i s e x p r e s s e d
i n a p er cen ta ge o f t h e o r ig i n a l ch arg e. A ls o ca ll ed
“ Ca pa ci tor M emory” o r “ B a tt e r y A c t i o n ” .
D i e l e c t r i c c o n s t a n t — t h e r a ti o o f cap a ci ta nc e b e
tw ee n a capacitor h a v in g a d ry a ir d ie le c tr i c a n d t h e
g iv e n m at e ri a l . A fi gu re f o r d et erm ini ng th e e ffi ci en cy
o f a g i v e n d ie le c tr ic ma terial. T h e lar ger th e dielec tric
c o n s ta n t , t h e g re a t e r t h e c a pa ci ty w it h a g i v e n s i z e
p la t e .
D i s c c a p a c i t o r — sm all si ngle l ay e r cera mic c a p a c i t o r
consisting o f d i s c o f c e r a m i c diele ctric w i t h s i l v e r d e p o
sit ed o n bot h s i d e s a s t h e p l a t e . The ceramic m ate ria l
c a n b e o f d i f f e r e n t c o m p o s i t i o n s t o g i v e d i f f e r e n t tem
p erat ure curves t o the c a p a c i t o r .
D i s s i p a t i o n f a c t o r ( D F ) — the rat io o f the ef fe c tiv e
se r ie s resistance o f a c a p a c i t o r c o m p a r e d to it s re a c
t a n c e a t a g i v e n fr eq u e n cy , g e n e r a l ly g i v e n i n p e r c e n t .
E l e c t r o l y t e — a cu rr en t c o n d u c t i n g l iq u id or s o lid b e
twe en th e pl ates o r el e c tr o d e s o f a cap acitor w it h a t
least o n e o f th e pla tes h a vi n g a n o x id e or d i e l e c tr ic film .
E l e c t r o l y t i c c a p a c i t o r ( a l u m i n u m ) — a c a p a c it o r
cons istin g o f tw o c o n d u c t in g e le c tr od es o f p u r e
alu mi n um , the a n o d e ha vin g a n o x i d e f il m whi ch a c t s
a s the die lectr ic. T h e elect rolyte s e p a r a te s th e p l a t e s .
E q u i v a l e n t s e r i e s r e s i s t a n c e ( E S R ) — A l l int ernal
s e r i e s re sistances o f a c a p a c i t o r a r e lumpe d in to o n e
res istor a n d tr e at e d a s o n e re sis tor a t o n e p oi n t in t h e
c a p a c i t o r .
F a r a d — the m e a s u r e o r unit o f c a p a c it y . Too large
fo r el ect ron ic u s e a n d i s g e n e ra lly m e a s u r ed in m ic ro
fa ra ds o r p i c o fa r a d s .
F i s s u r e s — c r a c k s in t h e c er a m ic d ie le c tr ic mate ria l
o f d i s c capa cit or , m o s t o fte n c a u s e d b y th er m al s h o c k .
S o m e s m a ll fi ss u r es m ay n o t c a u s e fa il ur e f o r a p e r io d
o f t i m e u n t i l e x p o s e d t o gre at the rmal s h o c k or m e c h a n
ical v i b r a t i o n for a p e r io d o f t im e.
F i x e d c a p a c i t o r — a c a p a c it o r d es ig n ed w i t h a s p e c i fi c
va lue o f ca pa ci ta nc e tha t c a n n o t b e ch a n g e d .
G i m m i c k — a c a pa ci t o r fo rm e d b y two w ir e s o r o th e r
c o n d u c t in g m a te ri a l s twi ste d to get her o r broug ht i n t o
c l o s e p r o x i m i t y o f e a c h o t h e r .
G M V — Gua rantee d Minim um V a lu e, T h e smal le st
valu e th is cer amic c a p a c it o r w i l l h a v e . It s v a lu e c o u l d
b e m u c h higher.
H e n r y — T h e un it o f t h e m e a s u r e o f i n d u c t a n c e . Also
ex pr e ss ed in mi crohenry a n d mil lihe nr y.
I n d u c t o r — a device c o n s is t in g o f o n e o r more w indings
wi th o r w it h o u t a ma gnetic mate ria l c o r e o r in troducing
i n d u c t a n c e in to a c i r c u i t .
70
I n d u c t a n c e — t h e prope rty o f a co il or tran sfo rm er
w h i c h i n d u c e s a n el ect romagnetic fo rc e in tha t ci r cu it
o r a neigh bo rin g ci rc u it u p o n app li ca tio n o f a n a lte r na t
ing c u r r e n t .
I n d u c t i v e r e a c t a n c e — t h e op po sit ion o f a n i n d u c t o r
t o a n alt er na ti ng o r pulsating cu rr en t.
I m p e d a n c e — t h e total op po si ti on o f a cir cuit to t h e
flow o f a n al te r n a t in g o r p u ls a ti n g c u r r e n t.
I n s u l a t i o n r e s i s t a n c e — the r a t i o o f the D C wo rki ng
v olt a ge a n d the result ing l e a k a g e cu rrent th ro u g h th e
di e le c t ri c . G e n e r al ly a minimum v a l u e i s sp e c i fi e d , u s u
a ll y i n t h e seve ra l t h o u s a n d megohms r a n ge .
I r o n c o r e — the cen tra l po rtion o f a c oi l o r t ra n sf o rm e r.
C a n b e a po w d er e d iro n c o r e a s in s ma ll c o i l s u s e d i n
R F t o t h e large iron s h e e t s u s e d in p ow er tra n s fo rm e rs .
L e a k a g e c u r r e n t — st ray d ir e c t cu rr en t fl o w in g
th r o u g h t h e di electric o r a r o u n d i t i n a ca p a c it o r w h e n
a v olt a ge i s app li ed t o it s ter min als.
M e t a l i z e d c a p a c i t o r — o n e in wh ic h a th in f il m o f
m e ta l h a s b e e n v a c u u m plate d o n th e dielectric. When
a b r e a k d o w n o c c u r s , t h e m e t a l f i l m a r o u n d i t im
mediat ely b u r n s a w a y . Som et im es called a se lf-healing
c a p a c i t o r .
T e m p e r a t u r e c o e f f i c i e n t ( T O — th e ch a ng es in c a p
a c i t y p er degree c h a n g e in t em p era tu re. I t c a n b e p o s i
t iv e , ne g a ti v e , o r z e r o . E x p r e s s e d i n pa rts pe r m illion
p er d egr ee cent igr ad e fo r lin e ar t y p e s . F or n on -l in e ar
typ e s, i t i s e x p r e s s e d a s a pe rc en t o f r o o m tem pe rat ure .
T i m e c o n s t a n t — t h e n u m b e r o f s e c o n d s req uir ed f o r
a capa cit or t o re ac h 6 3 . 2 % o f it s f u l l ch arg e af te r a
v o l t a g e i s a p p l ie d . The t im e c o n s t a n t i s the ca pac it y i n
farads tim es t h e res is ta nc e in o h m s is equal t o s e c o n d s
( T = RC ).
T r i m m e r — a low valu e v a r ia b le capacitor p la c e d i n
p a r a l l e l w i t h , a fix e d ca pa ci to r o f h ig h e r v a lu e s o th a t
the t o t a l c a pa ci ty o f the cir cuit ma y b e a d ju s t e d t o a
g i v e n valu e.
V a r i a b l e c a p a c i t o r — a ca p a c it o r t h a t c a n b e c h a n g e d
in v a lu e by v a r y i n g the d is t a n c e b et wee n th e plat es o r
the u se fu l a rea o f it s p l a t e s .
V o l t a g e r a t i n g — s e e w o r k i n g volta ge.
W e t ( s l u g ) t a n t a l u m c a p a c i t o r — a n el e ct ro ly tic
capa cito r h a v in g a liquid c a t h o d e .
W o r k i n g v o i t a g e — t h e m a x im u m D C v o l t a g e t h a t
c a n b e ap pl ie d to a ca pa ci to r fo r c o n t in u o u s o per at io n
at th e ma xim um rated te m p er a t u re .
M o n o l i t h i c c e r a m i c c a p a c i t o r — a sma ll c a p a c i t o r
m a d e u p o f seve ra l laye rs o f cera mic die lec tr ic s e p a
ra te d b y p r e c i o u s met al e le c tr o d es .
M u t u a l i n d u c t a n c e — t h e co m m o n property o f two
i n d u c t o r s wh ereby t h e i n d u c e d v o l t a g e fr om o n e i s i n
d u c e d i n to th e o t h e r . The magn itud e i s d ep en d e n t u p o n
th e s p a c i n g .
N P O — a n ul tr a st a b le te m pe r at u r e coef ficie nt in a
c e r a m i c d i s c c a p a c i t o r . D e ri v e d fr o m “ neg ativ e- pos i
ti ve -ze ro” . D o e s n o t ch a n g e cap aci ty w it h temp era tu re
c h a n g e s .
P a d d e r — a hig h ca p a ci t y v a r i a b l e ca pa cit or p l a c e d
i n se r i e s with a fi xed c a p a c it o r to v a r y the to ta l c a p a c it y
o f t h e ci r cu it b y a sm all a m o u n t .
P o w e r f a c t o r — t h e rat io o f th e e f fe c t iv e r e s i s t a n c e
o f a c a p a c i t o r to it s i m p e d a n c e .
R e a c t a n c e — t h e o p p o s it io n o f a capacitor o r i n d u c t o r
t o t h e flow o f a n A C c u rr e n t o r a p u ls a t in g . D C c u r r e n t .
S e l f - h e a l i n g — term u s e d w i t h met ali ze d foil
c a p a c i t o r s .
S o l i d t a n t a l u m c a p a c i t o r — a n e l e c t r o l y t i c c a p a c i t o r
wit h a s o li d tantalum e le c t ro ly te instead o f a li q u id .
Also ca ll e d a s o lid e le ct rol yte ta n ta lu m c a p a c i t o r .
S u r g e v o l t a g e — t h e m aximum s a fe v o lt a g e in p e a k s
t o w h ic h a ca p a ci t o r c a n b e su b j e c te d t o a n d rem ai n
wit hin t h e op er ati ng sp e c if ic a t io n s . T h i s is n o t t h e
wo rk in g v ol ta ge o f t h e c a p a c i t o r .
7 1