ROHM BD3550HFN Technical data

TECHNICAL NOTE
High-performance Regulator IC Series for PCs
Ultra Low Dropout Linear Regulators for PC
BD3550HFN, BD3551HFN, BD3552HFN (0.52.0A)
Description BD3550HFN,BD3551HFN,BD3552HFN ultra low-dropout linear chipset regulator operates from a very low input supply, and offers ideal performance in low input voltage to low output voltage applications. It incor porates a bui lt-in N-MOSFET power transistor to minimize the input-to-output voltage differential to the ON resistance (R lowering the dropout voltage in this way, the regulator realizes high current output (Iomax=2.0A <BD3552HFN>) with reduced conversion loss, and thereby obviates the switching regulator and its power transistor, choke coil, and rectifier diode. Thus, BD3550HFN,BD3551HFN,BD3552HFN is designed to ena ble significant package profile d ownsizing and cost reduction. An external resistor allows the entire range of output voltage configurations bet ween 0.65 and 2.7V, while the NRCS (soft start) function enables a controlled output voltage ramp-up, which can be programmed to whatever power supply sequence is required.
Features
1) Internal high-precision reference voltage circuit(0.65V±1%)
2) Built-in VCC undervoltage lockout circuit
3) NRCS (soft start) function reduces the magnitude of in-rush current
4) Internal Nch MOSFET driver offers low ON resistance (100mΩ <BD3552HFN typ>)
5) Built-in current limit circuit
6) Built-in thermal shutdown (TSD) circuit
7) Variable output (0.65~2.7V)
8) Small package HSON8 : 2.9×3×0.6(mm)
9) Tracking function
Applications Notebook computers, Desktop computers, LCD-TV, DVD, Digital appliances
Line-up
It is available to select power supply voltage and maximum output voltage.
Maximum Output Voltage Package Vcc=5V
0.5A
1.0A BD3551HFN
2.0A BD3552HFN
HSON8
BD3550HFN
ON=100mΩ <BD3552HFN>) level. By
Oct. 2008
Absolute maximum ratings
BD3550HFN,BD3551HFN,BD3552HFN
Parameter Symbol
BD3550HFN BD3551HFN BD3552HFN
Limit
Unit
Input Voltage 1 VCC +6.0 *1 V Input Voltage 2 VIN +6.0 *1 V Enable Input Voltage Ven -0.3+6.0 V Power Dissipation 1 Pd1 0.63 *2 W Power Dissipation 2 Pd2 1.35 *3 W
Power Dissipation 3 Pd3 1.75 *4 W Operating Temperature Range Topr -10~+100 Storage Temperature Range Tstg -55~+150 Maximum Junction Temperature Tjmax +150
*1 Should not exceed Pd. *2 Reduced by 5.04mW/ for each increase in Ta≧25℃ (when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer) On less than 0.2% (percentage occupied by copper foil. *3 Reduced by 10.8mW/ for each increase in Ta≧25℃ (when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer) On less than 7.0% (percentage occupied by copper foil. *4 Reduced by 14.0mW/ for each increase in Ta≧25℃ (when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)
On less than 65.0% (percentage occupied by copper foil.
2/16
BD3550HFN,BD3551HFN,BD3552HFN
Operating Voltage(Ta=25℃)
Parameter Symbol Min. Max. Unit Input Voltage 1 VCC 4.3 5.5 V Input Voltage 2 VIN 0.95 VCC-1 *5 V Output Voltage Setting Range Vo VFB 2.7 V Enable Input Voltage Ven 0 5.5 V NRCS Capacity CNRCS 0.001 1 μF
*5 VCC and VIN do not have to be implemented in the order listed.
This product is not designed for use in radioactive environments.
Electrical Characteristics (Unless otherwise specified, Ta=25℃, VCC=5V, Ven=3V, VIN=1.8V, R1=3.9KΩ, R2=3.3KΩ)
Parameter Symbol
Bias Current ICC - 0.5 1.0 mA VCC Shutdown Mode Current IST - 0 10 uA Ven=0V Output Voltage VOUT - 1.200 - V Output Voltage Temperature Coefficient
Tcvo - 0.01 - %/
Feedback Voltage 1 VFB1 0.643 0.650 0.657 V Feedback Voltage 2 VFB2 0.637 0.650 0.663 V Tj=-10 to 100
Load Regulation Reg.L - 0.5 10 mV Line Regulation 1 Reg.l1 - 0.1 0.5 %/V VCC=4.3V to 5.5V
Line Regulation 2 Reg.l2 - 0.1 0.5 %/V VIN=1.2V to 3.3V
Standby Discharge Current Iden 1 - - mA Ven=0V, Vo=1V [ENABLE] Enable Pin Input Voltage High Enable Pin Input Voltage Low
Enhi 2 - - V
Enlow 0 - 0.8 V
Enable Input Bias Current Ien - 7 10 μA Ven=3V [FEEDBACK] Feedback Pin Bias Current IFB -100 0 100 nA [NRCS] NRCS Charge Current Inrcs 14 20 26 μA Vnrcs=0.5V NRCS Standby Voltage VSTB - 0 50 mV Ven=0V [UVLO] VCC Undervoltage Lockout Threshold Voltage VCC Undervoltage Lockout Hysteresis Voltage
VccUVLO 3.5 3.8 4.1 V Vcc:Sweep-up
Vcchys 100 160 220 mV Vcc:Sweep-down
[AMP] Gate Source Current I Gate Sink Current I
Maximum output current
Minimum dropout voltage
BD3550HFN Io 0.5 - - A BD3551HFN Io 1.0 - - A BD3552HFN Io 2.0 - - A BD3550HFN dVo - 200 300 mV Io=0.5A, VIN=1.2V, Ta=-10 to 100 BD3551HFN dvo - 200 300 mV Io=1.0A, VIN=1.2V, Ta=-10 to 100 BD3552HFN dVo - 200 300 mV Io=2.0A, VIN=1.2V, Ta=-10 to 100
- 1.6 - mA VFB=0, V
GSO
- 4.7 - mA VFB=VCC, V
GSI
Limit
Min. Typ. Max.
Unit Condition
Io=0 to 1A (BD3550HFN Io=0A to 0.5A)
=2.5V
GATE
=2.5V
GATE
3/16
Reference Data(BD3550HFN)
μ
v
v
v
v
v
v
v
v
μ
v
v
v
v
v
v
50mV/di
Vo
26mV
Vo
50mV/di
22mV
0.5A/di
Io
0.5A
0.5A/di
Io
0.5A
Io=0A1A/μsec t(10μsec/div)
Fig.1 Transient Response
(0→0.5A)
Co=100μF, Cfb=1000pF
Io=0A1A/μsec t(10μsec/div) Io=0A→1A/μsec t(10μsec/div)
Fig.2 Transient Response
(00.5A)
Co=47μF, Cfb=1000pF
50mV/di
Vo
14mV
50mV/div
Vo
23mV
Io
0.5A/di
0.5A
Io=1A0A/μsec t(100μsec/div)
Fig.4 Transient Response
(0.5→0A)
Co=100
F, Cfb=1000pF
0.5A/div
Io
0.5A
Io=1A0A/μsec t(100μsec/div)
Fig.5 Transient Response
(0.50A)
Co=47μF, Cfb=1000pF
50mV/di
0.5A/di
50mV/div
0.5A/div
Vo
40mV
Io
0.5A
Fig.3 Transient Response
(0→0.5A)
Co=22μF, Cfb=1000pF
Vo
33mV
Io
0.5A
Io=1A0A/μsec t(100μsec/div)
Fig.6 Transient Response
(0.50A)
Co=22μF, Cfb=1000pF
Reference Data(BD3551HFN)
Vo
50mV/di
35mV
Io
1.0A/di
Vo
50mV/div
1.0A
Io=0A1A/μsec t(10μsec/div)
Fig.7 Transient Response
(01.0A)
Co=100μF, Cfb=1000pF
36mV
Fig.7 Transient Response (1.0
0A)
F, Cfb=1000pF
1.0A/div
Io
1.0A
Co=100
Vo
50mV/div
46mV
Io
1.0A/div
1.0A
Io=0A1A/μsec t(10μsec/div) Io=0A→1A/μsec t(10μsec/div)
Fig.8 Transient Response
(01.0A)
Co=47μF, Cfb=1000pF
Vo
50mV/div
46mV
Io=0A1A/μsec t(10μsec/div)
Fig.8 Transient Response (0
1.0A)
1.0A/div
Io
1.0A
Vo
50mV/di
55mV
Io
1.0A/di
1.0A
Fig.9 Transient Response
(01.0A)
50mV/di
Co=22μF, Cfb=1000pF
Vo
56mV
Io=0A1A/μsec t(10μsec/div)
Fig.9 Transient Response (0
1.0A)
1.0A/di
Io
1.0A
Io=1A0A/μsec t(100μsec/div)
Fig.10 Transient Response
(1.0→0A)
Co=100μF, Cfb=1000pF
Io=1A0A/μsec t(100μsec/div)
Fig.11 Transient Response
(1.00A)
Co=47μF, Cfb=1000pF
Io=1A0A/μsec t(100μsec/div)
Fig.12 Transient Response
(1.00A)
Co=22μF, Cfb=1000pF
4/16
Reference Data(BD3552HFN)
v
v
v
v
v
v
v
v
v
μ
v
v
v
v
v
v
v
Vo
50mV/di
2.0A/di
50mV/di
2.0A/di
26mV
Io
Io=0A1A/μsec t(10μsec/div)
2.0A
Fig.13 Transient Response
(02.0A)
Co=100μF, Cfb=1000pF
Vo
54mV
Io
2.0A
Io=1A0A/μsec t(100μsec/div)
Fig.16 Transient Response
(2.00A)
Co=100
F, Cfb=1000pF
Reference Data(BD3551HFN)
Ven
2V/di
VNRCS
2V/di
Vo
1V/di
Fig.19 Waveform at output
t(200μsec/div)
start
VCC
Ven
VIN
Vo
VINVCCVen
Fig.22 Input sequence
Vo
50mV/di
89mV
Io
2.0A/di
Io=0A1A/μsec t(10μsec/div)
2.0A
Fig.14 Transient Response
(02.0A)
Vo
50mV/di
2.0A/di
Co=47μF, Cfb=1000pF
83mV
Io
2.0A
Io=1A0A/μsec t(100μsec/div)
Fig.17 Transient Response
(2.00A)
Co=47μF, Cfb=1000pF
Ven
2V/di
VNRCS
2V/div
Vo
1V/di
t(2msec/div)
Fig.20 Waveform at output OFF
VCC
Ven
VIN
Vo
VenVCCVIN
Fig.23 Input sequence
50mV/di
2.0A/di
50mV/di
2.0A/div
VCC
Vo
117mV
Io
Io=0A1A/μsec t(10μsec/div)
2.0A
Fig.15 Transient Response
(02.0A)
Co=22μF, Cfb=1000pF
Vo
117mV
Io
2.0A
Io=1A0A/μsec t(100μsec/div)
Fig.18 Transient Response
(2.00A)
Co=22μF, Cfb=1000pF
VCC
Ven
VIN
Vo
Fig.21 Input sequence
Ven
VIN
Vo
VCCVenVIN
Fig.24 Input sequence
VCCVINVen
5/16
Reference Data(BD3551HFN)
1.25
VCC
Ven
VIN
Vo
Fig.25 Input sequence
0.80
0.75
0.70
0.65
0.60
0.55
ICC(mA)
0.50
0.45
0.40
0.35
0.30
-10 10 30 50 70 90 Ta(℃)
VCC
Ven
VIN
Vo
VINVenVCC VenVINVCC
Fig.26 Input sequence
1.2
1.0
0.8
0.6
ICC(uA)
0.4
0.2
100
0.0
-60 -30 0 30 60 90 120 150 Ta(℃)
1.23
1.21
Vo(V)
1.19
1.17
1.15
-101030507090 Ta(℃)
Fig.27 Ta-Vo (Io=0mA)
2.0
1.9
1.8
1.7
1.6
1.5
IIN(mA)
1.4
1.3
1.2
1.1
1.0
-101030507090
Ta(℃)
100
100
Fig.28 Ta-ICC
30
25
20
15
IIN(uA)
10
5
0
-60 -30 0 30 60 90 120 150 Ta(℃)
Fig.31 Ta-IINSTB
10
9 8 7 6 5
Ien(uA)
4 3 2 1 0
-101030507090 Ta(℃)
100
Fig.29 Ta-ISTB
25 24 23 22 21 20 19
INRCS(uA)
18 17 16 15
-101030507090 Ta(℃)
Fig.32 Ta-INRCS
150
140
130
)
Ω
120
RON(m
110
100
90
-10 10 30 50 70 90 Ta(℃)
Fig.30 Ta-IIN
20 15 10
5 0
IFB(nA)
-5
-10
-15
100 100
-20
-10 10 30 50 70 90 Ta(℃)
Fig.33 Ta-IFB
150
140
130
)
Ω
120
RON(m
110
100
90
100
2468
Vcc(V)
Fig.34 Ta-Ien
Fig.35 Ta-RON
(VCC=5V/Vo=1.2V)
6/16
Fig.36 VCC-RON
Loading...
+ 11 hidden pages