● Description
BD3550HFN,BD3551HFN,BD3552HFN ultra low-dropout linear chipset regulator operates from a very low input supply, and
offers ideal performance in low input voltage to low output voltage applications. It incor porates a bui lt-in N-MOSFET power
transistor to minimize the input-to-output voltage differential to the ON resistance (R
lowering the dropout voltage in this way, the regulator realizes high current output (Iomax=2.0A <BD3552HFN>) with
reduced conversion loss, and thereby obviates the switching regulator and its power transistor, choke coil, and rectifier
diode. Thus, BD3550HFN,BD3551HFN,BD3552HFN is designed to ena ble significant package profile d ownsizing and cost
reduction. An external resistor allows the entire range of output voltage configurations bet ween 0.65 and 2.7V, while the
NRCS (soft start) function enables a controlled output voltage ramp-up, which can be programmed to whatever power
supply sequence is required.
● Features
1) Internal high-precision reference voltage circuit(0.65V±1%)
2) Built-in VCC undervoltage lockout circuit
3) NRCS (soft start) function reduces the magnitude of in-rush current
● Applications
Notebook computers, Desktop computers, LCD-TV, DVD, Digital appliances
● Line-up
It is available to select power supply voltage and maximum output voltage.
Maximum Output Voltage Package Vcc=5V
0.5A
1.0A BD3551HFN
2.0A BD3552HFN
HSON8
BD3550HFN
ON=100mΩ <BD3552HFN>) level. By
Oct. 2008
●Absolute maximum ratings
◎BD3550HFN,BD3551HFN,BD3552HFN
Parameter Symbol
BD3550HFN BD3551HFN BD3552HFN
Limit
Unit
Input Voltage 1 VCC +6.0 *1 V
Input Voltage 2 VIN +6.0 *1 V
Enable Input Voltage Ven -0.3~+6.0 V
Power Dissipation 1 Pd1 0.63 *2 W
Power Dissipation 2 Pd2 1.35 *3 W
Power Dissipation 3 Pd3 1.75 *4 W
Operating Temperature Range Topr -10~+100 ℃
Storage Temperature Range Tstg -55~+150 ℃
Maximum Junction Temperature Tjmax +150 ℃
*1 Should not exceed Pd.
*2 Reduced by 5.04mW/℃ for each increase in Ta≧25℃ (when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)
On less than 0.2% (percentage occupied by copper foil.
*3 Reduced by 10.8mW/℃ for each increase in Ta≧25℃ (when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)
On less than 7.0% (percentage occupied by copper foil.
*4 Reduced by 14.0mW/℃ for each increase in Ta≧25℃ (when mounted on a 70mm×70mm×1.6mm glass-epoxy board, 1-layer)
On less than 65.0% (percentage occupied by copper foil.
2/16
◎BD3550HFN,BD3551HFN,BD3552HFN
●Operating Voltage(Ta=25℃)
Parameter Symbol Min. Max. Unit
Input Voltage 1 VCC 4.3 5.5 V
Input Voltage 2 VIN 0.95 VCC-1 *5 V
Output Voltage Setting Range Vo VFB 2.7 V
Enable Input Voltage Ven 0 5.5 V
NRCS Capacity CNRCS 0.001 1 μF
*5 VCC and VIN do not have to be implemented in the order listed.
★This product is not designed for use in radioactive environments.
1 VCC Power supply pin
2 EN Enable input pin
3 GATE Gate pin
4 VIN Input voltage pin
5 VO Output voltage pin
6 FB Reference voltage feedback pin
7 NRCS In-rush current protection (NRCS) capacitor connection pin
8 GND Ground pin
reverse FIN Connected to heatsink and GND
●Pin Function Table
◎HSON8
7
±
±
1PIN MARK
0.6Max.
±
B D 3
5 5 X
VCC
VCC
Reference
Block
Thermal
Shutdown
TSD
Lot No.
VCC
NRCS
UVLO
CL
UVLO
TSD
VCC
CLEN
Current
Limit
EN
GNDNRCS
VIN
VO
FB
GATE
VIN
Vo
.
.
+0.1
0.13
−0.05
.
2
±
(Unit : mm)
7/16
●Operation of Each Block
・AMP
This is an error amp that compares the reference voltage (0.65V) with Vo to drive the output Nch FET (Ron=100m
Ω:BD3552HFN). Frequency optimization helps to realize rapid transient response, and to support the use of ceramic
capacitors on the output. AMP input voltage ranges from GND to 2.7V, while the AMP output ranges from GND to VCC.
When EN is OFF, or when UVLO is active, output goes LOW and the output of the NchFET switches OFF.
・EN
The EN block controls the regulator’s ON/OFF state via the EN logic input pin. In the OFF position, circuit voltage is
maintained at 0μA, thus minimizing current consumption at standby. The FET is switched ON to enable discharge of the
NRCS pin Vo, thereby draining the excess charge and preventing the IC on the load side from malfunctioning. Since no
electrical connection is required (e.g., between the VCC pin and the ESD prevention Diode), module operation is
independent of the input sequence.
・UVLO
To prevent malfunctions that can occur during a momentary decrease in VCC, the UVLO circuit switches the output OFF,
and (like the EN block) discharges NRCS and Vo. Once the UVLO threshold voltage (TYP3.80V) is reached, the power-on
reset is triggered and output continues.
・CURRENT LIMIT
When output is ON, the current limit function monitors the internal IC output current against the parameter value (2.0A or
more:BD3552HFN). When current exceeds this level, the current limit module lowers the output current to protect the loa d
IC. When the overcurrent state is eliminated, output voltage is restored to the parameter value.
・NRCS (Non Rush Current on Start-up)
The soft start function enabled by connecting an external capacitor between the NRCS pin and ground. Output ramp-up
can be set for any period up to the time the NRCS pin reaches VFB (0.65V). Durin g startup, the NRCS pin serves as a 20
μA (TYP) constant current source to charge the external capacitor. Output start time is calculated via formula (1) below.
Tracking sequence is available by connecting the output voltage of external power supply instead of external capacitor. And
then, ratio-metric sequence is also available by changing the resistor division rati o of e xternal p ower supply output voltage.
(See the next page)
・TSD (Thermal Shut down)
The shutdown (TSD) circuit automatically switches output OFF when the chip temperature gets too high, thus serving to
protect the IC against “thermal runaway” and heat damage. Because the TSD circuit is provided to shut down the IC in the
presence of extreme heat, in order to avoid potential problems with the TSD, it is crucial that the Tj (max) parameter not be
exceeded in the thermal design.
・VIN
The VIN line acts as the major current supply line, and is connected to the output NchFET drain. Since no electrical
connection (such as between the VCC pin and the ESD protection Diode) is necessary, VIN operates independent of the
input sequence. However, since an output NchFET body Diode exists between VIN and Vo, a VIN-Vo electric (Diode)
connection is present. Note, therefore, that when output is switched ON or OFF, reverse current may flow to VIN from Vo.
R1/R2 3.9k/3.3k IC output voltage can be set with a configuration formula using the values for the internal
reference output voltage (V
values that will avoid the impact of the VREF
)and the output voltage resistors (R1, R2). Select resistance
FB
current (±100nA).T he recommended total
resistance value is 10KΩ.
C3 22μF To assure output voltage stability, please be certain the Vo1, Vo2, and Vo3 pins and the
GND pins are connected. Output capacitors play a role in loop gain phas e compensation
and in mitigating output fluctuation during rapid changes in load level. Insufficient
capacitance may cause oscillation, while high equivalent series reisistance (ESR) will
exacerbate output voltage fluctuation under rapid load change conditions. W hile a 22μF
ceramic capacitor is recomended, actual stability is highly dependent on temperature and
load conditions. Also, note that connecting different types of capacitors in series may result
in insufficient total phase compensation, thus causing oscillation. In light of this information,
please confirm operation across a variety of temperature and load conditions.
C1 1μF Input capacitors reduce the output impedance of the voltage supply source connected to
the (VCC) input pins. If the impedance of this power supply were to increase, input voltage
(VCC) could become unstable, leading to oscillation or lowered ripple rejection function.
While a low-ESR 1 μ F capacitor with minimal susceptibility to temperature is
recommended, stability is highly dependent on the input power supply characteristics and
the substrate wiring pattern. In light of this information, please confirm operation across a
variety of temperature and load conditions.
C2 22μF Input capacitors reduce the output impedance of the voltage supply source connected to
the (VIN) input pins. If the impedance of this power supply were to increase, input voltage
(VIN) could become unstable, leading to oscillation or lowered ripple rejection function.
While a low-ESR 22 μ F capacitor with minimal susceptibility to temperature is
recommended, stability is highly dependent on the input power supply characteristics and
the substrate wiring pattern. In light of this information, please confirm operation across a
variety of temperature and load conditions.
C4 0.01μF The Non Rush Current on Startup (NRCS) function is built into the IC to prevent rush
current from going through the load (VIN to VO) and impacting output capacitors at power
supply start-up. Constant current comes from the NRCS pin when EN is HIGH or the
UVLO function is deactivated. The temporary reference voltage is proportionate to time,
due to the current charge of the NRCS pin capacitor, and output voltage start-up is
proportionate to this reference voltage. Capacitors with low susceptibility to temperature
are recommended, in order to assure a stable soft-start time.
C5
R4
- This compone nt is employed when the C3 capacitor causes, or may cause, oscillation. It
provides more precise internal phase correction.
Several kΩ ~several 10kΩ
It is recommended that a resistance (several kΩ to several 10kΩ) be put in R4, in case
negative voltage is applied in EN pin.
11/16
●Heat Loss
Thermal design should allow operation within the following conditio ns. Note that the temperatures listed are the allowed
temperature limits, and thermal design should allow sufficient margin from the limits.
1. Ambient temperature T a can be no higher than 100℃.
2. Chip junction temperature (Tj) can be no higher than 150℃.
Chip junction temperature can be determined as follows:
① Calculation based on ambient temperature (Ta)
Tj=Ta+θj-a×W
<Reference values>
1-layer substrate (copper foil density 0.2%)
1-layer substrate (copper foil density 7%)
92.4℃/W 2-layer substrate (copper foil density 65%)
71.4℃/W Substrate size: 70×70×1.6mm
θj-a:HSON8 198.4℃/W
3
(substrate with thermal via)
It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in
the inner layer (in using multiplayer substrat e). This package is so small (size: 2.9mm×3.0mm) that it is not available to
layout the VIA in the bottom of IC. Spreading the pattern and being increased the number of VIA like the figure below).
enable to get the superior heat radiation characteristic. (This figure is the image. It is recommended that the VIA size and
the number is designed suitable for the actual situation.).
Most of the heat loss that occurs in BD3550HFN,BD3551HFN,BD3552HFN is generated from the output Nch FET. Power
loss is determined by the total V
IN-Vo voltage and output current. Be sure to confirm the system input and output voltage
and the output current conditions in relation to the heat dissipation characteristics of the VIN and Vo in the design. Bearing in
mind that heat dissipation may vary substantially depending on the substrate employed (due to the power package
incorporated in BD3550HFN,BD3551HFN,BD3552HFN) make certain to factor conditions such as substrate size into the
thermal design.
Power consumption (W) = Input voltage (VIN)- Output voltage (Vo) (Vo≒VREF) ×Io(Ave)
Example) Where VIN=1.8V, VO=1.2V, Io(Ave) = 1A,
Power consumption (W) = 1.8(V)-1.2(V) ×1.0(A)
= 0.6(W)
12/16
●Input-Output Equivalent Circuit Diagram
VCC
VCC
NRCS
1kΩ
1kΩ
10kΩ
VCC
VO1
VO2
50kΩ
●Reference landing pattern
Lead pitch
0.65 2.50 0.40 0.35
central pad length
2.90 1.90
*It is recommended to design suitable for the actual application.
1kΩ
1kΩ
EN
10kΩ
b2
L2
D3
1kΩ
VIN
10kΩ
VCC
VFB
100kΩ
100kΩ
20pF
MIE
E3
1kΩ
1kΩ
1kΩ
1kΩ
e
(Unit:mm)
Lead pitch
e
MIE
landing length
≧l2
landing pitch
b2
central pad pitch
D3 E3
350kΩ
13/16
●Operation Notes
1. Absolute maximum ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc ., can
break down the devices, thus making impossible to identify break ing mode, such as a s hort circuit or an open circuit. If any
over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protectio n devices, such as
fuses.
2. Connecting the power supply connector backward
Connecting of the power supply in reverse polarity can damage IC. Take precautions when connecting the power supply
lines. An external direction diode can be added.
3. Power supply lines
Please add a protection diode when a large inductance com pon ent is conn ected to the output te rminal, a nd rev erse-polarity
power is possible at startup or in output OFF condition.
4. GND voltage
The potential of GND pin must be minimum potential in all operating conditions.
5. Thermal design
Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.
6. Inter-pin shorts and mounting errors
Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any
connection error or if pins are shorted together.
7. Actions in strong electromagnetic field
Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to
malfunction.
8. ASO
When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.
9. Thermal shutdown circuit
The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed
only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation. Do not
continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is
assumed.
TSD on temperature [°C]
BD3550HFN,BD3551HFN,BD3552HFN175 15
10. Testing on application boards
When testing the IC on an application board, connecting a capacitor to a pin with low impedanc e subjects the IC to stress.
Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to or
removing it from a jig or fixture during the inspection process. Ground the IC during assembly steps as an antistatic measure.
Use similar precaution when transporting or storing the IC.
(Example)
OUTPUT PIN
Hysteresis temperature [°C]
(typ.)
(typ.)
14/16
P
iti
P
iti
11. Regarding input pin of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.
P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode
or transistor. For example, the relation between each potential is as follows:
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes can occur inevitable in the structure of the IC. The operation of parasitic diodes can result in mutual
interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate,
such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.
Pin A
Parasitic element
N
+
P
P
P
GND
ResistorTransistor (NPN)
B
C
E
N
P
P substrate
GND
+
N N
P substrate
Pin A
aras
element
Pin B
N
+
c
P
Parasitic element
Pin B
B C
+
P
N
GND
Other adjacent elements
E
GND
aras
element
12. Ground Wiring Pattern.
When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing
a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations
caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring
pattern of any external components, either.
●Heat Dissipation Characteristics
◎HSON8
[W]
2.0
(3) 1.75W
1.5
(2) 1.35W
1.0
(1) 0.63W
Power Dissipation [Pd]
0.5
0
0 25 75 100 125 150 50
Ambient Temperature [Ta ]
(1) Substrate (copper foil density: 0.2%…1-layer)
θj-a=198.4℃/W
(2) Substrate (copper foil density: 7%…1-layer)
θj-a=92.4℃/W
(3) Substrate (copper foil density: 65%…1-layer)
θj-a=71.4℃/W
[℃]
c
15/16
●Type Designations (Ordering Information)
p
B D 3 5 5 X
Product Name
・BD355X
Package Type
・HFN : HSON8
HSON8
<Dimension>
0.475
0.2
±
3.00
2.90±0.2
0.2
±
2.80
0.6Max.
0.65
5678
4321
0.32±0.10
(0.2) (1.8) (0.2)
(0.05)(2.2)
8765
(0.30)
(0.15)
(0.45)
1234
0.13
(Unit:mm)
+0.1
−0.05
FN
TR Emboss tape reel opposite draw-out side: 1 pin
<Tape and Reel information>
Tape
Quantity
Direction
of feed
Embossed carrier tape
cs
3000
TR
(The direction is the 1pin of product is at the upper light when you hold
reel on the left hand and you pull out the tape on the right hand)
XX
X
X X
X
X
Reel
XX
X
X
X X
X
※When you order , please order in times the amount of package quantity.
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM
CO.,LTD.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you
wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM
upon request.
Examples of application circuits, circuit constants and any other information contained herein illustrate the
standard usage and operations of the Products. The peripheral conditions must be taken into account when
designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document. However, should
you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and examples of
application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or
exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility
whatsoever for any dispute arising from the use of such technical information.
The Products specified in this document are intended to be used with general-use electronic equipment or
devices (such as audio visual equipment, office-automation equipment, communication devices, electronic
appliances and amusement devices).
The Products are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or
malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard against the
possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as
derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your
use of any Product outside of the prescribed scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or system
which requires an extremely high level of reliability the failure or malfunction of which may result in a direct
threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment,
aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no
responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended
to be used for any such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may be controlled under
the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Notes
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.