All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).
www.renesas.com
Aug 2019Rev.1.30
Page 2
S5D9 Microcontroller Group
Datasheet
Leading performance 120-MHz Arm® Cortex®-M4 core, up to 2-MB code flash memory, 640-KB SRAM, Graphics LCD
Controller, 2D Drawing Engine, Capacitive Touch Sensing Unit, Ethernet MAC Controller with IEEE 1588 PTP, USB 2.0
High-Speed, USB 2.0 Full-Speed, SDHI, Quad SPI, security and safety features, and advanced analog.
Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)
Armv7E-M architecture with DSP instruction set
Maximum operating frequency: 120 MHz
Support for 4-GB address space
On-chip debugging system: JTAG, SWD, and ETM
Boundary scan and Arm Memory Protection Unit (Arm MPU)
■ Memory
Up to 2-MB code flash memory (40 MHz zero wait states)
64-KB data flash memory (125,000 erase/write cycles)
Up to 640-KB SRAM
Flash Cache (FCACHE)
Memory Protection Units (MPU)
Memory Mirror Function (MMF)
128-bit unique ID
Error Correction Code (ECC) in SRAM
SRAM parity error check
Flash area protection
ADC self-diagnosis function
Clock Frequency Accuracy Measurement Circuit (CAC)
Cyclic Redundancy Check (CRC) calculator
Data Operation Circuit (DOC)
Port Output Enable for GPT (POEG)
Independent Watchdog Timer (IWDT)
GPIO readback level detection
Register write protection
Main oscillator stop detection
Illegal memory access
■ System and Power Management
Low power modes
Realtime Clock (RTC) with calendar and VBATT support
Event Link Controller (ELC)
DMA Controller (DMAC) × 8
Data Transfer Controller (DTC)
Key Interrupt Function (KINT)
Power-on reset
Low Voltage Detection (LVD) with voltage settings
■ Security and Encryption
AES128/192/256
3DES/ARC4
SHA1/SHA224/SHA256/MD5
GHASH
RSA/DSA/ECC
True Random Number Generator (TRNG)
■ Human Machine Interface (HMI)
Graphics LCD Controller (GLCDC)
JPEG codec
2D Drawing Engine (DRW)
Capacitive Touch Sensing Unit (CTSU)
Parallel Data Capture Unit (PDC)
■ Multiple Clock Sources
Main clock oscillator (MOSC) (8 to 24 MHz)
Sub-clock oscillator (SOSC) (32.768 kHz)
High-speed on-chip oscillator (HOCO) (16/18/20 MHz)
Middle-speed on-chip oscillator (MOCO) (8 MHz)
Low-speed on-chip oscillator (LOCO) (32.768 kHz)
IWDT-dedicated on-chip oscillator (15 kHz)
Clock trim function for HOCO/MOCO/LOCO
Clock out support
■ General-Purpose I/O Ports
Up to 133 input/output pins
- Up to 9 CMOS input
- Up to 124 CMOS input/output
- Up to 21 input/output 5 V tolerant
- Up to 18 high current (20 mA)
■ Operating Voltage
VCC: 2.7 to 3.6 V
■ Operating Temperature and Packages
Ta = -40°C to +85°C
- 176-pin BGA (13 mm × 13 mm, 0.8 mm pitch)
- 145-pin LGA (7 mm × 7 mm, 0.5 mm pitch)
Ta = -40°C to +105°C
- 176-pin LQFP (24 mm × 24 mm, 0.5 mm pitch)
- 144-pin LQFP (20 mm × 20 mm, 0.5 mm pitch)
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
R01DS0303EU0130 Rev.1.30Page 2 of 116
Aug 30, 2019
Page 3
S5D9 Datasheet1. Overview
1.Overview
The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share the same set of
Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU in this series incorporates a high-performance Arm Cortex
following features:
Up to 2-MB code flash memory
640-KB SRAM
Graphics LCD Controller (GLCDC)
2D Drawing Engine (DRW)
Capacitive Touch Sensing Unit (CTSU)
Ethernet MAC Controller (ETHERC) with IEEE 1588 PTP, USBFS, USBHS, SD/MMC Host Interface
Quad Serial Peripheral Interface (QSPI)
Security and safety features
Analog peripherals.
1.1Function Outline
®
-M4 core running up to 120 MHz, with the
Table 1.1Arm core
FeatureFunctional description
Arm Cortex-M4 core Maximum operating frequency: up to 120 MHz
Arm Cortex-M4 core:
- Revision: r0p1-01rel0
- ARMv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
Arm Memory Protection Unit (Arm MPU):
- ARMv7 Protected Memory System Architecture
- 8 protect regions.
SysTick timer:
- Driven by SYSTICCLK (LOCO) or ICLK.
Table 1.2Memory
FeatureFunctional description
Code flash memoryMaximum 2-MB code flash memory. See section 55, Flash Memory in User’s Manual.
Data flash memory64-KB data flash memory. See section 55, Flash Memory in User’s Manual.
Memory Mirror Function (MMF)The Memory Mirror Function (MMF) can be configured to mirror the target application image
Option-setting memoryThe option-setting memory determines the state of the MCU after a reset. See section 7,
SRAMOn-chip high-speed SRAM with either parity-bit or Error Correction Code (ECC). The first
Standby SRAMOn-chip SRAM that can retain data in Deep Software Standby mode. See section 54, Standby
load address in code flash memory to the application image link address in the 23-bit unused
memory space (memory mirror space addresses). Your application code is developed and
linked to run from this MMF destination address. The application code does not need to know
the load location where it is stored in code flash memory. See section 5, Memory Mirror
Function (MMF) in User’s Manual.
Option-Setting Memory in User’s Manual.
32 KB in SRAM0 provides error correction capability using ECC. Parity check is performed for
other areas. See section 53, SRAM in User’s Manual.
SRAM in User’s Manual.
R01DS0303EU0130 Rev.1.30Page 3 of 116
Aug 30, 2019
Page 4
S5D9 Datasheet1. Overview
Table 1.3System (1 of 2)
FeatureFunctional description
Operating modesTwo operating modes:
- Single-chip mode
- SCI or USB boot mode.
See section 3, Operating Modes in User’s Manual.
Resets14 resets:
RES pin reset
Power-on reset
Voltage monitor 0 reset
Voltage monitor 1 reset
Voltage monitor 2 reset
Independent watchdog timer reset
Watchdog timer reset
Deep software standby reset
SRAM parity error reset
SRAM ECC error reset
Bus master MPU error reset
Bus slave MPU error reset
Stack pointer error reset
Software reset.
See section 6, Resets in User’s Manual.
Low Voltage Detection (LVD)The Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and
the detection level can be selected using a software program. See section 8, Low Voltage
Detection (LVD) in User’s Manual.
Clocks Main clock oscillator (MOSC)
Clock Frequency Accuracy
Measurement Circuit (CAC)
Interrupt Controller Unit (ICU)The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
Key Interrupt Function (KINT)A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
Low power modesPower consumption can be reduced in multiple ways, such as by setting clock dividers,
Battery backup functionA battery backup function is provided for partial powering by a battery. The battery-powered
Register write protectionThe register write protection function protects important registers from being overwritten
Memory Protection Unit (MPU)Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided
See section 9, Clock Generation Circuit in User’s Manual.
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be
measured (measurement target clock) within the time generated by the clock to be used as a
measurement reference (measurement reference clock), and determines the accuracy
depending on whether the number of pulses is within the allowable range.
When measurement is complete or the number of pulses within the time generated by the
measurement reference clock is not within the allowable range, an interrupt request is
generated.
See section 10, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.
module and DMAC module. The ICU also controls NMI interrupts. See section 14, Interrupt
Controller Unit (ICU).
a rising or falling edge to the key interrupt input pins. See section 21, Key Interrupt Function
(KINT) in User’s Manual.
controlling EBCLK output, controlling SDCLK output, stopping modules, selecting power
control mode in normal operation, and transitioning to low power modes. See section 11, LowPower Modes in User’s Manual.
area includes the RTC, SOSC, backup memory, and switch between
section 12, Battery Backup Function in User’s Manual.
because of software errors. See section 13, Register Write Protection in User’s Manual.
for memory protection. See section 16, Memory Protection Unit (MPU) in User’s Manual.
VCC and VBATT. See
R01DS0303EU0130 Rev.1.30Page 4 of 116
Aug 30, 2019
Page 5
S5D9 Datasheet1. Overview
Table 1.3System (2 of 2)
FeatureFunctional description
Watchdog Timer (WDT)The Watchdog Timer (WDT) is a 14-bit down-counter that can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh the
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow.
A refresh-permitted period can be set to refresh the counter and be used as the condition for
detecting when the system runs out of control. See section 27, Watchdog Timer (WDT) in
User’s Manual.
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be
serviced periodically to prevent counter underflow. It can be used to reset the MCU or to
generate a non-maskable interrupt or interrupt for a timer underflow. Because the timer
operates with an independent, dedicated clock source, it is particularly useful in returning the
MCU to a known state as a fail safe mechanism when the system runs out of control. The
IWDT can be triggered automatically on a reset, underflow, refresh error, or by a refresh of the
count value in the registers. See section 28, Independent Watchdog Timer (IWDT) in User’s
Manual.
Table 1.4Event link
FeatureFunctional description
Event Link Controller (ELC)The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral
modules as event signals to connect them to different modules, enabling direct interaction
between the modules without CPU intervention. See section 19, Event Link Controller (ELC)
in User’s Manual.
Table 1.5Direct memory access
FeatureFunctional description
Data Transfer Controller (DTC)A Data Transfer Controller (DTC) module is provided for transferring data when activated by an
DMA Controller (DMAC)An 8-channel DMA Controller (DMAC) module is provided for transferring data without the
interrupt request. See section 18, Data Transfer Controller (DTC) in User’s Manual.
CPU. When a DMA transfer request is generated, the DMAC transfers data stored at the
transfer source address to the transfer destination address. See section 17, DMA Controller
(DMAC) in User’s Manual.
Table 1.6External bus interface
FeatureFunctional description
External buses CS area (EXBIU): Connected to the external devices (external memory interface)
SDRAM area (EXBIU): Connected to the SDRAM (external memory interface)
QSPI area (EXBIUT2): Connected to the QSPI (external device interface).
Table 1.7Timers (1 of 2)
FeatureFunctional description
General PWM Timer (GPT)The General PWM Timer (GPT) is a 32-bit timer with 14 channels. PWM waveforms can be
Port Output Enable for GPT (POEG)Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)
Asynchronous General-Purpose
Timer (AGT)
generated by controlling the up-counter, down-counter, or the up- and down-counter. In
addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT
can also be used as a general-purpose timer. See section 23, General PWM Timer (GPT) in
User’s Manual.
output pins in the output disable state. See section 22, Port Output Enable for GPT (POEG) in
User’s Manual.
The Asynchronous General-Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
output, external pulse width or period measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and can be accessed with the AGT register.
See section 25, Asynchronous General-Purpose Timer (AGT) in User’s Manual.
R01DS0303EU0130 Rev.1.30Page 5 of 116
Aug 30, 2019
Page 6
S5D9 Datasheet1. Overview
Table 1.7Timers (2 of 2)
FeatureFunctional description
Realtime Clock (RTC)The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count
mode, that are controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 26, Realtime Clock (RTC) in User’s Manual.
Table 1.8Communication interfaces (1 of 2)
FeatureFunctional description
Serial Communications Interface
(SCI)
IrDA interfaceThe IrDA interface sends and receives IrDA data communication waveforms in cooperation
2
I
C bus interface (IIC)The 3-channel I2C bus interface (IIC) conforms with and provides a subset of the NXP I2C
Serial Peripheral Interface (SPI)Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-
Serial Sound Interface Enhanced
(SSIE)
Quad Serial Peripheral Interface
(QSPI)
Controller Area Network (CAN)
module
USB 2.0 Full-Speed (USBFS) module The USB 2.0 Full-Speed (USBFS) module can operate as a host controller or device controller.
The Serial Communications Interface (SCI) is configurable to five asynchronous and
synchronous serial interfaces:
Asynchronous interfaces (UART and Asynchronous Communications Interface Adapter
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
Each SCI has FIFO buffers to enable continuous and full-duplex communication, and the data
transfer speed can be configured independently using an on-chip baud rate generator.
See section 34, Serial Communications Interface (SCI) in User’s Manual.
with the SCI1 based on the IrDA (Infrared Data Association) standard 1.0. See section 35,
IrDA Interface in User’s Manual.
(Inter-Integrated Circuit) bus interface functions. See section 36, I2C Bus Interface (IIC) in
User’s Manual.
duplex synchronous serial communications with multiple processors and peripheral devices.
See section 38, Serial Peripheral Interface (SPI) in User’s Manual.
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with
digital audio devices for transmitting I
audio data over a serial bus. The SSIE supports an audio clock frequency of up to 50 MHz,
and can be operated as a slave or master receiver, transmitter, or transceiver to suit various
applications. The SSIE includes 32-stage FIFO buffers in the receiver and transmitter, and
supports interrupts and DMA-driven data reception and transmission. See section 41, Serial
Sound Interface Enhanced (SSIE) in User’s Manual.
The Quad Serial Peripheral Interface (QSPI) is a memory controller for connecting a serial
ROM (nonvolatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM)
that has an SPI-compatible interface. See section 39, Quad Serial Peripheral Interface (QSPI)
in User’s Manual.
The Controller Area Network (CAN) module provides functionality to receive and transmit data
using a message-based protocol between multiple slaves and masters in electromagneticallynoisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 37, Controller Area Network (CAN) Module in User’s Manual.
The module supports full-speed and low-speed (host controller only) transfer as defined in
Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.
The USB has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9
can be assigned any endpoint number based on the peripheral devices used for
communication or based on your system. See section 32, USB 2.0 Full-Speed Module
(USBFS) in User’s Manual.
2
S 2ch, 4ch, 6ch, 8ch, WS Continue/Monaural/TDM
R01DS0303EU0130 Rev.1.30Page 6 of 116
Aug 30, 2019
Page 7
S5D9 Datasheet1. Overview
Table 1.8Communication interfaces (2 of 2)
FeatureFunctional description
USB 2.0 High-Speed (USBHS)
module
Ethernet MAC with IEEE 1588 PTP
(ETHERC)
SD/MMC Host Interface (SDHI)The SDHI and MultiMediaCard (MMC) interface module provides the functionality required to
The USB 2.0 High-Speed (USBHS) module can operate as a host controller or a device
controller. As a host controller, the USBHS supports high-speed transfer, full-speed transfer,
and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. As a device
controller, the USBHS supports high-speed transfer and full-speed transfer as defined in the
Universal Serial Bus Specification 2.0. The USBHS has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0.
The USBHS has FIFO buffers for data transfer, providing a maximum of 10 pipes. Any
endpoint number can be assigned to pipes 1 to 9, based on the peripheral devices or your
system for communication. See section 33, USB 2.0 High-Speed Module (USBHS) in User’s
Manual.
One-channel Ethernet MAC Controller (ETHERC) compliant with the Ethernet/IEEE802.3
Media Access Control (MAC) layer protocol. An ETHERC channel provides one channel of the
MAC layer interface, connecting the MCU to the physical layer LSI (PHY-LSI) that allows
transmission and reception of frames compliant with the Ethernet and IEEE802.3 standards.
The ETHERC is connected to the Ethernet DMA Controller (EDMAC) so data can be
transferred without using the CPU.
To handle timing and synchronization between devices, an on-chip Precision Time Protocol
(PTP) module for the Ethernet PTP Controller (EPTPC) applies the PTP defined in the IEEE
1588-2008 version 2.0 standard.
The EPTPC is composed of:
Synchronization Frame Processing unit (SYNFP0)
A Statistical Time Correction Algorithm unit (STCA).
Use the EPTPC in combination with the on-chip Ethernet MAC Controller (ETHERC) and the
DMA Controller for the PTP Ethernet Controller (PTPEDMAC). See section 29, Ethernet MAC
Controller (ETHERC) in User’s Manual.
connect a variety of external memory cards to the MCU. The SDHI supports both 1-bit and 4bit buses for connecting memory cards that support SD, SDHC, and SDXC formats. When
developing host devices that are compliant with the SD Specifications, you must comply with
the SD Host/Ancillary Product License Agreement (SD HALA).
The MMC interface supports 1-bit, 4-bit, and 8-bit MMC buses that provide eMMC 4.51
(JEDEC Standard JESD 84-B451) device access. This interface also provides backward
compatibility and supports high-speed SDR transfer modes. See section 43, SD/MMC Host
Interface (SDHI) in User’s Manual.
Table 1.9Analog
FeatureFunctional description
12-bit A/D Converter (ADC12)Up to two successive approximation 12-bit A/D Converters (ADC12) are provided. In unit 0, up
to 13 analog input channels are selectable. In unit 1, up to 11 analog input channels, the
temperature sensor output, and an internal reference voltage are selectable for conversion.
The A/D conversion accuracy is selectable from 12-bit, 10-bit, and 8-bit conversion, making it
possible to optimize the tradeoff between speed and resolution in generating a digital value.
See section 47, 12-Bit A/D Converter (ADC12) in User’s Manual.
12-bit D/A Converter (DAC12)The 12-bit D/A Converter (DAC12) converts data and includes an output amplifier. See section
Temperature Sensor (TSN)The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for
High-Speed Analog Comparator
(ACMPHS)
48, 12-Bit D/A Converter (DAC12) in User’s Manual.
reliable operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC12 for conversion and can also be used by the end
application. See section 49, Temperature Sensor (TSN) in User’s Manual.
The High-Speed Analog Comparator (ACMPHS) compares a test voltage with a reference
voltage and provides a digital output based on the conversion result.
Both the test and reference voltages can be provided to the comparator from internal sources
such as the DAC12 output and internal reference voltage, and an external source with or
without an internal PGA.
Such flexibility is useful in applications that require go/no-go comparisons to be performed
between analog signals without necessarily requiring A/D conversion. See section 50, HighSpeed Analog Comparator (ACMPHS) in User’s Manual.
R01DS0303EU0130 Rev.1.30Page 7 of 116
Aug 30, 2019
Page 8
S5D9 Datasheet1. Overview
Table 1.10Human machine interfaces
FeatureFunctional description
Capacitive Touch Sensing Unit
(CTSU)
Table 1.11Graphics
FeatureFunctional description
Graphics LCD Controller (GLCDC)The Graphics LCD Controller (GLCDC) provides multiple functions and supports various data
2D Drawing Engine (DRW)The 2D Drawing Engine (DRW) provides flexible functions that can support almost any object
JPEG codecThe JPEG incorporates a JPEG codec that conforms to the JPEG baseline compression and
Parallel Data Capture (PDC) unitOne Parallel Data Capture (PDC) unit is provided for communicating with external I/O devices,
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed with an electrical insulator so that fingers do
not come into direct contact with the electrodes. See section 51, Capacitive Touch Sensing
Unit (CTSU) in User’s Manual.
formats and panels. Key GLCDC features include:
GPX bus master function for accessing graphics data
Superimposition of three planes (single-color background plane, graphic 1-plane, and
graphic 2-plane)
Support for many types of 32-bit or 16-bit per pixel graphics data and 8-bit, 4-bit, or 1-bit LUT
data format
Digital interface signal output supporting a video image size of WVGA or greater.
See section 58, Graphics LCD Controller (GLCDC) in User’s Manual.
geometry rather than being bound to only a few specific geometries such as lines, triangles, or
circles. The edges of every object can be independently blurred or antialiased.
Rasterization is executed at one pixel per clock on the bounding box of the object from left to
right and top to bottom. The DRW can also raster from bottom to top to optimize the
performance in certain cases. In addition, optimization methods are available to avoid
rasterization of many empty pixels of the bounding box.
The distances to the edges of the object are calculated by a set of edge equations for every
pixel of the bounding box. These edge equations can be combined to describe the entire
object.
If a pixel is inside the object, it is selected for rendering. If it is outside, it is discarded. If it is on
the edge, an alpha value can be chosen proportional to the distance of the pixel to the nearest
edge for antialiasing.
Every pixel that is selected for rendering can be textured. The resulting aRGB quadruple can
be modified by a general raster operation approach independently for each of the four
channels. The aRGB quadruples can then be blended with one of the multiple blend modes of
the DRW.
The DRW provides two inputs (texture read and framebuffer read), and one output
(framebuffer write).
The internal color format is always aRGB (8888). The color formats from the inputs are
converted to the internal format on read and a conversion back is made on write.
See section 56, 2D Drawing Engine (DRW) in User’s Manual.
decompression standard. This provides high-speed compression of image data and highspeed decoding of JPEG data. See section 57, JPEG Codec (JPEG) in User’s Manual.
including image sensors, and transferring parallel data, such as an image output from the
external I/O device through the DTC or DMAC to the on-chip SRAM and external address
spaces (the CS and SDRAM areas). See section 44, Parallel Data Capture Unit (PDC) in
User’s Manual.
Table 1.12Data processing (1 of 2)
FeatureFunctional description
Cyclic Redundancy Check (CRC)
calculator
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first
communication. Additionally, various CRC-generating polynomials are available. The snoop
function allows monitoring reads from and writes to specific addresses. This function is useful
in applications that require CRC code to be generated automatically in certain events, such as
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See
section 40, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.
R01DS0303EU0130 Rev.1.30Page 8 of 116
Aug 30, 2019
Page 9
S5D9 Datasheet1. Overview
Table 1.12Data processing (2 of 2)
FeatureFunctional description
Data Operation Circuit (DOC)The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 52,
Data Operation Circuit (DOC) in User’s Manual.
Sampling Rate Converter (SRC)The Sampling Rate Converter (SRC) converts the sampling rate of data produced by various
audio decoders, such as the WMA, MP3, and AAC. Both 16-bit stereo and monaural data are
supported. See section 42, Sampling Rate Converter (SRC) in User’s Manual.
Packaging, Terminal material (Pb-free)
#AA: T ray/Sn ( Tin) only
#AC: Tray/others
Production identification code
1.3Part Numbering
Figure 1.2Part numbering scheme
Table 1.14Product list
Product part numberOrderable part numberPackage code
R7FS5D97E2A01CBGR7FS5D97E2A01CBG#AC0PLBG0176GE-A2 MB64 KB640 KB-40 to +85°C
R7FS5D97E3A01CFCR7FS5D97E3A01CFC#AA0PLQP0176KB-A-40 to +105°C
R7FS5D97E2A01CLKR7FS5D97E2A01CLK#AC0PTLG0145KA-A-40 to +85°C
R7FS5D97E3A01CFBR7FS5D97E3A01CFB#AA0PLQP0144KA-B-40 to +105°C
R7FS5D97E3A01CFPR7FS5D97E3A01CFP#AA0PLQP0100KB-B-40 to +105°C
R7FS5D97C2A01CBGR7FS5D97C2A01CBG#AC0PLBG0176GE-A1 MB-40 to +85°C
R7FS5D97C3A01CFCR7FS5D97C3A01CFC#AA0PLQP0176KB-A-40 to +105°C
R7FS5D97C2A01CLKR7FS5D97C2A01CLK#AC0PTLG0145KA-A-40 to +85°C
R7FS5D97C3A01CFBR7FS5D97C3A01CFB#AA0PLQP0144KA-B-40 to +105°C
R7FS5D97C3A01CFPR7FS5D97C3A01CFP#AA0PLQP0100KB-B-40 to +105°C
Code
flash
Data
flashSRAM
Operating
temperature
R01DS0303EU0130 Rev.1.30Page 11 of 116
Aug 30, 2019
Page 12
S5D9 Datasheet1. Overview
1.4Function Comparison
Table 1.15Functional comparison (Graphics)
Part numbers
Function
Pin count176176145144100
Package BGALQFPLGALQFPLQFP
Code flash memory2/1 MB
Data flash memory64 KB
SRAM640 KB
Parity608 KB
ECC32 KB
Standby SRAM8 KB
SystemCPU clock120 MHz
Backup
registers
ICUYes
KINT8
Event linkELCYes
DMADTCYes
DMAC8
BUSExternal bus16-bit bus8-bit bus
SDRAMYesNo
TimersGPT32EH44444
GPT32E44444
GPT3266665
AGT22222
RTCYes
WDT/IWDTYes
CommunicationSCI10
IIC32
SPI2
SSIE21
QSPI1
SDHI2
CAN2
USBFSYes
USBHSYesNo
ETHERC1
AnalogADC12242219
DAC122
ACMPHS6
TSNYes
HMICTSU131812
Graphics GLCDCRGB888
DRWYes
JPEGYes
PDCYes
Data processingCRCYes
DOCYes
SRCYes
SecuritySCE7
R7FS5D97E2XXXCBG/
R7FS5D97C2XXXCBG
R7FS5D97E3XXXCFC/
R7FS5D97C3XXXCFC
R7FS5D97E2XXXCLK/
R7FS5D97C2XXXCLK
512 B
R7FS5D97E3XXXCFB/
R7FS5D97C3XXXCFB
R7FS5D97E3XXXCFP/
R7FS5D97C3XXXCFP
R01DS0303EU0130 Rev.1.30Page 12 of 116
Aug 30, 2019
Page 13
S5D9 Datasheet1. Overview
1.5Pin Functions
Table 1.16Pin functions (1 of 5)
FunctionSignalI/ODescription
Power supplyVCCInputDigital voltage supply pin. This is used as the digital power supply for the
respective modules and internal voltage regulator, and used to monitor the
voltage of the POR/LVD. Connect to the system power supply. Connect to
VSS through a 0.1-μF smoothing capacitor close to each VCC pin.
VCL0-Connect to VSS through a 0.1-μF smoothing capacitor close to each VCL
VCL-
VSSInputGround pin. Connect to the system power supply (0 V).
VBATTInputBackup power pin
ClockXTALOutputPins for a crystal resonator. An external clock signal can be input through the
EXTALInput
XCINInputInput/output pins for the sub-clock oscillator. Connect a crystal resonator
XCOUTOutput
EBCLKOutputOutputs the external bus clock for external devices
SDCLKOutputOutputs the SDRAM-dedicated clock
CLKOUTOutputClock output pin
Operating mode
control
System controlRESInputReset signal input pin. The MCU enters the reset state when this signal goes
Figure 2.1Input or output timing measurement conditions
The measurement conditions of timing specification in each peripherals are recommended for the best peripheral
operation, however make sure to adjust driving abilities of each pins to meet your conditions.
2.1Absolute Maximum Ratings
Table 2.1Absolute maximum ratings
ParameterSymbolValueUnit
Power supply voltageVCC, VCC_USB *
VBATT power supply voltageVBATT-0.3 to +4.0V
1
Input voltage (except for 5V-tolerant ports*
1
Input voltage (5V-tolerant ports*
Reference power supply voltageVREFH/VREFH0-0.3 to AVCC0 + 0.3V
Analog power supply voltageAVCC0 *
USBHS power supply voltageVCC_USBHS-0.3 to +4.0V
USBHS analog power supply voltageAVCC_USBHS-0.3 to +4.0V
Analog input voltage (except for P000 to P007)V
Analog input voltage (P000 to P007) when PGA
differential input is disabled
Analog input voltage (P000 to P002, P004 to P006)
when PGA differential input is enabled
Analog input voltage (P003, P007) when PGA
differential input is enabled
Operating temperature*
Storage temperatureT
3,*4,*5
)Vin-0.3 to + VCC + 4.0 (max 5.8)V
)V
in
2
AN
V
AN
V
AN
V
AN
T
opr
stg
2
-0.3 to +4.0V
-0.3 to VCC + 0.3V
-0.3 to +4.0V
-0.3 to AVCC0 + 0.3V
-0.3 to AVCC0 + 0.3V
-1.3 to AVCC0 + 0.3V
-0.8 to AVCC0 + 0.3V
-40 to +85
-40 to +105
-55 to +125°C
°C
R01DS0303EU0130 Rev.1.30Page 28 of 116
Aug 30, 2019
Page 29
S5D9 Datasheet2. Electrical Characteristics
Caution:Permanent damage to the MCU might result if absolute maximum ratings are exceeded.
Note 1. Ports P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, and PB01 are 5V-tolerant.
Note 2. Connect AVCC0 and VCC_USB to VCC.
Note 3. See section 2.2.1, T
Note 4. Contact a Renesas Electronics sales office for information on derating operation when T
systematic reduction of load for improved reliability.
Note 5. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
Numbering.
Table 2.2Recommended operating conditions
ParameterSymbolValueMinTypMaxUnit
Power supply voltagesVCCWhen USB/SDRAM is not used 2.7-3.6V
Note 1. Connect AVCC0 to VCC. When neither the A/D converter nor the D/A converter nor the comparator is in use, do not leave the
AVCC0, VREFH/VREFH0, AVSS0, and VREFL/VREFL0 pins open. Connect the AVCC0 and VREFH/VREFH0 pins to VCC,
and the AVSS0 and VREFL/VREFL0 pins to VSS, respectively.
2.2DC Characteristics
2.2.1Tj/Ta Definition
Table 2.3DC characteristics
Conditions: Products with operating temperature (Ta) -40 to +105°C
ParameterSymbolTypMaxUnitTest conditions
Permissible junction temperatureT
Note:Make sure that Tj = Ta + θja × total power consumption (W), where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL
max × VCC.
+ I
Note 1. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, see section 1.3, Part
CC
Numbering. If the part number shows the operation temperature to 85°C, then Tj max is 105°C, otherwise, 125°C.
j
-125°CHigh-speed mode
1
105*
Low-speed mode
Subosc-speed mode
R01DS0303EU0130 Rev.1.30Page 29 of 116
Aug 30, 2019
Page 30
S5D9 Datasheet2. Electrical Characteristics
2.2.2I/O VIH, V
Table 2.4I/O VIH, V
IL
IL
ParameterSymbol MinTypMaxUnit
Input voltage
(except for
Schmitt trigger
input pins)
Note 1. SCL0_B (P204), SCL1_B, SDA1_B (total 3 pins).
Note 2. SCL0_A, SDA0_A, SCL0_B (P408), SDA0_B, SCL1_A, SDA1_A, SCL2, SDA2 (total 8 pins).
Note 3. RES and peripheral function pins associated with P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, PB01
(total 23 pins).
R01DS0303EU0130 Rev.1.30Page 30 of 116
Aug 30, 2019
Page 31
S5D9 Datasheet2. Electrical Characteristics
Note 4. All input pins except for the peripheral function pins already described in the table.
Note 5. P205, P206, P400, P401, P407 to P415, P511, P512, P708 to P713, PB01 (total 22 pins).
Note 6. All input pins except for the ports already described in the table.
Note 7. When VCC is less than 2.7 V, the input voltage of 5 V-tolerant ports should be less than 3.6 V, otherwise breakdown might
occur because the 5 V-tolerant ports are electrically controlled to not violate the breakdown voltage.
2.2.3I/O IOH, I
Table 2.5I/O IOH, I
OL
OL
ParameterSymbolMinTypMaxUnit
Permissible output current
(average value per pin)
Permissible output current
(max value per pin)
Permissible output current
(max value total pins)
Ports P008 to P010, P201-I
Ports P014, P015-I
Ports P205, P206, P407 to P415,
P602, P708 to P713, PB01 (total
19 pins)
Other output pins
Ports P008 to P010, P201-I
Ports P014, P015-I
Ports P205, P206, P407 to P415,
P602, P708 to P713, PB01
(total 19 pins)
Other output pins
Maximum of all output pinsΣI
4
*
4
*
Low drive
Middle drive
High drive
Low drive*
Middle drive
High drive
Low drive
Middle drive
High drive
Low drive*
Middle drive
High drive
1
*
2
*
3
*
1
2
*
3
*
1
*
2
*
3
*
1
2
*
3
*
OH
I
OL
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
OH
I
OL
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
I
OH
I
OL
OH (max)
ΣI
OL (max)
----2.0mA
--2.0mA
---4.0mA
--4.0mA
---2.0mA
--2.0mA
---4.0mA
--4.0mA
---20mA
--20mA
---2.0mA
--2.0mA
---4.0mA
--4.0mA
---16mA
--16mA
---4.0mA
--4.0mA
---8.0mA
--8.0mA
---4.0mA
--4.0mA
---8.0mA
--8.0mA
---40mA
--40mA
---4.0mA
--4.0mA
---8.0mA
--8.0mA
---32mA
--32mA
---80mA
--80mA
Caution:To protect the reliability of the MCU, the output current values should not exceed the values in this
table. The average output current indicates the average value of current measured during 100 μs.
Note 1. This is the value when low driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving
ability is retained in Deep Software Standby mode.
Note 2. This is the value when middle driving ability is selected in the port drive capability bit in the PmnPFS register. The selected
driving ability is retained in Deep Software Standby mode.
Note 3. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register. The selected driving
ability is retained in Deep Software Standby mode.
R01DS0303EU0130 Rev.1.30Page 31 of 116
Aug 30, 2019
Page 32
S5D9 Datasheet2. Electrical Characteristics
Note 4. Except for P000 to P007, P200, which are input ports.
Ports P205, P206, P407 to P415,
P602, P708 to P713, PB01 (total 19
2
*
pins)
Other output pinsV
Input leakage currentRES|I
Ports P000 to P002, P004 to P006,
P200
Ports P003, P007 Before
Three-state leakage
current (off state)
Input pull-up MOS currentPorts P0 to PB (except for ports
Input capacitanceUSB_DP, USB_DM, and ports
5V-tolerant ports|I
Other ports (except for ports P000
to P007, P200)
P000 to P007)
P003, P007, P014, P015, P400,
P401, P511, P512
Other input pins--8
initialization*
After
initialization*
3
4
OL
V
OL
V
OL
V
OL
OH
V
OL
V
OH
V
OL
OH
V
OL
|- -5.0μAV
in
|--5.0μAV
TSI
I
p
C
in
--0.4VI
--0.6I
--0.4I
-0.4-I
VCC - 0.5--IOH = -1.0 mA
--0.4I
VCC - 1.0--IOH = -20 mA
--1.0I
VCC - 0.5--IOH = -1.0 mA
--0.5I
--1.0V
--45.0V
--1.0V
--1.0V
-300--10μAVCC = 2.7 to 3.6 V
--16pFVbias = 0V
= 3.0 mA
OL
= 6.0 mA
OL
= 15.0 mA
OL
(ICFER.FMPE = 1)
= 20.0 mA
OL
(ICFER.FMPE = 1)
= 1.0 mA
OL
VCC = 3.3 V
= 20 mA
OL
VCC = 3.3 V
= 1.0 mA
OL
= 0 V
in
= 5.5 V
V
in
= 0 V
in
= VCC
V
in
= 0 V
in
= VCC
V
in
= 0 V
in
= VCC
V
in
= 0 V
in
= 5.5 V
V
in
= 0 V
in
V
= VCC
in
= 0 V
V
in
Vam p = 20m V
f = 1 MHz
= 25°C
T
a
Note 1. SCL0_A, SDA0_A (total 2 pins).
Note 2. This is the value when high driving ability is selected in the port drive capability bit in the PmnPFS register.
The selected driving ability is retained in Deep Software Standby mode.
Note 3. P0nPFS.ASEL (n = 3 or 7) = 1.
Note 4. P0nPFS.ASEL (n = 3 or 7) = 0.
R01DS0303EU0130 Rev.1.30Page 32 of 116
Aug 30, 2019
Page 33
S5D9 Datasheet2. Electrical Characteristics
2.2.5Operating and Standby Current
Table 2.7Operating and standby current (1 of 2)
ParameterSymbolMinTyp MaxUnitTest conditions
Supply
1
current
*
Analog
power
supply
current
Reference
power
supply
current
(VREFH0)
Reference
power
supply
current
(VREFH)
Maximum*
CoreMark®
Normal modeAll peripheral clocks enabled,
Sleep mode
Increase during BGO
operation
High-speed mode
Low-speed mode
Subosc-speed mode
Software Standby mode-1.818Ta
Power supplied to Standby SRAM and USB resume
detecting unit
Power not supplied to
SRAM or USB resume
detecting unit
Increase when the RTC
and AGT are operating
Deep Software Standby mode
RTC operating while VCC is off (with
the battery backup function, only the
RTC and sub-clock oscillator
operate)
During 12-bit A/D conversionAI
During 12-bit A/D conversion with S/H amp-2.33.3mA-
PGA (1ch)-13mA-
ACMPHS (1unit)-100150µA-
Temperature sensor-0.10.2mA-
During D/A conversion (per unit)Without AMP output-0.10.2mA-
Waiting for A/D, D/A conversion (all units)-0.91.6mA-
ADC12, DAC12 in standby modes (all units)*
During 12-bit A/D conversion (unit 0)AI
Waiting for 12-bit A/D conversion (unit 0)-0.070.5μA-
R01DS0303EU0130 Rev.1.30Page 33 of 116
Aug 30, 2019
Page 34
S5D9 Datasheet2. Electrical Characteristics
Table 2.7Operating and standby current (2 of 2)
ParameterSymbolMinTyp MaxUnitTest conditions
USB
operating
current
Note 1. Supply current values are with all output pins unloaded and all input pull-up MOS transistors in the off state.
Note 2. Measured with clocks supplied to the peripheral functions. This does not include the BGO operation.
Note 3. ICC depends on f (ICLK) as follows. (ICLK:PCLKA:PCLKB:PCLKC:PCLKD:BCK:EBCLK = 2:2:1:1:2:1:1)
Note 4. This does not include the BGO operation.
Note 5. Supply of the clock signal to peripherals is stopped in this state. This does not include the BGO operation.
Note 6. FCLK, BCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64 (3.75 MHz).
Note 7. When using ETHERC, GLCDC, DRW, and JPEG, PCLKA frequency is such that PCLKA = ICLK.
Note 8. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC120 Module Stop bit) and
Low speedUSBI
USBHS-10.513.5mAVCC_USBHS =
USBHS-2.83.6mAVCC_USBHS =
Full speedUSBI
USBHS-1422mAVCC_USBHS =
USBHS-6.513.0mAVCC_USBHS =
High speedUSBHSI
Standby mode (direct power down)USBHSI
CCUSBLS
CCUSBFS
CCUSBHS
CCUSBSBY
-3.56.5mAVCC_USB
AVCC_USBHS
(PHYSET.HSEB = 0)
AVCC_USBHS
(PHYSET.HSEB = 1)
-4.010.0mAVCC_USB
AVCC_USBHS
(PHYSET.HSEB = 0)
AVCC_USBHS
(PHYSET.HSEB = 1)
-5065mAVCC_USBHS =
-0.54.5μAVCC_USBHS =
AVCC_USBHS
AVCC_USBHS
ICC Max. = 0.84 × f + 37 (max. operation in High-speed mode)
ICC Typ. = 0.09 × f + 3.7 (normal operation in High-speed mode)
ICC Typ. = 0.6 × f + 1.8 (Low-speed mode 1)
ICC Max. = 0.08 × f + 37 (Sleep mode).
MSTPCRD.MSTPD15 (ADC121 Module Stop bit) are in the module-stop state. See section 47.6.8, Available Functions and
Register Settings of AN000 to AN002, AN007, AN100 to AN102, and AN107 in User’s Manual.
R01DS0303EU0130 Rev.1.30Page 34 of 116
Aug 30, 2019
Page 35
S5D9 Datasheet2. Electrical Characteristics
1
10
100
-40-20020406080100
ICC (mA)
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper -limit samples during product eval uation.
1
10
100
1000
-40-20 0 20406080100
ICC (uA)
Ta (Ԩ)
Average value of the tested middle samples during product evaluatio n.
Average value of the tested upper-limit samples during product e valuation.
Figure 2.2Temperature dependency in Software Standby mode (reference data)
Figure 2.3Temperature dependency in Deep Software Standby mode, power supplied to standby SRAM and
USB resume detecting unit (reference data)
R01DS0303EU0130 Rev.1.30Page 35 of 116
Aug 30, 2019
Page 36
S5D9 Datasheet2. Electrical Characteristics
1
10
100
-40-20 0 20406080100
ICC (uA)
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
1
10
100
-40-20 0 20406080100
ICC (uA)
Ta (Ԩ)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
Figure 2.4Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
resume detecting unit, power-on reset circuit low-power function disabled (reference data)
Figure 2.5Temperature dependency in Deep Software Standby mode, power not supplied to SRAM or USB
R01DS0303EU0130 Rev.1.30Page 36 of 116
Aug 30, 2019
resume detecting unit, power-on reset circuit low-power function enabled (reference data)
Page 37
S5D9 Datasheet2. Electrical Characteristics
V
r(VCC)
VCC
1/f
r(VCC)
2.2.6VCC Rise and Fall Gradient and Ripple Frequency
Table 2.8Rise and fall gradient characteristics
ParameterSymbol MinTypMaxUnitTest conditions
VCC rising gradient Voltage monitor 0 reset disabled at startup SrVCC0.0084-20ms/V-
Voltage monitor 0 reset enabled at startup0.0084---
1
SfVCC0.0084--ms/V-
VCC falling gradient*
SCI/USB boot mode*
2
Note 1. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.
Note 2. This applies when VBATT is used.
Table 2.9Rise and fall gradient and ripple frequency characteristics
The ripple voltage must meet the allowable ripple frequency f
(2.7 V). When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.
ParameterSymbolMinTypMaxUnitTest conditions
Allowable ripple frequencyf
r (VCC)
--10kHzFigure 2.6
--1MHzFigure 2.6
--10MHzFigure 2.6
Allowable voltage change rising
dt/dVCC1.0--ms/VWhen VCC change exceeds VCC ±10%
and falling gradient
within the range between the VCC upper limit (3.6 V) and lower limit
r(VCC)
0.0084-20-
V
≤ VCC × 0.2
r (VCC)
V
≤ VCC × 0.08
r (VCC)
V
≤ VCC × 0.06
r (VCC)
Figure 2.6Ripple waveform
2.3AC Characteristics
2.3.1Frequency
Table 2.10Operation frequency value in high-speed mode
ParameterSymbolMinTypMaxUnit
Operation frequencySystem clock (ICLK*
Peripheral module clock (PCLKA)*
Peripheral module clock (PCLKB)*
Peripheral module clock (PCLKC)*
Peripheral module clock (PCLKD)*
Flash interface clock (FCLK)*
External bus clock (BCLK)*
EBCLK pin output--60
SDCLK pin outputVCC ≥ 3.0 V--120
R01DS0303EU0130 Rev.1.30Page 37 of 116
Aug 30, 2019
2
) f--120MHz
2
2
2
2
2
2
--120
--60
3
-*
-60
--120
1
-*
-60
--120
Page 38
S5D9 Datasheet2. Electrical Characteristics
Note 1. FCLK must run at a frequency of at least 4 MHz when programming or erasing the flash memory.
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
Note 3. When the ADC12 is used, the PCLKC frequency must be at least 1 MHz.
Table 2.11Operation frequency value in low-speed mode
ParameterSymbolMinTypMaxUnit
Operation frequencySystem clock (ICLK)*
Peripheral module clock (PCLKA)*
Peripheral module clock (PCLKB)*
Peripheral module clock (PCLKC)*
Peripheral module clock (PCLKD)*
Flash interface clock (FCLK)*
External bus clock (BCLK)--1
EBCLK pin output--1
Note 1. Programming or erasing the flash memory is disabled in low-speed mode.
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
Note 3. When the ADC12 is used, the PCLKC frequency must be set to at least 1 MHz.
2
2
2
2,*3
2
1, *2
f--1MHz
--1
--1
3
-*
-1
--1
--1
Table 2.12Operation frequency value in Subosc-speed mode
ParameterSymbolMinTypMaxUnit
Operation frequencySystem clock (ICLK)*
Peripheral module clock (PCLKA)*
Peripheral module clock (PCLKB)*
Peripheral module clock (PCLKC)*
Peripheral module clock (PCLKD)*
Flash interface clock (FCLK)*
External bus clock (BCLK)*
2
2
2
2,*3
2
1, *2
2
f27.8-37.7kHz
--37.7
--37.7
--37.7
--37.7
27.8-37.7
--37.7
EBCLK pin output--37.7
Note 1. Programming or erasing the flash memory is disable in Subosc-speed mode.
Note 2. See section 9, Clock Generation Circuit in User’s Manual for the relationship between the ICLK, PCLKA, PCLKB, PCLKC,
PCLKD, FCLK, and BCLK frequencies.
Note 3. The ADC12 cannot be used.
2.3.2Clock Timing
Table 2.13Clock timing except for sub-clock oscillator (1 of 2)
ParameterSymbolMinTypMaxUnitTest conditions
EBCLK pin output cycle timet
EBCLK pin output high pulse widtht
EBCLK pin output low pulse widtht
EBCLK pin output rise timet
EBCLK pin output fall timet
SDCLK pin output cycle timet
SDCLK pin output high pulse widtht
SDCLK pin output low pulse widtht
SDCLK pin output rise timet
SDCLK pin output fall timet
Bcyc
CH
CL
Cr
Cf
SDcyc
CH
CL
Cr
Cf
16.6--nsFigure 2.7
3.3--ns
3.3--ns
--5.0ns
--5.0ns
8.33--ns
1.0--ns
1.0--ns
--3.0ns
--3.0ns
R01DS0303EU0130 Rev.1.30Page 38 of 116
Aug 30, 2019
Page 39
S5D9 Datasheet2. Electrical Characteristics
Table 2.13Clock timing except for sub-clock oscillator (2 of 2)
ParameterSymbolMinTypMaxUnitTest conditions
EXTAL external clock input cycle timet
EXTAL external clock input high pulse widtht
EXTAL external clock input low pulse widtht
EXTAL external clock rise timet
EXTAL external clock fall timet
Main clock oscillator frequencyf
Main clock oscillation stabilization wait time
(crystal) *
1
LOCO clock oscillation frequencyf
LOCO clock oscillation stabilization wait timet
ILOCO clock oscillation frequencyf
MOCO clock oscillation frequencyF
MOCO clock oscillation stabilization wait timet
HOCO clock oscillator
Without FLLf
oscillation frequency
With FLLf
HOCO clock oscillation stabilization wait time*
2
FLL stabilization wait timet
PLL clock frequencyf
PLL clock oscillation stabilization wait timet
EXcyc
EXH
EXL
EXr
EXf
MAIN
t
MAINOSCWT
LOCO
LOCOWT
ILOCO
MOCO
MOCOWT
HOCO16
f
HOCO18
f
HOCO20
f
HOCO16
f
HOCO18
f
HOCO20
HOCO16
f
HOCO18
f
HOCO20
t
HOCOWT
FLLWT
PLL
PLLWT
41.66--nsFigure 2.8
15.83--ns
15.83--ns
--5.0ns
--5.0ns
8-24MHz-
---*1msFigure 2.9
27.852832.76837.6832kHz-
--60.4μsFigure 2.10
12.751517.25kHz-
6.889.2MHz-
--15.0μs-
15.781616.22MHz-20 ≤ Ta ≤ 105°C
17.751818.25
19.722020.28
15.711616.29-40 ≤ Ta ≤ -20°C
17.681818.32
19.642020.36
15.9551616.045-40 ≤ Ta ≤ 105°C
17.9491818.051
19.9442020.056
Sub-clock
frequency accuracy
is ±50 ppm.
--64.7μs-
--1.8ms-
120-240MHz-
--174.9μsFigure 2.11
Note 1. When setting up the main clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended
value.
After changing the setting in the MOSCCR.MOSTP bit to start main clock operation, read the OSCSF.MOSCSF flag to confirm
that it is 1, and then start using the main clock oscillator.
Note 2. This is the time from release from reset state until the HOCO oscillation frequency (fHOCO) reaches the range for guaranteed
operation.
Table 2.14Clock timing for the sub-clock oscillator
ParameterSymbolMinTypMaxUnitTest conditions
Sub-clock frequencyf
Sub-clock oscillation stabilization wait timet
SUB
SUBOSCWT
Note 1. When setting up the sub-clock oscillator, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time.
After changing the setting in the SOSCCR.SOSTP bit to start sub-clock operation, only start using the sub-clock oscillator after
the sub-clock oscillation stabilization time elapses with an adequate margin. Two times the value shown is recommended.
-32.768-kHz-
--*1sFigure 2.12
R01DS0303EU0130 Rev.1.30Page 39 of 116
Aug 30, 2019
Page 40
S5D9 Datasheet2. Electrical Characteristics
t
Cf
t
CH
t
Bcyc
, t
SDcyc
t
Cr
t
CL
EBCLK pin output, SDCLK pin output
t
EXH
t
EXcyc
EXTAL external clock input
VCC × 0.5
t
EXL
t
EXr
t
EXf
Main clock oscillator output
MOSCCR.MOSTP
Main clock
t
MAINOSCWT
LOCO clock
LOCOCR.LCSTP
t
LOCOWT
On-chip oscillator output
Figure 2.7EBCLK and SDCLK output timing
Figure 2.8EXTAL external clock input timing
Figure 2.9Main clock oscillation start timing
Figure 2.10LOCO clock oscillation start timing
R01DS0303EU0130 Rev.1.30Page 40 of 116
Aug 30, 2019
Page 41
S5D9 Datasheet2. Electrical Characteristics
PLLCR.PLLSTP
OSCSF.PLLSF
PLL clock
t
PLLWT
PLL circuit output
Sub-clock oscillator output
SOSCCR.SOSTP
t
S UBO SC
Sub-clock
Figure 2.11PLL clock oscillation start timing
Note:Only operate the PLL is operated after main clock oscillation has stabilized.
Figure 2.12Sub-clock oscillation start timing
2.3.3Reset Timing
Table 2.15Reset timing
ParameterSymbolMinTypMaxUnit
RES pulse widthPower-ont
Deep Software Standby modet
Software Standby mode, Subosc-speed
mode
All othert
Wait time after RES cancellationt
Wait time after internal reset cancellation
(IWDT reset, WDT reset, software reset, SRAM parity error
reset, SRAM ECC error reset, bus master MPU error reset, bus
slave MPU error reset, stack pointer error reset)
RESWP
RESWD
t
RESWS
RESW
RESWT
t
RESW2
1- - msFigure 2.13
0.6--msFigure 2.14
0.3--ms
200--μs
-2933μsFigure 2.13
-320408μs-
Test
conditions
R01DS0303EU0130 Rev.1.30Page 41 of 116
Aug 30, 2019
Page 42
S5D9 Datasheet2. Electrical Characteristics
VCC
RES
Internal reset signal
(low is valid)
t
RESWP
t
RESWT
RES
Internal reset signal
(low is valid)
t
RESWD
, t
RESWS
, t
RESW
t
RESWT
Figure 2.13Power-on reset timing
Figure 2.14Reset input timing
2.3.4Wakeup Timing
Table 2.16Timing of recovery from low power modes
ParameterSymbolMinTypMaxUnit
Recovery time
from Software
Standby mode*
1
Crystal
resonator
connected
to main
clock
System clock source is main
clock oscillator*
System clock source is PLL
with main clock oscillator*
2
3
oscillator
External
clock input
to main
clock
oscillator
System clock source is main
clock oscillator*
4
System clock source is PLL
with main clock oscillator*
5
System clock source is sub-clock
oscillator*
System clock source is LOCO*
System clock source is HOCO clock
oscillator*
System clock source is MOCO clock
oscillator*
8
8
6
7
Recovery time from Deep Software Standby modet
Wait time after cancellation of Deep Software Standby modet
Recovery time
from Software
Standby mode to
Snooze mode
High-speed mode when system clock
source is HOCO (20 MHz)
High-speed mode when system clock
source is MOCO (8 MHz)
t
SBYMC
t
SBYPC
t
SBYEX
t
SBYPE
t
SBYSC
t
SBYLO
t
SBYHO
t
SBYMO
DSBY
DSBYWT
t
SNZ
t
SNZ
- 2.4*
- 2.7*
- 230*
- 570*
9
9
9
9
-1.2*91.3*
-1.2*91.4*
- 240*9, *10310
- 220*
9
-0.651.0msFigure 2.16
34-35t
- 35*9, *
10
-11*914*9 μs
9
2.8*
9
3.2*
280*9μs
700*9μs
9
9
9, *10
*
9
300*
71
9, *10
*
Test
conditions
msFigure 2.15
The division
ms
ratio of all
oscillators is
1.
ms
ms
µs
µs
cyc
μsFigure 2.17
R01DS0303EU0130 Rev.1.30Page 42 of 116
Aug 30, 2019
Page 43
S5D9 Datasheet2. Electrical Characteristics
Note 1. The recovery time is determined by the system clock source. When multiple oscillators are active, the recovery time can be
determined with the following equation:
Total recovery time = recovery time for an oscillator as the system clock source + the longest oscillation stabilization time of any
oscillators requiring longer stabilization times than the system clock source + 2 LOCO cycles (when LOCO is operating) + 3
SOSC cycles (when Subosc is oscillating and MSTPC0 = 0 (CAC module stop)).
Note 2. When the frequency of the crystal is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For
other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
t
(MOSCWTCR = Xh) = t
SBYMC
(MOSCWTCR = 05h) + (t
SBYMC
MAINOSCWT
(MOSCWTCR = Xh) - t
MAINOSCWT
(MOSCWTCR =
05h))
Note 3. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
t
(MOSCWTCR = Xh) = t
SBYMC
(MOSCWTCR = 05h) + (t
SBYMC
MAINOSCWT
(MOSCWTCR = Xh) - t
MAINOSCWT
(MOSCWTCR =
05h))
Note 4. When the frequency of the external clock is 24 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h).
For other settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
t
(MOSCWTCR = Xh) = t
SBYMC
(MOSCWTCR = 00h) + (t
SBYMC
MAINOSCWT
(MOSCWTCR = Xh) - t
MAINOSCWT
(MOSCWTCR =
00h))
Note 5. When the frequency of PLL is 240 MHz (Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h). For other
settings (MOSCWTCR is set to Xh), the recovery time can be determined with the following equation:
t
(MOSCWTCR = Xh) = t
SBYMC
(MOSCWTCR = 00h) + (t
SBYMC
MAINOSCWT
(MOSCWTCR = Xh) - t
MAINOSCWT
(MOSCWTCR =
00h))
Note 6. The HOCO frequency is 20 MHz.
Note 7. The MOCO frequency is 8 MHz.
Note 8. In Subosc-speed mode, the sub-clock oscillator or LOCO continues oscillating in Software Standby mode.
Note 9. When the SNZCR.RXDREQEN bit is set to 0, the following time is added as the power supply recovery time:
STCONR.STCON[1:0] = 11b:16 µs (typical), 104 µs (maximum).
Note 10. When the SNZCR.RXDREQEN bit is set to 0, 16 μs (typical) or 18 μs (maximum) is added as the HOCO wait time.
R01DS0303EU0130 Rev.1.30Page 43 of 116
Aug 30, 2019
Page 44
S5D9 Datasheet2. Electrical Characteristics
Oscillator
(syste m clock)
ICLK
IRQ
Software Standby mode
t
SBYMC, tSBYEX, tSBYPC, tSBYPE,
t
SBYPH, tSBYSC, tSBYHO, tSBYLO
Oscillator
(not the system clock)
t
SBYOSCWTtSBYSEQ
Oscillator
(system clock)
ICLK
IRQ
Software Standby mode
t
SBYMC, tSBYEX, tSBYPC, tSBYPE,
t
SBYPH, tSBYSC, tSBYHO, tSBYLO
t
SBYOSCWT
t
SBYOSCWT
When stabilization of the system clock oscillator is slower
t
SBYSEQ
Oscillator
(not the system clock)
When stabilization of an oscillator other than the system clock is slower
Figure 2.17Recovery timing from Software Standby mode to Snooze mode
2.3.5NMI and IRQ Noise Filter
Table 2.17NMI and IRQ noise filter
ParameterSymbolMinTypMaxUnitTest conditions
NMI pulse widtht
IRQ pulse widtht
Note:200 ns minimum in Software Standby mode.
Note:If the clock source is switched, add 4 clock cycles of the switched source.
R01DS0303EU0130 Rev.1.30Page 45 of 116
Aug 30, 2019
NMIW
200--nsNMI digital filter disabledt
1
t
Pcyc
× 2*
--t
200--NMI digital filter enabledt
2
IRQW
× 3.5*
t
NMICK
200--nsIRQ digital filter disabledt
1
× 2*
t
Pcyc
--t
--t
200--IRQ digital filter enabledt
3
× 3.5*
t
IRQCK
--t
× 2 ≤ 200 ns
Pcyc
× 2 > 200 ns
Pcyc
× 3 ≤ 200 ns
NMICK
× 3 > 200 ns
NMICK
× 2 ≤ 200 ns
Pcyc
× 2 > 200 ns
Pcyc
× 3 ≤ 200 ns
IRQCK
× 3 > 200 ns
IRQCK
Page 46
S5D9 Datasheet2. Electrical Characteristics
t
NMIW
NMI
t
IRQW
IRQ
Note 1. t
Note 2. t
Note 3. t
indicates the PCLKB cycle.
Pcyc
indicates the cycle of the NMI digital filter sampling clock.
NMICK
indicates the cycle of the IRQi digital filter sampling clock.
IRQCK
Figure 2.18NMI interrupt input timing
Figure 2.19IRQ interrupt input timing
2.3.6Bus Timing
Table 2.18Bus timing (1 of 2)
Condition 1: When using the CS area controller (CSC).
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
EBCLK: High drive output is selected in the port drive capability bit in the PmnPFS register.
Others: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Condition 2: When using the SDRAM area controller (SDRAMC).
BCLK = SDCLK = 8 to 120 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.
Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.
BCLK = SDCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinMaxUnitTest conditions
Address delayt
Byte control delayt
CS delayt
ALE delay timet
RD delayt
Read data setup timet
Read data hold timet
WR/WRn delayt
Write data delayt
Write data hold timet
WAIT setup timet
WAIT hold timet
AD
BCD
CSD
ALED
RSD
RDS
RDH
WRD
WDD
WDH
WTS
WTH
-12.5nsFigure 2.20 to
-12.5ns
Figure 2.25
-12.5ns
-12.5ns
-12.5ns
12.5-ns
0- ns
-12.5ns
-12.5ns
0- ns
12.5-nsFigure 2.26
0- ns
R01DS0303EU0130 Rev.1.30Page 46 of 116
Aug 30, 2019
Page 47
S5D9 Datasheet2. Electrical Characteristics
Table 2.18Bus timing (2 of 2)
Condition 1: When using the CS area controller (CSC).
BCLK = 8 to 120 MHz, EBCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 2.7 to 3.6 V, VREFH/VREFH0 = 2.7 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
EBCLK: High drive output is selected in the port drive capability bit in the PmnPFS register.
Others: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Condition 2: When using the SDRAM area controller (SDRAMC).
BCLK = SDCLK = 8 to 120 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.
Condition 3: When using the SDRAM area controller (SDRAMC) and CS area controller (CSC) simultaneously.
BCLK = SDCLK = 8 to 60 MHz
VCC = AVCC0 = VCC_USB = VBATT = 3.0 to 3.6 V, VREFH/VREFH0 = 3.0 V to AVCC0,
VCC_USBHS = AVCC_USBHS = 3.0 to 3.6 V
Output load conditions: VOH = VCC × 0.5, VOL = VCC × 0.5, C = 15 pF
High drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinMaxUnitTest conditions
Address delay 2 (SDRAM)t
CS delay 2 (SDRAM)t
DQM delay (SDRAM)t
CKE delay (SDRAM)t
Read data setup time 2 (SDRAM)t
Read data hold time 2 (SDRAM)t
Write data delay 2 (SDRAM)t
Write data hold time 2 (SDRAM)t
WE delay (SDRAM)t
RAS delay (SDRAM)t
CAS delay (SDRAM)t
AD2
CSD2
DQMD
CKED
RDS2
RDH2
WDD2
WDH2
WED
RASD
CASD
0.86.8nsFigure 2.27 to
0.86.8ns
Figure 2.33
0.86.8ns
0.86.8ns
2.9-ns
1.5-ns
- 6.8ns
0.8-ns
0.86.8ns
0.86.8ns
0.86.8ns
R01DS0303EU0130 Rev.1.30Page 47 of 116
Aug 30, 2019
Page 48
S5D9 Datasheet2. Electrical Characteristics
Address bus/
data bus
Data read
(RD)
t
AD
EBCLK
Address bus
Address latch
(ALE)
Chip select
(CSn)
t
ALED
T
W1
T
W2
T
n1
t
AD
t
AD
t
RDS
T
n2
t
RSD
t
RSD
T
W3
T
W4
T
W5
T
end
T
a1
T
a1
T
an
Address cycleData cycle
t
RDH
t
ALED
t
CSD
t
CSD
Address bus/
data bus
Data write
(WRm)
t
AD
EBCLK
Address bus
Address latch
(ALE)
Chip select
(CSn)
t
ALED
T
W1
T
W2
T
n1
t
AD
t
AD
T
n2
t
WRD
t
WRD
T
W3
T
W4
T
W5
T
end
T
a1
T
a1
T
an
Address cycle
Data cycle
t
ALED
t
CSD
t
CSD
t
WDD
t
WDH
T
n3
Figure 2.20Address/data multiplexed bus read access timing
Figure 2.21Address/data multiplexed bus write access timing
R01DS0303EU0130 Rev.1.30Page 48 of 116
Aug 30, 2019
Page 49
S5D9 Datasheet2. Electrical Characteristics
A23 to A01
CS7 to CS0
t
AD
EBCLK
A2 3 to A00
D15 to D00 (read)
Byte strobe mode
1-write strobe mode
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
t
BCD
t
CSD
t
CSD
RD (read)
t
RSD
t
RSD
t
AD
t
RDH
t
RDS
t
AD
t
AD
t
BCD
T
W1
T
W2
T
end
T
n1
T
n2
RDON:1
CSRWAIT: 2
CSROFF: 2
CSON: 0
Figure 2.22External bus timing for normal read cycle with bus clock synchronized
R01DS0303EU0130 Rev.1.30Page 49 of 116
Aug 30, 2019
Page 50
S5D9 Datasheet2. Electrical Characteristics
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.
A23 to A01
CS7 to CS0
t
AD
EBCLK
A23 to A00
Byte strobe mode
1-write strobe mode
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mode
t
BCD
t
CSD
t
CSD
t
AD
t
AD
t
AD
t
BCD
D15 to D00 (write)
WR1, WR0, WR (write )
t
WRD
t
WRD
t
WDH
t
WDD
T
W1
T
W2
T
end
T
n1
T
n2
WRON: 1
WDON: 1 *
1
CSWWAIT: 2
WDOFF: 1 *
1
CSON:0
CSWOFF: 2
Figure 2.23External bus timing for normal write cycle with bus clock synchronized
R01DS0303EU0130 Rev.1.30Page 50 of 116
Aug 30, 2019
Page 51
S5D9 Datasheet2. Electrical Characteristics
A23 t o A01
CS7 to CS0
t
AD
EBCLK
A23 t o A00
D15 to D00 (Read)
Byte strobe mode
1-write strobe mode
BC1, BC0
Common to both byte strobe mode
and 1-write strobe mod e
t
BCD
t
CSD
t
CSD
RD (Read)
t
RSD
t
RSD
t
RDH
t
RDS
t
AD
t
BCD
T
W1TW2
T
endTpw1
T
pw2
t
AD
t
AD
t
RSD
t
RSD
t
RDH
t
RDS
t
RSD
t
RSD
t
RDH
t
RDS
T
end
T
pw1
T
pw2
T
end
T
n1
T
n2
t
AD
t
AD
t
AD
t
AD
RDON:1
CSRWAIT:2
CSROFF:2
t
RSD
t
RSD
t
RDH
t
RDS
t
AD
t
AD
CSPRWAIT:2
T
pw1
T
pw2
T
end
RDON:1
CSPRWAIT:2
RDON:1
CSPRWAIT: 2
RDON:1
CSON:0
Note 1. Always specify WDON and WDOFF as at least one EBCLK cycle.
A23 to A01
CS7 to CS0
t
AD
EBCLK
A23 to A0 0
Byte s trobe mode
1-wri te strobe mode
BC1, BC0
Comm on to both byte strobe m ode
and 1-w rite strobe m ode
t
BCD
t
CSD
t
CSD
t
AD
t
BCD
T
W1
D15 to D00 (wr ite)
WR1, WR0, W R (write)
t
WRD
t
WRD
t
WDH
t
WDD
T
W2
T
end
T
pw1
T
pw2
t
AD
t
AD
t
WRD
t
WRD
t
WDH
t
WDD
t
WRD
t
WRD
t
WDH
t
WDD
T
dw1T
end
T
pw1
T
pw2T
end
T
n1
T
n2
T
dw1
t
AD
t
AD
t
AD
t
AD
WRON:1
WDON:1*
1
CSWW AIT:2
CSPW WAIT:2
WDOFF:1*
1
CSPW WAIT:2
WDOFF:1*
1
WDOFF:1*
1
CSON:0
WRON:1
WDON:1*
1
WRON:1
WDON:1*
1
CSWOFF:2
Figure 2.24External bus timing for page read cycle with bus clock synchronized
Figure 2.25External bus timing for page write cycle with bus clock synchronized
R01DS0303EU0130 Rev.1.30Page 51 of 116
Aug 30, 2019
Page 52
S5D9 Datasheet2. Electrical Characteristics
t
WTStWTH
t
WTStWTH
CSRWAIT:3
CSWWA IT:3
EBCLK
A23 to A00
CS7 to CS0
RD (read)
WR (write)
WAIT
T
W1
T
W2
(T
end
)T
end
T
W3
T
n1
T
n2
External wait
Figure 2.26External bus timing for external wait control
R01DS0303EU0130 Rev.1.30Page 52 of 116
Aug 30, 2019
Page 53
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
t
AD2
SDCLK
A15 to A00
SDCS
AP*
1
DQMn
DQ15 to DQ00
RAS
CAS
WE
CKE
t
DQMD
(High)
Row
address
Column address
SDRAM commandACTRDPRA
t
AD2
t
CSD2
t
RASD
t
AD2
t
AD2
t
CSD2
t
RASD
t
AD2
t
AD2
t
CSD2
t
RASD
t
AD2
t
AD2
t
CSD2
t
RASD
t
WED
t
WED
t
CSD2
t
CSD2
t
CASD
t
CASD
t
RDS2tRDH2
PRA
command
Figure 2.27SDRAM single read timing
R01DS0303EU0130 Rev.1.30Page 53 of 116
Aug 30, 2019
Page 54
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
t
AD2
SDCLK
A15 to A00
SDCS
AP*
1
DQMn
DQ15 to DQ00
RAS
CAS
WE
CKE
t
DQMD
(High)
Row
address
Column address
SDRAM commandACTWRPRA
t
AD2
t
CSD2
t
RASD
t
WED
t
CASD
t
WDD2
t
AD2
t
AD2
t
CSD2
t
RASD
t
AD2
t
AD2
t
CSD2
t
RASD
t
AD2
t
AD2
t
CSD2
t
RASD
t
CSD2
t
CSD2
t
CASD
t
WED
t
WED
t
WED
t
WDH2
PRA
comma nd
Figure 2.28SDRAM single write timing
R01DS0303EU0130 Rev.1.30Page 54 of 116
Aug 30, 2019
Page 55
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
SDCLK
ACTRD RD RD RD PRA
A15 to A00
t
AD2tAD2
t
AD2
t
AD2tAD2tAD2tAD2
t
AD2
AP*
1
SDCS
RAS
CAS
WE
CKE
DQMn
DQ15 to DQ00
C1C2C3
Row
address
C0
(column addres s)
t
AD2tAD2
t
AD2tAD2
t
AD2
t
CSD2tCSD2tCSD2
t
CSD2
t
CSD2
t
RASDtRASD
t
RASDtRASD
t
RASD
t
CASD
t
CASD
t
CASD
t
WEDtWED
(High)
t
DQMD
t
DQMD
t
RDS2tRDH2
t
RDS2
t
RDH2
PRA
command
Figure 2.29SDRAM multiple read timing
R01DS0303EU0130 Rev.1.30Page 55 of 116
Aug 30, 2019
Page 56
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
ACT
WR
PRAWR WR WR
SDCLK
A15 to A00
AP*
1
SDCS
RAS
CAS
WE
CKE
DQMn
DQ15 to DQ00
t
AD2tAD2
t
AD2tAD2tAD2
t
AD2tAD2tAD2
t
AD2
t
AD2
t
AD2tAD2
t
AD2
t
CSD2tCSD2tCSD2
t
CSD2tCSD2
t
RASDtRASD
t
RASDtRASDtRASD
t
CASD
t
CASDt
CASD
t
WED
t
WED
(High)
t
DQMD
t
DQMD
t
WDD2tWDH2
t
WDD2tWDH2
C1C2C3
Row
addres s
C0
(c olumn ad dres s)
PRA
command
Figure 2.30SDRAM multiple write timing
R01DS0303EU0130 Rev.1.30Page 56 of 116
Aug 30, 2019
Page 57
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
R1
A15 to A00
SDCLK
SDCS
AP*
1
DQMn
DQ15 to DQ00
RAS
CAS
WE
CKE
SDRAM command
ACTRDRDRDRDPRAACTRD RDRDRDPRA
t
CASD
t
RASD
t
CSD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2
t
AD2 tAD2
t
AD2 tAD2
t
AD2 tAD2 tAD2 tAD2
t
AD2 tAD2
t
CSD2tCSD2
t
CSD2tCSD2tCSD2tCSD2
t
CSD2
t
RASD
t
RASDtRASDtRASDtRASD
t
CASD
t
CASD
t
RASDtRASD
t
CASD
t
DQMD
t
RDS2tRDH2
t
RDS2tRDH2
t
RDS2tRDH2
t
RDS2tRDH2
(High)
Row
addressC0(column address 0)
C1C2C3C4C5C6C7
PRA
command
PRA
command
t
WEDtWED
t
WEDtWED
Figure 2.31SDRAM multiple read line stride timing
R01DS0303EU0130 Rev.1.30Page 57 of 116
Aug 30, 2019
Page 58
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
A15 to A00
SDCLK
SDCS
AP*
1
DQMn
DQ15 to DQ00
RAS
CAS
WE
CKE
SDRAM command
(Hi- Z)
(High)
t
CASD
t
RASD
t
CSD2
t
AD2
MRS
t
AD2
t
AD2
t
AD2
t
CASD
t
RASD
t
CSD2
t
WED
t
WED
Figure 2.32SDRAM mode register set timing
R01DS0303EU0130 Rev.1.30Page 58 of 116
Aug 30, 2019
Page 59
S5D9 Datasheet2. Electrical Characteristics
Note 1. Address pins are for output of the precharge-select command (Precharge-sel) for the SDRAM.
A15 to A00
(RFS)
SDCLK
SDCS
AP*
1
DQMn
DQ15 to DQ00
RAS
CAS
WE
CKE
(Hi-Z)
t
CKED
(High)
t
CASD
t
CASD
t
CASD
t
RASDtRASD
t
RASD
t
CSD2
t
CSD2
t
CSD2
t
AD2
t
AD2
(RFA)Ts(RFX)(RFA)
t
AD2
t
AD2
t
CSD2
t
CSD2
t
CSD2
t
CSD2
t
RASD
t
RASDtRASDtRASD
t
CASD
t
CASDtCASDtCASD
t
CKED
SDRAM command
t
DQMD
t
DQMD
Figure 2.33SDRAM self-refresh timing
2.3.7I/O Ports, POEG, GPT32, AGT, KINT, and ADC12 Trigger Timing
Table 2.19I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (1 of 2)
GPT32 Conditions:
High drive output is selected in the port drive capability bit in the PmnPFS register.
AGT Conditions:
Middle drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbol MinMaxUnit
I/O portsInput data pulse widtht
POEGPOEG input trigger pulse widtht
PRW
POEW
1.5-t
3- t
Pcyc
Pcyc
Test
conditions
Figure 2.34
Figure 2.35
R01DS0303EU0130 Rev.1.30Page 59 of 116
Aug 30, 2019
Page 60
S5D9 Datasheet2. Electrical Characteristics
Port
t
PRW
POEG input trigger
t
POEW
Table 2.19I/O ports, POEG, GPT32, AGT, KINT, and ADC12 trigger timing (2 of 2)
GPT32 Conditions:
High drive output is selected in the port drive capability bit in the PmnPFS register.
AGT Conditions:
Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Test
ParameterSymbol MinMaxUnit
GPT32Input capture pulse widthSingle edget
GTICW
1.5-t
PDcyc
Dual edge2.5-
GTIOCxY output skew
(x = 0 to 7, Y= A or B)
GTIOCxY output skew
(x = 8 to 13, Y = A or B)
GTIOCxY output skew
(x = 0 to 13, Y = A or B)
OPS output skew
GTOUUP, GTOULO, GTOVUP,
Middle drive buffert
*1-4nsFigure 2.37
GTISK
High drive buffer-4
Middle drive buffer-4
High drive buffer-4
Middle drive buffer-6
High drive buffer-6
t
GTOSK
-5nsFigure 2.38
GTOVLO, GTOWUP, GTOWLO
GPT(PWM
Delay
GTIOCxY_Z output skew
(x = 0 to 3, Y = A or B, Z = A)
*2-2.0nsFigure 2.39
t
HRSK
Generation
Circuit)
AGTAGTIO, AGTEE input cyclet
AGTIO, AGTEE input high width, low widtht
AGTIO, AGTO, AGTOA, AGTOB output cyclet
ADC12ADC12 trigger input pulse widtht
*3100-nsFigure 2.40
ACYC
,
ACKWH
t
ACKWL
ACYC2
TRGW
40-ns
62.5-ns
1.5-t
Pcyc
conditions
Figure 2.36
Figure 2.41
KINTKRn (n = 00 to 07) pulse widtht
Note:t
: PCLKB cycle, t
Pcyc
: PCLKD cycle.
PDcyc
KR
250-nsFigure 2.42
Note 1. This skew applies when the same driver I/O is used. If the I/O of the middle and high drivers is mixed, operation is not
guaranteed.
Note 2. The load is 30 pF.
Note 3. Constraints on input:
When not switching the source clock: t
When switching the source clock: t
Pcyc
× 2 < t
Pcyc
× 6 < t
should be satisfied.
ACYC
should be satisfied.
ACYC
Figure 2.34I/O ports input timing
Figure 2.35POEG input trigger timing
R01DS0303EU0130 Rev.1.30Page 60 of 116
Aug 30, 2019
R01DS0303EU0130 Rev.1.30Page 61 of 116
Aug 30, 2019
Page 62
S5D9 Datasheet2. Electrical Characteristics
t
ACYC2
AGTIO, AGTEE
(input)
t
ACYC
t
ACKWL
t
ACKWH
AGTIO, AGTO,
AGTOA, AGTOB
(output)
ADTRG0,
ADTRG1
t
TRGW
KR00 to KR07
t
KR
Figure 2.40AGT input/output timing
Figure 2.41ADC12 trigger input timing
Figure 2.42Key interrupt input timing
2.3.8PWM Delay Generation Circuit Timing
Table 2.20PWM Delay Generation Circuit timing
ParameterMinTypMaxUnitTest conditions
Operation frequency80-120MHz-
Resolution-260-psPCLKD = 120 MHz
1
DNL*
Note 1. This value normalizes the differences between lines in 1-LSB resolution.
2.3.9CAC Timing
Table 2.21CAC timing
ParameterSymbolMinTypMaxUnit
CACCACREF input pulse widtht
-±2.0-LSB-
2
PBcyc
t
PBcyc
≤ tcac*
> tcac*
t
CACREF
2
4.5 × t
5 × t
cac
+ 6.5 × t
cac
+ 3 × t
PBcyc
PBcyc
--ns-
--ns
Test
conditions
R01DS0303EU0130 Rev.1.30Page 62 of 116
Aug 30, 2019
Page 63
S5D9 Datasheet2. Electrical Characteristics
t
SCKW
t
SCKr
t
SCKf
t
Scyc
SCKn
(n = 0 to 9)
Note 1. t
Note 2. t
: PCLKB cycle.
PBcyc
: CAC count clock source cycle.
cac
2.3.10SCI Timing
Table 2.22SCI timing (1)
Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.
Test
*1
ParameterSymbolMinMaxUnit
SCIInput clock cycleAsynchronoust
Clock
Scyc
4 -t
6-
Pcyc
synchronous
Input clock pulse widtht
Input clock rise timet
Input clock fall timet
Output clock cycleAsynchronoust
Clock
SCKW
SCKr
SCKf
Scyc
0.40.6t
Scyc
-5ns
-5ns
6-t
Pcyc
4-
synchronous
Output clock pulse widtht
Output clock rise timet
Output clock fall timet
Transmit data delayClock
synchronous
Receive data setup timeClock
SCKW
SCKr
SCKf
t
TXD
t
RXS
0.40.6t
Scyc
-5ns
-5ns
-25nsFigure 2.44
15-ns
synchronous
Receive data hold timeClock
t
RXH
5-ns
synchronous
conditions
Figure 2.43
Note 1. t
: PCLKA cycle.
Pcyc
Figure 2.43SCK clock input/output timing
R01DS0303EU0130 Rev.1.30Page 63 of 116
Aug 30, 2019
Page 64
S5D9 Datasheet2. Electrical Characteristics
t
TXD
t
RXStRXH
TxDn
RxDn
SCKn
n = 0 to 9
Figure 2.44SCI input/output timing in clock synchronous mode
Table 2.23SCI timing (2)
Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SCK0 to SCK9.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.
Test
ParameterSymbolMinMaxUnit
Simple
SPI
SCK clock cycle output
(master)
t
SPcyc
4 (PCLKA ≤ 60 MHz)
8 (PCLKA > 60 MHz)
SCK clock cycle input (slave) -6 (PCLKA ≤ 60 MHz)
65536t
65536
Pcyc
12 (PCLKA > 60 MHz)
SCK clock high pulse widtht
SCK clock low pulse widtht
SCK clock rise and fall timet
Data input setup timet
Data input hold timet
SS input setup timet
SS input hold timet
Data output delayt
Data output hold timet
Data rise and fall timet
SS input rise and fall timet
Slave access timet
SPCKWH
SPCKWL
, t
SPCKr
SU
H
LEAD
LAG
OD
OH
, t
Dr
Df
, t
SSLr
SSLf
SA
SPCKf
0.40.6t
0.40.6t
SPcyc
SPcyc
-20ns
33.3-nsFigure 2.46 to
33.3-ns
1- t
1- t
SPcyc
SPcyc
-33.3ns
-10-ns
-16.6ns
-16.6ns
-4 (PCLKA ≤ 60 MHz)
t
Pcyc
8 (PCLKA > 60 MHz)
Slave output release timet
REL
-5 (PCLKA ≤ 60 MHz)
t
Pcyc
10 (PCLKA > 60 MHz)
conditions
Figure 2.45
Figure 2.49
Figure 2.49
R01DS0303EU0130 Rev.1.30Page 64 of 116
Aug 30, 2019
Page 65
S5D9 Datasheet2. Electrical Characteristics
t
SPCKWH
V
OH
V
OH
V
OL
V
OL
V
OH
V
OH
t
SPCKWL
t
SPCKr
t
SPCKf
V
OL
t
SPcyc
t
SPCKWH
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
t
SPCKWL
t
SPCKr
t
SPCKf
V
IL
t
SPcyc
V
OH
= 0.7 × VCC, V
OL
= 0.3 × VCC, V
IH
= 0.7 × VCC, V
IL
= 0.3 × VCC
(n = 0 to 9)
SCKn
master select
output
SCKn
slave select input
t
Dr, tDf
t
SUtH
t
OH
t
OD
MSB INDATALSB INMSB IN
MSB OUTDATALSB OUTIDLEMSB OUT
SCKn
CKPOL = 0
output
SCKn
CKPOL = 1
output
MISOn
input
MOSIn
output
(n = 0 to 9 )
t
SUtH
t
OH
t
OD
MSB INDATALSB INMSB IN
MSB OUTDATALSB OUTI DLEMSB OUT
SCKn
CKPOL = 1
output
SCKn
CKPOL = 0
output
MISOn
input
MOSIn
output
(n = 0 to 9 )
t
Dr, tDf
Figure 2.45SCI simple SPI mode clock timing
Figure 2.46SCI simple SPI mode timing for master when CKPH = 1
Figure 2.47SCI simple SPI mode timing for master when CKPH = 0
R01DS0303EU0130 Rev.1.30Page 65 of 116
Aug 30, 2019
Page 66
S5D9 Datasheet2. Electrical Characteristics
t
Dr, tDf
t
SUtH
t
LEAD
t
TD
t
LAG
t
SA
MSB INDATALSB INMSB IN
MSB OUTDATALSB OUTMSB INMSB OUT
t
OH
t
OD
t
REL
SSn
input
SCKn
CKPOL = 0
input
SCKn
CKPOL = 1
input
MISOn
output
MOSIn
input
(n = 0 to 9 )
t
Dr, tDf
t
SA
t
OH
t
LEAD
t
TD
t
LAG
t
H
LSB OUT
(Last data)
DATAMSB OUT
MSB INDATALSB INM SB IN
LSB OUT
t
SU
t
OD
t
REL
MSB OUT
SSn
inp ut
SCKn
CKPOL = 1
inp ut
SCKn
CKPOL = 0
inp ut
MISOn
output
MOSIn
inp ut
(n = 0 to 9 )
Figure 2.48SCI simple SPI mode timing for slave when CKPH = 1
Figure 2.49SCI simple SPI mode timing for slave when CKPH = 0
Table 2.24SCI timing (3) (1 of 2)
Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinMaxUnitTest conditions
Simple IIC
(Standard mode)
SDA input rise timet
SDA input fall timet
SDA input spike pulse removal timet
Data input setup timet
Data input hold timet
SCL, SDA capacitive loadC
Sr
Sf
SP
SDAS
SDAH
b*
1
-1000nsFigure 2.50
-300ns
04 × t
IICcyc
ns
250-ns
0- ns
-400pF
R01DS0303EU0130 Rev.1.30Page 66 of 116
Aug 30, 2019
Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinMaxUnitTest conditions
Simple IIC
(Fast mode)
SDA input rise timet
SDA input fall timet
SDA input spike pulse removal timet
Data input setup timet
Data input hold timet
SCL, SDA capacitive loadC
Sr
Sf
SP
SDAS
SDAH
b*
-300nsFigure 2.50
-300ns
04 × t
IICcyc
ns
100-ns
0- ns
1
-400pF
Note:t
: IIC internal reference clock (IICφ) cycle.
IICcyc
Note 1. Cb indicates the total capacity of the bus line.
Figure 2.50SCI simple IIC mode timing
R01DS0303EU0130 Rev.1.30Page 67 of 116
Aug 30, 2019
Page 68
S5D9 Datasheet2. Electrical Characteristics
2.3.11SPI Timing
Table 2.25SPI timing
Conditions:
For RSPCKA and RSPCKB pins, high drive output is selected with the port drive capability bit in the PmnPFS register.
For other pins, middle drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinMaxUnit*1Test conditions*
SPIRSPCK clock cycleMastert
SPcyc
2 (PCLKA 60 MHz)
4 (PCLKA > 60 MHz)
4096t
Figure 2.51
Pcyc
C = 30 pF
Slave44096
RSPCK clock high
Mastert
pulse width
Slave2 × t
RSPCK clock low pulse
Mastert
width
Slave2 × t
RSPCK clock rise and
fall time
Mastert
Slave-1µs
Data input setup timeMastert
Slave5-
Data input hold timeMaster
(PCLKA division ratio
SPCKWH(tSPcyc
SPCKWL(tSPcyc
SPCKr,
t
SPCKf
SU
t
HF
t
SPCKf
t
SPCKf
-5ns
4-nsFigure 2.52 to
0-ns
) / 2 - 3
Pcyc
- t
) / 2 - 3
Pcyc
SPCKr
SPCKr
-
-
-ns
-
-ns
-
Figure 2.57
C = 30 pF
- t
set to 1/2)
Master
(PCLKA division ratio
t
H
t
Pcyc
-
set to a value other
than 1/2)
Slavet
SSL setup timeMastert
Slave6 x t
SSL hold timeMastert
Slave6 x t
Data output delayMastert
H
LEAD
LAG
OD
20-
N × t
N × t
SPcyc
Pcyc
SPcyc
Pcyc
- 10*
- 10 *
3
N ×
t
SPcyc
100*
ns
+
3
-ns
4
N ×
t
SPcyc
100*
ns
+
4
-ns
-6.3ns
Slave-20
Data output hold timeMastert
OH
0-ns
Slave0-
t
Successive
Mastert
transmission delay
Slave6 × t
MOSI and MISO rise
and fall time
Output t
Input-1μs
SSL rise and fall timeOutput t
Input-1μs
Slave access timet
Slave output release timet
TD
Dr, tDf
SSLr,
t
SSLf
SA
REL
+ 2 × t
SPcyc
Pcyc
Pcyc
-5ns
-5ns
-2 x t
-2 x t
8 ×
t
SPcyc
2 × t
+ 28
+ 28
ns
+
Pcyc
nsFigure 2.56 and
Pcyc
Pcyc
Figure 2.57
C = 30
F
P
2
Note 1. t
: PCLKA cycle.
Pcyc
R01DS0303EU0130 Rev.1.30Page 68 of 116
Aug 30, 2019
Page 69
S5D9 Datasheet2. Electrical Characteristics
RSPCKn
master select
output
RSPCKn
slave select input
t
SPCKWH
V
OH
V
OH
V
OL
V
OL
V
OH
V
OH
t
SPCKWL
t
SPCKr
t
SPCKf
V
OL
t
SPcyc
t
SPCKWH
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
t
SPCKWL
t
SPCKr
t
SPCKf
V
IL
t
SPcyc
V
OH
= 0.7 × VCC, V
OL
= 0.3 × VCC, V
IH
= 0.7 × VCC, V
IL
= 0.3 × VCC
SPI
n = A or B
t
Dr, tDf
t
SUtH
t
LEAD
t
TD
t
LAG
t
SSLr, tSSLf
t
OH
t
OD
MSB INDATALSB INMSB IN
MSB OUTDATALSB OUTIDLEMSB OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
SPI
n = A or B
Note 2. Must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as groups. For the SPI
interface, the AC portion of the electrical characteristics is measured for each group.
Note 3. N is set to an integer from 1 to 8 by the SPCKD register.
Note 4. N is set to an integer from 1 to 8 by the SSLND register.
Figure 2.51SPI clock timing
Figure 2.52SPI timing for master when CPHA = 0
R01DS0303EU0130 Rev.1.30Page 69 of 116
Aug 30, 2019
Page 70
S5D9 Datasheet2. Electrical Characteristics
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
LSB IN
t
Dr, tDf
t
SU
t
HF
t
LEAD
t
TD
t
LAG
t
SSLr, tSSLf
t
OH
t
OD
MSB IN
MSB OUTDATALSB OUTIDLEM SB OUT
MSB IN
DATA
t
HF
SPI
n = A or B
t
SUtH
t
LEAD
t
TD
t
LAG
t
SSLr, tSSLf
t
OH
t
OD
MSB IND ATALSB INMSB IN
MSB OUTDATALSB OUTIDLEMSB OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
inp ut
MOSIn
output
SPI
t
Dr, tDf
n = A or B
Figure 2.53SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2
Figure 2.54SPI timing for master when CPHA = 1
R01DS0303EU0130 Rev.1.30Page 70 of 116
Aug 30, 2019
Page 71
S5D9 Datasheet2. Electrical Characteristics
t
SU
t
HF
t
LEAD
t
TD
t
LAG
t
SSLr, tSSLf
t
OH
t
OD
MSB INDATALSB INMSB IN
MS B OUTDA TALS B OUTIDLEMS B OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
SPI
t
Dr, tDf
t
H
n = A or B
t
Dr, tDf
t
SUtH
t
LEAD
t
TD
t
LAG
t
SA
MSB IND ATALS B INMSB IN
MSB OUTD ATALSB OUTMSB INMSB OUT
t
OH
t
OD
t
REL
SSLn0
input
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
MISOn
output
MOSIn
input
SPI
n = A or B
Figure 2.55RSPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2
Figure 2.56SPI timing for slave when CPHA = 0
R01DS0303EU0130 Rev.1.30Page 71 of 116
Aug 30, 2019
Page 72
S5D9 Datasheet2. Electrical Characteristics
SSLn0
input
RSPCKn
CPOL = 0
input
RSPCKn
CPOL = 1
input
MISOn
output
MOSIn
input
t
Dr, tDf
t
SA
t
OH
t
LEAD
t
TD
t
LAG
t
H
LSB O UT
(Last data)
DATAMSB OUT
MSB INDATALSB INMSB IN
LSB OUT
t
SU
t
OD
t
REL
MSB OUT
SPI
n = A or B
t
QScyc
QSPCLK output
t
QSWH
t
QSWL
Figure 2.57SPI timing for slave when CPHA = 1
2.3.12QSPI Timing
Table 2.26QSPI timing
Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinMaxUnit*
QSPIQSPCK clock cyclet
QSPCK clock high pulse widtht
QSPCK clock low pulse widtht
Data input setup timet
Data input hold timet
QSSL setup timet
QSSL hold timet
Data output delayt
Data output hold timet
Successive transmission delayt
Note 1. t
: PCLKA cycle.
Pcyc
Note 2. N is set to 0 or 1 in SFMSLD.
Note 3. N is set to 0 or 1 in SFMSHD.
QScyc
QSWH
QSWL
Su
IH
LEAD
LAG
OD
OH
TD
248t
t
× 0.4-ns
QScyc
t
× 0.4-ns
QScyc
8- nsFigure 2.59
0- ns
(N+0.5) x
t
- 5 *
Qscyc
(N+0.5) x
t
- 5 *
Qscyc
2
3
(N+0.5) x
t
+100 *
Qscyc
(N+0.5) x
t
+100 *
Qscyc
ns
2
ns
3
-4ns
-3.3-ns
116t
Pcyc
QScyc
1
Test conditions
Figure 2.58
R01DS0303EU0130 Rev.1.30Page 72 of 116
Aug 30, 2019
Figure 2.58QSPI clock timing
Page 73
S5D9 Datasheet2. Electrical Characteristics
t
SUtH
t
LEAD
t
TD
t
LAG
t
OH
t
OD
MSB INDATALSB IN
MSB OUTDATALSB OUTIDLE
QSSL
output
QSPCLK
output
QIO0-3
input
QIO0-3
output
Figure 2.59Transmit and receive timing
2.3.13IIC Timing
Table 2.27IIC timing (1) (1 of 2)
(1) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.
ns
Test
conditions*
3
ParameterSymbol Min*
IIC
(Standard mode,
SMBus)
ICFER.FMPE = 0
SCL input cycle timet
SCL input high pulse widtht
SCL input low pulse widtht
SCL, SDA input rise timet
SCL, SDA input fall timet
SCL, SDA input spike pulse removal
SCL
SCLH
SCLL
Sr
Sf
t
SP
6 (12) × t
3 (6) × t
3 (6) × t
-1000ns
-300ns
01 (4) × t
time
SDA input bus free time when
t
BUF
3 (6) × t
wakeup function is disabled
SDA input bus free time when
wakeup function is enabled
START condition input hold time
t
BUF
t
STAH
3 (6) × t
+ 300
t
IICcyc
when wakeup function is disabled
START condition input hold time
when wakeup function is enabled
Repeated START condition input
t
STAH
t
STAS
1 (5) × t
300
1000-ns
setup time
1000-ns
0-ns
-400pF
STOP condition input setup timet
Data input setup timet
Data input hold timet
SCL, SDA capacitive loadC
STOS
SDAStIICcyc
SDAH
b
1
+ 1300-nsFigure 2.60
IICcyc
+ 300-ns
IICcyc
+ 300-ns
IICcyc
+ 300-ns
IICcyc
+ 4 × t
IICcyc
MaxUnit
IICcyc
-ns
Pcyc
+ 300-ns
+ t
+
IICcyc
Pcyc
-ns
+ 50-ns
R01DS0303EU0130 Rev.1.30Page 73 of 116
Aug 30, 2019
Page 74
S5D9 Datasheet2. Electrical Characteristics
Table 2.27IIC timing (1) (2 of 2)
(1) Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins: SDA0_B,
SCL0_B, SDA1_A, SCL1_A, SDA1_B, SCL1_B.
(2) The following pins do not require setting: SCL0_A, SDA0_A, SCL2, SDA2.
(3) Use pins that have a letter appended to their names, for instance “_A” or “_B”, to indicate group membership. For the IIC interface, the
AC portion of the electrical characteristics is measured for each group.
ns
Test
conditions*
3
ParameterSymbol Min*
IIC
(Fast mode)
SCL input cycle timet
SCL input high pulse widtht
SCL input low pulse widtht
SCL, SDA input rise timet
SCL
SCLH
SCLL
Sr
6 (12) × t
3 (6) × t
3 (6) × t
20 × (external pullup
voltage/5.5V)*
SCL, SDA input fall timet
SCL, SDA input spike pulse removal
time
SDA input bus free time when
wakeup function is disabled
SDA input bus free time when
wakeup function is enabled
START condition input hold time
when wakeup function is disabled
START condition input hold time
when wakeup function is enabled
Repeated START condition input
setup time
STOP condition input setup timet
Data input setup timet
Data input hold timet
SCL, SDA capacitive loadC
Sf
t
SP
t
BUF
t
BUF
t
STAH
t
STAH
t
STAS
STOS
SDAStIICcyc
SDAH
b
20 × (external pullup
voltage/5.5V)*
01 (4) × t
3 (6) × t
3 (6) × t
+ 300
t
IICcyc
1 (5) × t
300
300-ns
300-ns
0-ns
-400pF
1
+ 600-nsFigure 2.60
IICcyc
+ 300-ns
IICcyc
+ 300-ns
IICcyc
2
MaxUnit
300ns
300ns
2
IICcyc
+ 300-ns
IICcyc
IICcyc
+ 4 × t
-ns
Pcyc
+ 300-ns
+ t
+
IICcyc
Pcyc
-ns
+ 50-ns
Note:t
: IIC internal reference clock (IICφ) cycle, t
IICcyc
: PCLKB cycle.
Pcyc
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Note 2. Only supported for SCL0_A, SDA0_A, SCL2, and SDA2.
Note 3. Must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as groups. For the IIC
interface, the AC portion of the electrical characteristics is measured for each group.
R01DS0303EU0130 Rev.1.30Page 74 of 116
Aug 30, 2019
Page 75
S5D9 Datasheet2. Electrical Characteristics
SDA0 to SDA2
SCL0 to SCL2
V
IH
V
IL
t
STAH
t
SCLH
t
SCLL
P*
1
S*
1
t
Sf
t
Sr
t
SCL
t
SDAH
t
SDAS
t
STAS
t
SP
t
STOS
P*
1
t
BUF
Test conditions:
V
IH
= V CC × 0.7 , VIL= VCC × 0.3
V
OL
= 0.6 V, IOL = 6 mA (ICFER.FMPE = 0)
V
OL
= 0.4 V, IOL = 15 mA (IC FE R.F MPE = 1)
Sr*
1
Note 1. S, P , and Sr ind icate th e fol lowing :
S: Start condi tio n
P: Stop conditi on
Sr: Restart condition
Table 2.28IIC timing (2)
Setting of the SCL0_A, SDA0_A pins is not required with the port drive capability bit in the PmnPFS register.
Test
conditions
ns
ParameterSymbol Min*1,*
IIC
(Fast-mode+)
ICFER.FMPE = 1
SCL input cycle timet
SCL input high pulse widtht
SCL input low pulse widtht
SCL, SDA input rise timet
SCL, SDA input fall timet
SCL, SDA input spike pulse removal
time
SDA input bus free time when
SCL
SCLH
SCLL
Sr
Sf
t
SP
t
BUF
6 (12) × t
3 (6) × t
3 (6) × t
-120ns
-120ns
01 (4) × t
3 (6) × t
wakeup function is disabled
SDA input bus free time when
wakeup function is enabled
Start condition input hold time when
t
BUF
t
STAH
3 (6) × t
+ 120
t
IICcyc
wakeup function is disabled
START condition input hold time
when wakeup function is enabled
Restart condition input setup timet
Stop condition input setup timet
Data input setup timet
Data input hold timet
SCL, SDA capacitive loadC
t
STAH
1 (5) × t
120
STAS
STOS
SDAStIICcyc
SDAH
b
120-ns
120-ns
0-ns
-550pF
2
+ 240-nsFigure 2.60
IICcyc
+ 120-ns
IICcyc
+ 120-ns
IICcyc
+ 120-ns
IICcyc
+ 4 × t
IICcyc
MaxUnit
IICcyc
-ns
Pcyc
+ 120-ns
+ t
+
IICcyc
Pcyc
-ns
+ 30-ns
Note:t
: IIC internal reference clock (IICφ) cycle, t
IICcyc
: PCLKB cycle.
Pcyc
Note 1. Values in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Note 2. Cb indicates the total capacity of the bus line.
Figure 2.60I2C bus interface input/output timing
R01DS0303EU0130 Rev.1.30Page 75 of 116
Aug 30, 2019
Page 76
S5D9 Datasheet2. Electrical Characteristics
SSIBCKn
t
HC
tO, t
I
t
LC
t
RC
t
FC
2.3.14SSIE Timing
Table 2.29SSIE timing
(1) High drive output is selected with the port drive capability bit in the PmnPFS register.
(2) Use pins that have a letter appended to their names, for instance “_A” or “_B” to indicate group membership. For the SSIE interface,
the AC portion of the electrical characteristics is measured for each group.
Target specification
ParameterSymbol
SSIBCKCycleMastert
Slavet
High level/ low levelMastert
O
I
HC/tLC
80-nsFigure 2.61
80-ns
0.35-t
Slave0.35-t
Rising time/falling timeMastertRC/t
-0.15t
FC
Slave-0.15tO / t
SSILRCK/SSIFS,
SSITXD0, SSIRXD0,
SSIDATA1
Input set up timeMastert
Slave12-ns
Input hold timeMastert
SR
HR
12-nsFigure 2.63,
8- ns
Slave15-ns
Output delay timeMastert
DTR
-105ns
Slave020nsFigure 2.63,
Output delay time from
SSILRCK/SSIFS
Slavet
DTRW
-20nsFigure 2.65*
change
GTIOC1A,
AUDIO_CLK
Cyclet
High level/ low levelt
EXcyc
EXL
t
EXH
20-nsFigure 2.62
/
0.40.6t
Note 1. For slave-mode transmission, SSIE has a path, through which the signal input from the SSILRCK/SSIFS pin is used to
generate transmit data, and the transmit data is logically output to the SSITXD0 or SSIDATA1 pin.
UnitCommentsMin.Max.
O
I
/ t
O
EXcyc
I
I
Figure 2.64
Figure 2.64
1
Figure 2.61SSIE clock input/output timing
R01DS0303EU0130 Rev.1.30Page 76 of 116
Aug 30, 2019
MSB bit output delay after SSILRCKn/SSIFSn change for slave
transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0] in SSICR.
Figure 2.64SSIE data transmit and receive timing when SSICR.BCKP = 1
Figure 2.65SSIE data output delay after SSILRCKn/SSIFSn change
2.3.15SD/MMC Host Interface Timing
Table 2.30SD/MMC Host Interface signal timing
Conditions: High drive output is selected in the port drive capability bit in the PmnPFS register.
Clock duty ratio is 50%.
ParameterSymbolMinMaxUnitTest conditions*
SDCLK clock cycleT
SDCLK clock high pulse widthT
SDCLK clock low pulse widthT
SDCLK clock rise timeT
SDCLK clock fall timeT
SDCMD/SDDAT output data delayT
SDCMD/SDDAT input data setupT
SDCMD/SDDAT input data holdT
SDCYC
SDWH
SDWL
SDLH
SDHL
SDODLY
SDIS
SDIH
20-nsFigure 2.66
6.5 -ns
6.5-ns
-3ns
-3ns
-65ns
4- ns
2- ns
Note 1. Must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as groups. For
R01DS0303EU0130 Rev.1.30Page 78 of 116
Aug 30, 2019
1
Page 79
S5D9 Datasheet2. Electrical Characteristics
SDnCLK
(output)
SDnCMD/SDnDATm
(input)
SDnCMD/SDnDATm
(output)
T
SDOD LY(m ax)
T
SDIS
T
SDIH
T
SDLH
T
SDHL
T
SDCYC
T
SDWH
T
SDWL
T
SDODLY(min)
n = 0, 1 ; m = 0 to 7
Figure 2.66SD/MMC Host Interface signal timing
2.3.16ETHERC Timing
Table 2.31ETHERC timing
Conditions: ETHERC (RMII): Middle drive output is selected in the port drive capability bit in the PmnPFS register for the following pins:
ET0_MDC, ET0_MDIO.
For other pins, high drive output is selected in the port drive capability bit in the PmnPFS register.
ETHERC (MII): Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Note 3. The following pins, must use pins that have a letter (“_A”, “_B”) to indicate group membership appended to their name as
groups. For the ETHERC (RMII) Host interface, the AC portion of the electrical characteristics is measured for each group.
REF50CK0_A, REF50CK0_B, RMII0_xxxx_A, RMII0_xxxx_B
Figure 2.67REF50CK0 and RMII signal timing
Figure 2.68RMII transmission timing
Figure 2.69RMII reception timing in normal operation
R01DS0303EU0130 Rev.1.30Page 80 of 116
Aug 30, 2019
Page 81
S5D9 Datasheet2. Electrical Characteristics
PreambleDATA
REF50CK0
RMII0_CRS_DV
RMII0_RXD1,
RMII0_RXD0
SFDxxxx
RMII0_RX_ER
Tsu
Thd
t
WOLd
REF50CK0
ET0_WOL
ET0_TX_CLK
ET0_TX_EN
ET0_ETXD[3:0]
ET0_TX_ER
ET0_CRS
ET0_COL
SFDDATACRCPreamble
t
TENd
t
MTDd
t
CRSs
t
CRSh
Figure 2.70RMII reception timing when an error occurs
Figure 2.71WOL output timing for RMII
Figure 2.72MII transmission timing in normal operation
R01DS0303EU0130 Rev.1.30Page 81 of 116
Aug 30, 2019
Page 82
S5D9 Datasheet2. Electrical Characteristics
ET0_TX_CLK
ET0_TX_EN
ET0_ETXD[3:0]
ET0_TX_ER
ET0_CRS
ET0_COL
JAMPreamble
t
COLs
t
COLh
PreambleDATACRCSFD
t
RDVs
t
MRDs
t
MRDh
t
RDVh
ET0_RX_CLK
ET0_RX_DV
ET0_ERXD[3:0]
ET0_RX_ER
PreambleDATASFD
t
RERs
ET0_RX_CLK
ET0_RX_DV
ET0_ERXD[3:0]
ET0_RX_ER
xxxx
t
RERh
t
WOLd
ET0_RX_CLK
ET0_WOL
Figure 2.73MII transmission timing when a conflict occurs
Figure 2.74MII reception timing in normal operation
Figure 2.75MII reception timing when an error occurs
Figure 2.76WOL output timing for MII
R01DS0303EU0130 Rev.1.30Page 82 of 116
Aug 30, 2019
Page 83
S5D9 Datasheet2. Electrical Characteristics
t
PIXcyc
t
PIXH
t
PIXf
t
PIXL
t
PIXr
PIXCLK input
t
PCKcyc
t
PCKH
t
PCKf
t
PCKL
t
PCKr
PCKO pin output
2.3.17PDC Timing
Table 2.32PDC timing
Conditions: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
Output load conditions: V
ParameterSymbolMinMaxUnit
PDCPIXCLK input cycle timet
PIXCLK input high pulse widtht
PIXCLK input low pulse widtht
PIXCLK rise timet
PIXCLK fall timet
PCKO output cycle timet
PCKO output high pulse widtht
PCKO output low pulse widtht
PCKO rise timet
PCKO fall timet
VSYNV/HSYNC input setup timet
VSYNV/HSYNC input hold timet
PIXD input setup timet
PIXD input hold timet
Note 1. t
: PCLKB cycle.
PBcyc
= VCC × 0.5, VOL = VCC × 0.5, C = 30 pF
OH
PIXcyc
PIXH
PIXL
PIXr
PIXf
PCKcyc
PCKH
PCKL
PCKr
PCKf
SYNCS
SYNCH
PIXDS
PIXDH
Test
conditions
37-nsFigure 2.77
10-ns
10-ns
-5ns
-5ns
2 × t
(t
PCKcyc
(t
PCKcyc
PBcyc
- t
- t
PCKr
PCKr
- t
)/2 - 3-ns
PCKf
- t
)/2 - 3-ns
PCKf
-nsFigure 2.78
-5ns
-5ns
10-nsFigure 2.79
5-ns
10-ns
5-ns
Figure 2.77PDC input clock timing
Figure 2.78PDC output clock timing
R01DS0303EU0130 Rev.1.30Page 83 of 116
Aug 30, 2019
Page 84
S5D9 Datasheet2. Electrical Characteristics
PIXCLK
VSYNC
HSYNC
PIXD7 to PIXD0
t
SYNCS
t
SYNCS
t
PIXDS
t
PIXDH
t
SYNCH
t
SYNCH
1/2 Vcc
V
IHVIH
VILV
IL
t
Dcyc, tEcyc
t
WH
t
WL
LCD_EXTCLK
Figure 2.79PDC AC timing
2.3.18GLCDC Timing
Table 2.33GLCDC timing
Conditions:
LCD_CLK: High drive output is selected in the port drive capability bit in the PmnPFS register.
LCD_DATA: Middle drive output is selected in the port drive capability bit in the PmnPFS register.
ParameterSymbolMinTypMaxUnitTest conditions
LCD_EXTCLK input clock frequencyt
LCD_EXTCLK input clock low pulse widtht
LCD_EXTCLK input clock high pulse widtht
LCD_CLK output clock frequencyt
LCD_CLK output clock low pulse widtht
LCD_CLK output clock high pulse widtht
LCD data output delay timing _A or _B combinations*
_A and _B combinations*
2
3
Ecyc
WL
WH
Lcyc
LOL
LOH
t
DD
--60*
0.45-0.55t
0.45-0.55
--60*
0.4-0.6t
0.4-0.6t
-3.5-4nsFigure 2.82
-5.0-5.5
1
MHzFigure 2.80
Ecyc
1
MHzFigure 2.81
Lcyc
Lcyc
Figure 2.81
Figure 2.81
Note 1. Parallel RGB888, 666,565: Maximum 54 MHz
Note 2. Use pins that have a letter appended to their names, for instance, “_A” or “_B”, to indicate
Note 3. Pins of group “_A” and “_B” combinations are used.
Figure 2.80LCD_EXTCLK clock input timing
R01DS0303EU0130 Rev.1.30Page 84 of 116
Aug 30, 2019
Serial RGB888: Maximum 60 MHz (4x speed)
Page 85
S5D9 Datasheet2. Electrical Characteristics
t
Lcyc
t
LOL
t
LOH
t
LOF
t
LOR
LCD_CLK
LCD_CLK
t
DD
t
DD
LCD_DATA23 to
LCD_DATA00,
LCD_TCON3 to
LCD_TCON0
Output on
falling edge
Output on
rising edge
Figure 2.81LCD_CLK clock output timing
Figure 2.82Display output timing
2.4USB Characteristics
2.4.1USBHS Timing
Table 2.34USBHS low-speed characteristics for host only (USBHS_DP and USBHS_DM pin characteristics)
R01DS0303EU0130 Rev.1.30Page 89 of 116
Aug 30, 2019
Input high voltageV
Input low voltageV
Differential input sensitivityV
Differential common-mode
range
Output high voltageV
Output low voltageV
Cross-over voltageV
Rise timet
Fall timet
Rise/fall time ratiot
Output resistanceZ
DM pull-up resistance in
device controller mode
USB_DP and USB_DM pulldown resistance in host
controller mode
2.0--V-
--0.8V-
0.2--V| USB_DP - USB_DM |
0.8-2.5V-
2.8-3.6VIOH = -200 μA
0.0-0.3VIOL= 2 mA
1.3-2.0VFigure 2.93
4-20ns
4-20ns
90-111. 11%tFR/ t
LF
FF
28-44ΩUSBFS: Rs = 27 Ω included
0.900-1.575kΩDuring idle state
V
R
IH
IL
DI
CM
OH
OL
CRS
LR
LF
LR
DRV
/ t
pu
1.425-3.090kΩDuring transmission and
reception
R
pd
14.25-24.80kΩ-
Page 90
S5D9 Datasheet2. Electrical Characteristics
USB_DP,
USB_DM
t
FF
t
FR
90%
10%10%
90%
V
CRS
Observation
point
50 pF
50 pF
USB_DP
USB_DM
27
Figure 2.93USB_DP and USB_DM output timing in full-speed mode
Figure 2.94Test circuit in full-speed mode
2.5ADC12 Characteristics
Table 2.40A/D conversion characteristics for unit 0 (1 of 2)
Conditions: PCLKC = 1 to 60 MHz
ParameterMinTypMaxUnitTest conditions
Frequency1-60MHz-
Analog input capacitance--30pF-
Quantization error-±0.5-LSB-
Resolution--12Bits-
1
Permissible signal
source impedance
Max. = 1 kΩ
1
Permissible signal
source impedance
Max. = 1 kΩ
1.06
(0.4 + 0.25)*
--20μs-
0.48 (0.267)*
--μs Sampling of channel-
2
0 - 0.25
2
--μsSampling in 16 states
V-
dedicated sample-and-hold
circuits in 24 states
Sampling in 15 states
VREFH0- 0.25 V
Channel-dedicated
sample-and-hold
circuits in use
(AN000 to AN002)
Channel-dedicated
sample-and-hold
circuits not in use
(AN000 to AN002)
Conversion time*
(operation at
PCLKC = 60 MHz)
Offset error-±1.5±3.5LSBAN000 to AN002 = 0.25 V
Full-scale error-±1.5±3.5LSBAN000 to AN002 =
Absolute accuracy-±2.5±5.5LSB-
DNL differential nonlinearity error-±1.0±2.0LSB-
INL integral nonlinearity error-±1.5±3.0LSB-
Holding characteristics of sample-and hold
circuits
Dynamic range0.25-VREFH
Conversion time*
(operation at
PCLKC = 60 MHz)
Offset error-±1.0±2.5LSB-
Full-scale error-±1.0±2.5LSB-
Absolute accuracy-±2.0±4.5LSB-
DNL differential nonlinearity error-±0.5±1.5LSB-
INL integral nonlinearity error-±1.0±2.5LSB-
R01DS0303EU0130 Rev.1.30Page 90 of 116
Aug 30, 2019
Page 91
S5D9 Datasheet2. Electrical Characteristics
Table 2.40A/D conversion characteristics for unit 0 (2 of 2)
Conditions: PCLKC = 1 to 60 MHz
ParameterMinTypMaxUnitTest conditions
High-precision
channels
(AN003 to AN007)
Normal-precision
channels
(AN016 to AN020)
1
Conversion time*
(operation at
PCLKC = 60 MHz)
Offset error-±1.0±2.5LSB-
Full-scale error-±1.0±2.5LSB-
Absolute accuracy-±2.0±4.5LSB-
DNL differential nonlinearity error-±0.5±1.5LSB-
INL integral nonlinearity error-±1.0±2.5LSB-
Conversion time*
(Operation at
PCLKC = 60 MHz)
Offset error-±1.0±5.5LSB-
Full-scale error-±1.0±5.5LSB-
Absolute accuracy-±2.0±7.5LSB-
DNL differential nonlinearity error-±0.5±4.5LSB-
INL integral nonlinearity error-±1.0±5.5LSB-
Permissible signal
source impedance
Max. = 1 kΩ
Max. = 400 Ω0.40 (0.183)*
1
Permissible signal
source impedance
Max. = 1 kΩ
0.48 (0.267)*
0.88 (0.667)*2--μsSampling in 40 states
2
--μsSampling in 16 states
2
--μsSampling in 11 states
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH0 ≤ AVCC0
Note:These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, values might not fall within the indicated ranges.
The use of ports 0 as digital outputs is not allowed when the 12-Bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage is
stable.
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Note 2. Values in parentheses indicate the sampling time.
Table 2.41A/D conversion characteristics for unit 1 (1 of 2)
Conditions: PCLKC = 1 to 60 MHz
ParameterMinTypMaxUnitTest conditions
Frequency1-60MHz-
Analog input capacitance--30pF-
Quantization error-±0.5-LSB-
Resolution--12Bits-
Channel-dedicated
sample-and-hold
circuits in use
(AN100 to AN102)
Conversion time*
(operation at
PCLKC = 60 MHz)
Offset error-±1.5±3.5LSBAN100 to AN102 = 0.25 V
Full-scale error-±1.5±3.5LSBAN100 to AN102 =
Absolute accuracy-±2.5±5.5LSB-
DNL differential nonlinearity error-±1.0±2.0LSB-
INL integral nonlinearity error-±1.5±3.0LSB-
Holding characteristics of sample-and hold
circuits
Dynamic range0.25-VREFH -
1
Permissible signal
source impedance
Max. = 1 kΩ
1.06
(0.4 + 0.25)*
--20μs-
--μs Sampling of channel-
2
0.25
V-
dedicated sample-and-hold
circuits in 24 states
Sampling in 15 states
VREFH - 0.25 V
R01DS0303EU0130 Rev.1.30Page 91 of 116
Aug 30, 2019
Page 92
S5D9 Datasheet2. Electrical Characteristics
Table 2.41A/D conversion characteristics for unit 1 (2 of 2)
Conditions: PCLKC = 1 to 60 MHz
ParameterMinTypMaxUnitTest conditions
Channel-dedicated
sample-and-hold
circuits not in use
(AN100 to AN102)
High-precision
channels
(AN103, AN105 to
AN107)
Normal-precision
channels
(AN116 to AN119)
Conversion time*
(Operation at
PCLKC = 60 MHz)
Offset error-±1.0±2.5LSB-
Full-scale error-±1.0±2.5LSB-
Absolute accuracy-±2.0±4.5LSB-
DNL differential nonlinearity error-±0.5±1.5LSB-
INL integral nonlinearity error-±1.0±2.5LSB-
Conversion time*
(Operation at
PCLKC = 60 MHz)
Offset error-±1.0±2.5LSB-
Full-scale error-±1.0±2.5LSB-
Absolute accuracy-±2.0±4.5LSB-
DNL differential nonlinearity error-±0.5±1.5LSB-
INL integral nonlinearity error-±1.0±2.5LSB-
Conversion time*
(Operation at
PCLKC = 60 MHz)
Offset error-±1.0±5.5LSB-
Full-scale error-±1.0±5.5LSB-
Absolute accuracy-±2.0±7.5LSB-
DNL differential nonlinearity error-±0.5±4.5LSB-
INL integral nonlinearity error-±1.0±5.5LSB-
1
Permissible signal
source impedance
Max. = 1 kΩ
1
Permissible signal
source impedance
Max. = 1 kΩ
Max. = 400 Ω0.40
1
Permissible signal
source impedance
Max. = 1 kΩ
0.48
(0.267)*
0.48
(0.267)*
(0.183)*
0.88
(0.667)*
--μsSampling in 16 states
2
--μsSampling in 16 states
2
--μsSampling in 11 states
2
--μsSampling in 40 states
2
VCC = AVCC0 = 3.0 to 3.6 V
3.0 V ≤ VREFH ≤ AVCC0
Note:These specification values apply when there is no access to the external bus during A/D conversion. If access occurs during
A/D conversion, values might not fall within the indicated ranges.
The use of ports 0 as digital outputs is not allowed when the 12-Bit A/D converter is used.
The characteristics apply when AVCC0, AVSS0, VREFH0, VREFH, VREFL0, VREFL, and 12-bit A/D converter input voltage is
stable.
Note 1. The conversion time includes the sampling and comparison times. The number of sampling states is indicated for the test
conditions.
Note 2. Values in parentheses indicate the sampling time.
Table 2.42A/D conversion characteristics for simultaneous using of channel-dedicated sample-and-hold
circuits in unit0 and unit1
Conditions: PCLKC = 30/60 MHz
ParameterMinTypMaxTest conditions
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN000 to AN002)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN100 to AN102)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN000 to AN002)
Channel-dedicated sample-and-hold circuits in use
with continious sampling function enabled
(AN100 to AN102)
Offset error
Full-scale error
Absolute accuracy
Offset error
Full-scale error
Absolute accuracy
Offset error
Full-scale error
Absolute accuracy
Offset error
Full-scale error
Absolute accuracy
-
-
-
-
-
-
-
-
-
-
-
-
±1.5±5.0 PCLKC = 60 MHz
±2.5±5.0
Sampling in 15 states
±4.0±8.0
±1.5±5.0
±2.5±5.0
±4.0±8.0
±1.5±3.5 PCLKC = 30 MHz
±1.5±3.5
Sampling in 7 states
±3.0±5.5
±1.5±3.5
±1.5±3.5
±3.0±5.5
R01DS0303EU0130 Rev.1.30Page 92 of 116
Aug 30, 2019
Page 93
S5D9 Datasheet2. Electrical Characteristics
Integral nonlinearity
error (INL)
Actual A /D conversion
characterist ic
Ideal A/D conversion
characteristic
Analog input voltage
Offset error
Absolute accuracy
Different ial nonlinearity error (DNL)
Full -scale er ror
FFFh
000h
0
Ideal line of actual A/D
conversion charact eristic
1-LSB width f or ideal A/D
conversion characteristic
Different ial nonlinearity error (DNL)
1-LSB width f or ideal A/D
conversion charact eristic
VREFH0
(full-scale)
A/D converter
output code
Note:When simultaneously using channel-dedicated sample-and-hold circuits in unit0 and unit1, setting the ADSHMSR.SHMD bit to
1 is recommended.
Table 2.43A/D internal reference voltage characteristics
ParameterMinTypMaxUnitTest conditions
A/D internal reference voltage1.131.181.23V-
Sampling time4.15--μs-
Figure 2.95Illustration of ADC12 characteristic terms
Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of the analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog
input voltages. If the analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion
result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D
conversion characteristics.
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between the 1-LSB width based on the ideal A/D conversion
characteristics and the width of the actual output code.
R01DS0303EU0130 Rev.1.30Page 93 of 116
Aug 30, 2019
Page 94
S5D9 Datasheet2. Electrical Characteristics
Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.
Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.
R01DS0303EU0130 Rev.1.30Page 94 of 116
Aug 30, 2019
Page 95
S5D9 Datasheet2. Electrical Characteristics
tdr
Main clock
OSTDSR.OSTDF
MOCO clock
ICLK
Figure 2.96Oscillation stop detection timing
2.9POR and LVD Characteristics
Table 2.47Power-on reset circuit and voltage detection circuit characteristics
Test
ParameterSymbolMinTypMaxUnit
Voltage detection
level
Power-on reset
(POR)
DPSBYCR.DEEPCUT[1:0] =
00b or 01b
DPSBYCR.DEEPCUT[1:0] =
V
POR
2.52.62.7VFigure 2.97
1.82.252.7
11b
Voltage detection circuit (LVD0)V
Voltage detection circuit (LVD1)V
Voltage detection circuit (LVD2)V
Internal reset time Power-on reset timet
LVD0 reset timet
LVD1 reset timet
LVD2 reset timet
Minimum VCC down time*
1
Response delayt
LVD operation stabilization time (after LVD is enabled)t
Hysteresis width (LVD1 and LVD2)V
det0_1
V
det0_2
V
det0_3
det1_1
V
det1_2
V
det1_3
det2_1
V
det2_2
V
det2_3
POR
LVD0
LVD1
LVD2
t
VOFF
det
d(E-A)
LVH
2.842.943.04Figure 2.98
2.772.872.97
2.702.802.90
2.892.993.09Figure 2.99
2.822.923.02
2.752.852.95
2.892.993.09Figure 2.100
2.822.923.02
2.752.852.95
-4.5-msFigure 2.97
-0.51-Figure 2.98
-0.38-Figure 2.99
-0.38-Figure 2.100
200--μsFigure 2.97,
--200μsFigure 2.97 to
--10μsFigure 2.99,
-70-mV
conditions
Figure 2.98
Figure 2.100
Figure 2.100
Note 1. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V
R01DS0303EU0130 Rev.1.30Page 95 of 116
Aug 30, 2019
,
, and V
V
det1
for POR and LVD.
det2
POR
Page 96
S5D9 Datasheet2. Electrical Characteristics
Internal reset signal
(active-low)
VCC
t
VOFF
t
dettPOR
t
det
t
POR
t
det
V
POR
t
VOFF
t
LVD0
t
det
V
det0
VCC
Internal reset signal
(active-low)
t
det
Figure 2.97Power-on reset timing
Figure 2.98Voltage detection circuit timing (V
det0
)
R01DS0303EU0130 Rev.1.30Page 96 of 116
Aug 30, 2019
Page 97
S5D9 Datasheet2. Electrical Characteristics
t
VOFF
V
det1
VCC
t
det
t
det
t
LVD1
t
d(E-A)
LVCMPCR.LVD1E
LVD1
Comparator output
LVD1CR0.CMPE
LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0
When LVD1CR0.RN = 1
V
LVH
t
LVD1
t
VOFF
V
det2
VCC
t
det
t
det
t
LVD2
t
d(E-A)
V
LVH
t
LVD2
LVCMPCR.LVD2E
LVD2
Comparator output
LVD2CR0.CMPE
LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0
When LVD2CR0.RN = 1
Figure 2.99Voltage detection circuit timing (V
)
det1
Figure 2.100Voltage detection circuit timing (V
R01DS0303EU0130 Rev.1.30Page 97 of 116
Aug 30, 2019
)
det2
Page 98
S5D9 Datasheet2. Electrical Characteristics
VCC
t
VOFFBATT
V
DETBATT
V
BATTSW
V
BATT
VCC supplyV
BATT
supplyVCC supply
Backup power
area
2.10VBATT Characteristics
Table 2.48Battery backup function characteristics
Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, 2.7 ≤ VREFH0/VREFH ≤ AVCC0, VBATT = 1.8 to 3.6 V
ParameterSymbolMinTypMaxUnitTest conditions
Voltage level for switching to battery backupV
Lower-limit VBATT voltage for power supply
DETBATT
V
BATTSW
switching caused by VCC voltage drop
VCC-off period for starting power supply switching t
VOFFBATT
Note:The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum
value of the voltage level for switching to battery backup (V
2.502.602.70VFigure 2.101
2.70--V
200--μs
DETBATT
).
Figure 2.101Battery backup function characteristics
2.11CTSU Characteristics
Table 2.49CTSU characteristics
ParameterSymbolMinTypMaxUnitTest conditions
External capacitance connected to TSCAP pinC
TS pin capacitive loadC
Permissible output high currentΣ
tscap
base
IoH
91011nF-
--50pF-
---40mAWhen the mutual
capacitance method
is applied
2.12ACMPHS Characteristics
Table 2.50ACMPHS characteristics
ParameterSymbolMinTypMaxUnitTest conditions
Reference voltage rangeVREF0-AVCC0V-
Input voltage rangeVI0-AVCC0V-
Output delay*
Internal reference voltageVref1.131.181.23V-
Note 1. This value is the internal propagation delay.
1
Td-50100nsVI = VREF ± 100 mV
R01DS0303EU0130 Rev.1.30Page 98 of 116
Aug 30, 2019
Page 99
S5D9 Datasheet2. Electrical Characteristics
2.13PGA Characteristics
Table 2.51PGA characteristics in single mode
ParameterSymbolMinTypMaxUnit
PGAVSS input voltage rangePGAVSS0-0V
AIN0 (G = 2.000)0.050 × AVCC0-0.45 × AVCC0V
AIN1 (G = 2.500)0.047 × AVCC0-0.360 × AVCC0V
AIN2 (G = 2.667)0.046 × AVCC0-0.337 × AVCC0V
AIN3 (G = 2.857)0.046 × AVCC0-0.32 × AVCC0V
AIN4 (G = 3.077)0.045 × AVCC0-0.292 × AVCC0V
AIN5 (G = 3.333)0.044 × AVCC0-0.265 × AVCC0V
AIN6 (G = 3.636)0.042 × AVCC0-0.247 × AVCC0V
AIN7 (G = 4.000)0.040 × AVCC0-0.212 × AVCC0V
AIN8 (G = 4.444)0.036 × AVCC0-0.191 × AVCC0V
AIN9 (G = 5.000)0.033 × AVCC0-0.17 × AVCC0V
AIN10 (G = 5.714)0.031 × AVCC0-0.148 × AVCC0V
AIN11 (G = 6.667)0.029 × AVCC0-0.127 × AVCC0V
AIN12 (G = 8.000)0.027 × AVCC0-0.09 × AVCC0V
AIN13 (G = 10.000)0.025 × AVCC0-0.08 × AVCC0V
AIN14 (G = 13.333)0.023 × AVCC0-0.06 × AVCC0V
Gain errorGerr0 (G = 2.000)-1.0-1.0%
Gerr1 (G = 2.500)-1.0-1.0%
Gerr2 (G = 2.667)-1.0-1.0%
Gerr3 (G = 2.857)-1.0-1.0%
Gerr4 (G = 3.077)-1.0-1.0%
Gerr5 (G = 3.333)-1.5-1.5%
Gerr6 (G = 3.636)-1.5-1.5%
Gerr7 (G = 4.000)-1.5-1.5%
Gerr8 (G = 4.444)-2.0-2.0%
Gerr9 (G = 5.000)-2.0-2.0%
Gerr10 (G = 5.714)-2.0-2.0%
Gerr11 (G = 6.667)-2.0-2.0%
Gerr12 (G = 8.000)-2.0-2.0%
Gerr13 (G = 10.000)-2.0-2.0%
Gerr14 (G = 13.333)-2.0-2.0%
Offset errorVoff-8-8mV
Table 2.52PGA characteristics in differential mode (1 of 2)
ParameterSymbolMinTypMaxUnit
PGAVSS input voltage rangePGAVSS-0.5-0.3V
Differential input
voltage range
G = 1.500AIN-PGAVSS-0.5-0.5V
G = 2.333-0.4-0.4V
G = 4.000-0.2-0.2V
G = 5.667-0.15-0.15V
R01DS0303EU0130 Rev.1.30Page 99 of 116
Aug 30, 2019
Page 100
S5D9 Datasheet2. Electrical Characteristics
Table 2.52PGA characteristics in differential mode (2 of 2)
ParameterSymbolMinTypMaxUnit
Gain errorG = 1.500Gerr-1.0-1.0%
G = 2.333-1.0-1.0
G = 4.000-1.0-1.0
G = 5.667-1.0-1.0
2.14Flash Memory Characteristics
2.14.1Code Flash Memory Characteristics
Table 2.53Code flash memory characteristics
Conditions: Program or erase: FCLK = 4 to 60 MHz
Read: FCLK ≤ 60 MHz
ParameterSymbol
Programming time
N
100 times
PEC
Programming time
> 100 times
N
PEC
Erasure time
100 times
N
PEC
Erasure time
> 100 times
N
PEC
Reprogramming/erasure cycle*
Suspend delay during programmingt
First suspend delay during erasure in
suspend priority mode
Second suspend delay during
erasure in suspend priority mode
Suspend delay during erasure in
erasure priority mode
Forced stop commandt
Data hold time*
2
128-bytet
8-KBt
32-KBt
128-bytet
8-KBt
32-KBt
8-KBt
32-KBt
8-KBt
32-KBt
Note:
P128
P8K
P32K
P128
P8K
P32K
E8K
E32K
E8K
E32K
N
PEC
SPD
t
SESD1
t
SESD2
t
SEED
FD
t
DRP
FCLK = 4 MHz20 MHz ≤ FCLK ≤ 60 MHz
Unit
-0.7513.2-0.346.0ms
-49176-2280ms
-194704-88320ms
-0.9115.8-0.417.2ms
-60212-2796ms
-234848-106384ms
-78216-43120ms
-283864-157480ms
-94260-52144ms
-3411040-189576ms
10000*1--10000*1--Times
--264--120μs
--216--120μs
--1.7--1.7ms
--1.7--1.7ms
--32--20μs
10*2, *3--10*
2, *3
30*
--30*
2, *3
--Years
2, *3
--Ta = +85°C
Test
conditionsMinTypMaxMinTypMax
Note:The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 10,000),
erasing can be performed n times for each block. For example, when 128-byte programming is performed 64 times for different
addresses in 8-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address several times as one erasure is not enabled. (Overwriting is prohibited.)
Note 1. This is the minimum number of times to guarantee all the characteristics after reprogramming. The guaranteed range is from 1
to the minimum value.
Note 2. This indicates the minimum value of the characteristic when reprogramming is performed within the specified range.
Note 3. This result is obtained from reliability testing.
R01DS0303EU0130 Rev.1.30Page 100 of 116
Aug 30, 2019
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.