Red Lion ILS User Manual

ILS
Tel +1 (717) 767-6511
Fax +1 (717) 764-0839
www.redlion.net
INDUCTIVE LOAD SUPPRESSOR
DESCRIPTION
These devices, when installed across an inductive load, such as a contactor, solenoid or relay, will suppress transient surges during a switching. This will enhance relay life and provide increased reliability of operation.
There are two devices available, one for use in 115 volt circuits and one for use in 230 volt circuits.
Bulletin No. ILS1/2-D
Drawing No. LP0151
Released 06/13
ORDERING INFORMATION
Caution: Ensure VAC is “OFF” before installing Model ILS.
ILS SPECIFICATIONS *
DEVICE MODEL
NUMBER
ILS1 130 175 6500 80 1.0 340 V @ 100 A
ILS2 275 370 6500 150 1.0 710 V @ 100 A
RATED VOLTAGE
AC VOLTS DC VOLTS
RATED PEAK
SINGLE PULSE
TRANSIENT CURRENT (AMPS)
*NOTE: These devices will suppress most transient surges. However, if the device heats up or stops functioning after a short period of time a higher joules rated device may be required.
Do not dispose of unit in trash - Recycle
MODEL NO. DESCRIPTION PART NUMBER
ILS1 115 VAC Inductive Load Suppressor ILS11500
ILS2 230 VAC Inductive Load Suppressor ILS23000
SINGLE PULSE
TRANSIENT
ENERGY JOULES
POWER DISSIPATION
WATTS
CLAMPING VOLTAGE
VOLTS
1
INSTALLATION CONSIDERATIONS OF ELECTRONIC INSTRUMENTS & CONTROLS, IN INDUSTRIAL ENVIRONMENTS
Most electronic equipment designed for use in industrial environments has a high degree of noise immunity and protection against damage. But even the best can experience difficulties in operation if certain minimal considerations are not adhered to when installing the equipment. When relay contacts are used to switch inductive loads, such as auxiliary relays or solenoids, extremely large voltage spikes can be generated when the relay contact opens, these voltage spikes can cause pitting of the relay’s contacts, thereby reducing its usable life.
The internal functioning components of an electronic instrument operate on a low DC voltage, generally 5 V, and respond to signals as low as 1 V or less. In contrast, stray voltage spikes in excess of 100 V and some times thousands of volts can be detected in the industrial environment. These voltage spikes can be coupled from power lines that are powering equipment that contains S.C.R. circuitry, or in other ways causes rapid load changes on the AC line. These spikes can also be coupled from lines that are actuating AC or DC solenoids or actuators. In other words, any wiring in an industrial application should be considered a potential noise source.
How can these noise spikes get into the instrument? There are three major ways that noise spikes can enter the instrument.
1. Noise can enter directly, via the AC power input. It is recommended that
electronic instruments be connected to a relatively clean source of power. If
this cannot be accomplished, there are means of suppressing noise or
isolating the instrument from the noise. These consist of everything from
simple inductive load suppressors (M.O.V.’s) to constant voltage isolation
transformers, depending on the severity of power line disturbance.
2. Noise can enter via the input leads. Here, there are two modes (See Fig. 1)
by which the noise can enter. Normal mode, which means the noise enters
on the input lead, with respect to the instrument common; and common
mode, which means the noise enters on both the input and the instrument
common with respect to earth ground (power line neutral). It is recommended
that sensor input and control input wiring not be run in the same conduit or
raceways with power lines or current carrying control lines. It is also
recommended that these lines be kept away from inductive loads such as
motors, solenoids, relays and contactors. For best results, it is recommended
that two-conductor shielded cable be used to connect these inputs. The
shield should be connected to the input common at the instrument only. In
addition, the input common should only be connected to machine ground
(earth) at one point, preferably a direct connection to the input common
terminal.
3. The third way noise can enter the instrument is via the output lines. This is
one of the most overlooked sources of trouble. When an output is driving an
inductive load, such as solenoids, contactors, or relays; a large noise spike,
several times the supply voltage, is generated every time the output is turned
off. This noise spike, in addition to physically degrading the relay contact, can radiate off the output lines and into more sensitive areas of the instrument. The surest way to alleviate this situation is to suppress the noise spike. It is best to do it at the noise source (See Fig. 2), to prevent noise currents from flowing in the output lines. There are several ways to do this. If it is a DC device, then either a diode or a M.O.V. (Metal Oxide Varistor) can be placed across the device to suppress it. The greater the current load of the device, the higher wattage diode required. If it is an AC load, then a M.O.V. or capacitor and resistor in series can be used. It can be seen that the output lines can be noise sources and as such should be kept away from the instrument’s own input lines, as well as the input lines of other instruments.
In addition to the foregoing considerations, care should be taken when connecting input and output returns to the instrument’s common. When separate input and output commons are provided, they should not be mixed. When an output device return is connected to an input common (See Fig. 4), the output current will flow in the input common line. This will cause a noise voltage to be present, which can affect the operation of the instrument.
In summary, it is much easier to eliminate problems when building up a system than after it is installed.
IN
INSTRUMENT
COMM.
NORMAL MODE
IN
INSTRUMENT
COMM.
COMMON MODE
EARTH GROUND
AC NEUTRAL
Figure 1
NOISE
SOURCE
NOISE
SOURCE
NOISE SUPPRESSED AT LOAD NOISE SUPPRESSED AT INSTRUMENT
NOISE CURRENT
OUT
INSTRUMENT
COMM.
SUPPRESSION
DEVICE
LOAD
INSTRUMENT
Figure 2
DC DEVICE AC DEVICE
AC
SUPPLY
AC
SUPPLY
C
R
RELAY
CONTACT
INSTRUMENT
RELAY
CONTACT
INSTRUMENT
+
DC
SUPPLY
DC
SUPPLY
-
DIODE
-+
LOAD
LOADMOV
RELAY
CONTACT
INSTRUMENT
RELAY
CONTACT
INSTRUMENT
Figure 3
OUT
COMM.
LOAD
LOADMOV
SUPPRESSION DEVICE
NOISE CURRENT
IMPROPER GROUND CONNECTIONS
+V
OUT COMM.
IN
NOISE
CURRENT
IN COMM.
LOAD
SENSOR
Figure 4
LOAD
Loading...