RayTek RAYCMLTJM Operating Instructions Manual

Page 1
CM
Infrared Sensor
Operating Instructions
Rev. B 06/2011
51101
Page 2
Page 3
The device complies with the requirements of the European Directives.
EC – Directive 2004/108/EC (EMC)
Page 4
Contacts
Raytek Corporation Worldwide Headquarters
Santa Cruz, CA USA Tel: +1 800 227 – 8074
(USA and Canada only)
+1 831 458 – 3900 Fax: +1 831 458 – 1239
solutions@raytek.com
European Headquarters Berlin, Germany
Tel: +49 30 4 78 00 80
raytek@raytek.de
France
info@raytek.fr
United Kingdom
ukinfo@raytek.com
Fluke Service Center Beijing, China Tel: +86 10 6438 4691
info@raytek.com.cn
Internet: http://www.raytek.com/
Thank you for purchasing this Raytek product. Register today at
www.raytek.com/register to receive the latest updates, enhancements and
software upgrades!
© Raytek Corporation.
Raytek and the Raytek Logo are registered trademarks of Raytek Corporation.
All rights reserved. Specifications subject to change without notice.
Page 5
WARRANTY
The manufacturer warrants this product to be free from defects in material and workmanship under normal use and service for a period of two years from date of purchase except as hereinafter provided. This warranty extends only to the original purchaser. This warranty shall not apply to fuses or batteries. Factory calibration is warranted for a period of one year. The warranty shall not apply to any product that has been subject to misuse, neglect, accident, or abnormal conditions of operation or storage. Should the manufacturer be unable to repair or replace the product within a reasonable
amount of time, purchaser’s exclusive remedy shall be a refund of the
purchase price upon return of the product.
In the event of failure of a product covered by this warranty, the manufacturer will repair the instrument when it is returned by the purchaser, freight prepaid, to an authorized Service Facility within the applicable warranty period, provided the manufacturer’s examination discloses to its satisfaction that the product was defective. The manufacturer may, at its option, replace the product in lieu of repair. With regard to any covered product returned within the applicable warranty period, repairs or replacement will be made without charge and with return freight paid by the manufacturer, unless the failure was caused by misuse, neglect, accident, or abnormal conditions of operation or storage, in which case repairs will be billed at a reasonable cost. In such a case, an estimate will be submitted before work is started, if requested.
THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. THE MANUFACTURER SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.
Page 6
Content
1 Safety Instructions ................................................................................................. 8
2 Description ............................................................................................................ 10
3 Technical Data ...................................................................................................... 11
3.1 PARAMETERS .................................................................................................... 11
3.2 OPTICAL DIAGRAM .......................................................................................... 13
3.3 SCOPE OF DELIVERY ......................................................................................... 14
4 Basics ...................................................................................................................... 15
4.1 MEASUREMENT OF INFRARED TEMPERATURE ................................................ 15
4.2 DISTANCE AND SPOT SIZE ............................................................................... 16
4.3 AMBIENT TEMPERATURE ................................................................................. 16
4.4 ATMOSPHERIC QUALITY .................................................................................. 16
4.5 ELECTRICAL INTERFERENCE ............................................................................ 17
4.6 EMISSIVITY OF TARGET OBJECT ....................................................................... 17
5 Install and Operation .......................................................................................... 18
5.1 DIMENSIONS OF SENSOR .................................................................................. 18
5.2 MECHANICAL INSTALLATION ......................................................................... 19
5.3 CABLE ............................................................................................................... 19
5.4 WIRE CONNECTION ......................................................................................... 20
5.4.1 Analog output ........................................................................................... 20
5.4.2 Alarm output ............................................................................................. 20
5.5 LED INDICATOR AND BLINK MODE ................................................................. 21
6 Software ................................................................................................................. 22
7 Accessories ............................................................................................................ 23
7.1 OVERVIEW ........................................................................................................ 23
7.2 FIXED MOUNTING BRACKET............................................................................ 24
7.3 ADJUSTABLE MOUNTING BRACKET ................................................................ 25
7.4 AIR PURGE COLLAR ......................................................................................... 26
7.5 RIGHT ANGLE MIRROR .................................................................................... 27
7.6 PROTECTIVE WINDOW ..................................................................................... 28
8 Programming ........................................................................................................ 29
8.1 GENERAL COMMAND STRUCTURE .................................................................. 29
8.2 DEVICE SETUP .................................................................................................. 30
8.2.1 Temperature Calculation ........................................................................... 30
8.2.2 Post Processing ......................................................................................... 30
Page 7
8.3 DYNAMIC DATA ............................................................................................... 30
8.4 DEVICE CONTROL ............................................................................................ 31
8.4.1 Output for target temperature .................................................................. 31
8.4.2 Analog output, scaling ............................................................................. 31
8.4.3 Alarm output ............................................................................................ 31
8.4.4 Factory default values ............................................................................... 32
9 Maintenance .......................................................................................................... 33
9.1 TROUBLESHOOTING MINOR PROBLEMS .......................................................... 33
9.2 ERROR CODES ................................................................................................... 34
9.3 AUTOMATIC ERROR INDICATION .................................................................... 34
9.4 CLEANING THE LENS ....................................................................................... 34
10 Appendix ............................................................................................................. 36
10.1 DETERMINATION OF EMISSIVITY .................................................................... 36
10.2 TYPICAL EMISSIVITY VALUES ......................................................................... 36
10.3 COMMAND SET .............................................................................................. 43
Page 8
Safety Instructions
CM Rev. B 06/2011 8
1 Safety Instructions
This document contains important information, which should be kept at all times with the instrument during its operational life. Other users of this instrument should be given these instructions with the instrument. Eventual updates to this information must be added to the original document. The instrument can only be operated by trained personnel in accordance with these instructions and local safety regulations.
Acceptable Operation
This instrument is intended only for the measurement of temperature. The instrument is appropriate for continuous use. The instrument operates reliably in demanding conditions, such as in high environmental temperatures, as long as the documented technical specifications for all instrument components are adhered to. Compliance with the operating instructions is necessary to ensure the expected results.
Unacceptable Operation
The instrument should not be used for medical diagnosis.
Replacement Parts and Accessories
Use only original parts and accessories approved by the manufacturer. The use of other products can compromise the operational safety and functionality of the instrument.
Instrument Disposal
Disposal of old instruments should be handled according to professional and environmental regulations as electronic waste.
Page 9
Safety Instructions
9 Rev. B 06/2011 CM
Operating Instructions
The following symbols are used to highlight essential safety information in the operation instructions:
Helpful information regarding the optimal use of the instrument.
Warnings concerning operation to avoid instrument damage and personal injury.
Pay particular attention to the following safety instructions.
Incorrect use of 110 / 230 V electrical systems can result in electrical hazards and personal injury. All instrument parts supplied with electricity must be covered to prevent physical contact and other hazards at all times.
Page 10
Description
CM Rev. B 06/2011 10
2 Description
The CM miniature infrared sensors are high performance noncontact infrared temperature measurement systems. They measure the amount of energy emitted from an object accurately and repeatedly and convert the energy into temperature signal.
The following analog outputs are available by different model:
0 to 5 Volt J thermocouple K thermocouple
The LED on the back of CM shows the status of units.
Page 11
Technical Data
11 Rev. B 06/2011 CM
3 Technical Data
3.1 Parameters
Temperature range -20 to 500°C (-4 to 932°F)
Spectral response 8 to 14 μm
Thermal Parameters
Accuracy1 (Digital and Voltage) ± 1.5% of reading or ± 2°C2
whichever is greater
Accuracy3 (TC) ± 1.5% of reading ±2°C or ± 4°C4
whichever is greater
Repeatability (Digital and Voltage) ± 0.5% of reading or ± 1°C
whichever is greater
Repeatability (TC) ± 0.5% of reading ± 1°C or ± 2°C
whichever is greater
Response time (95%) 150 ms
Temperature resolution 0.1°C (0.2°F)
Emissivity 0.100 to 1.100 (software controlled)
Transmissivity 0.100 to 1.000 (software controlled)
Electrical Parameters
Power 24 VDC ± 20% @ 20 mA
Analog Output 0 to 5 V or TCJ or TCK output
Digital Output Two-way RS232 digital output
9600 baud, 8 data bits, 1 stop bit, no parity, no flow control
1
for ambient temperature 23°C (73°F) ± 5 K , e = 0.95 and calibration geometry
2
± 3.5°C for Tmeas < 0°C (32°F)
3
for ambient temperature 23°C (73°F) ± 5 K , e = 0.95 and calibration geometry
4
± 5.5°C for Tmeas < 0°C (32°F)
Page 12
Technical Data
CM Rev. B 06/2011 12
Alarm Output Transistor, 24 VDC @ 20 mA
RS232 TxD and Alarm output share one single wire. Either can be selected by DataTemp software or ASCII command!
General Parameters
Environmental rating IP65 (NEMA-4x)
Ambient operating range -10 to 70°C (14 to 158°F)
Storage temperature -20 to 85°C (-4 to 185°F)
Dimensions Ø ¾”, length: 94 mm (3.7 in)
Weight < 200 g (7.1 oz)
Page 13
Technical Data
13 Rev. B 06/2011 CM
3.2 Optical Diagram
The optical diagrams indicate the target spot diameter at any given distance between the target object and the sensing head. All target spot sizes indicated in the optical diagrams are based on 90% energy.
Optical resolution 13:1 @ 150 mm (90% energy)
Figure 1Optical diagram
Calculating the Target Spot Size
To calculate the target spot size from two known points within an optical diagram the following formula can be used:
Sx = unknown diameter of target spot Sn = smallest known diameter of target spot Sf = greatest known diameter of target spot Dx = distance to unknown target spot Dn = distance to smaller known target spot Df = distance to greater known target spot
Page 14
Technical Data
CM Rev. B 06/2011 14
3.3 Scope of Delivery
Sensor 2 mounting nuts Support software CD Quickstart Guide
Page 15
Basics
15 Rev. B 06/2011 CM
4 Basics
4.1 Measurement of Infrared Temperature
Everything emits an amount of infrared radiation according to its surface temperature. The intensity of the infrared radiation changes according to the temperature of the object. Depending on the material and surface properties, the emitted radiation lies in a wavelength spectrum of approximately 1 to 20
μm. The intensity of the infrared radiation (”heat radiation”) is dependent on
the material. For many substances this material-dependent constant is known. It is referred in Section 10.2 Typical Emissivity Values on page 36.
Infrared thermometers are optical-electronic sensors. These sensors are able to
detect ”radiation of heat”. Infrared thermometers are made up of a lens, a
spectral filter, a sensor, and an electronic signal-processing unit. The task of the spectral filter is to select the wavelength spectrum of interest. The sensor converts the infrared radiation into an electrical parameter. The connected electronics generate electrical signals for further analysis. As the intensity of the emitted infrared radiation is dependent on the material, the required emissivity can be selected on the sensor.
The biggest advantage of the infrared thermometer is its ability to measure in the absence of contact. Consequently, surface temperatures of moving or hard to reach objects can easily be measured.
Page 16
Basics
CM Rev. B 06/2011 16
4.2 Distance and Spot Size
The desired spot size on the target will determine the maximum measurement distance and the necessary focus length of the optical module. To avoid erroneous readings the target spot size must contain the entire field of view of the sensor. Consequently, the sensor must be positioned so the field of view is the same as or smaller than the desired target size.
Figure 2: Proper Sensor Placement
4.3 Ambient Temperature
The sensing head should work under ambient operating range in accordance to section 3.1 Parameters, page 11.
4.4 Atmospheric Quality
In order to prevent damage to the lens and erroneous readings, the lens should always be protected from dust, smoke, fumes, and other conta­minants. For this purpose an air purge collar is available. You should only use oil free, clean “instrument“ air.
Target greater than spot size
Target equal to spot size
Target smaller than spot size
Best
Good
Incorrect
Background
Page 17
Basics
17 Rev. B 06/2011 CM
4.5 Electrical Interference
To minimize electrical or electromagnetic interference, follow these precautions:
Mount the sensor as far away as possible from possible sources of
interference such as motorized equipment producing large step load changes.
Ensure a fully insulated installation of the sensor (Avoid ground
loops!).
Make sure the shield wire in the sensor cable is earth grounded at one
location.
4.6 Emissivity of Target Object
Determine the emissivity of the target object as described in appendix 10.1
Determination of Emissivity. If emissivity is low, measured results could be
falsified by interfering infrared radiation from background objects (such as heating systems, flames, fireclay bricks, etc. close beside or behind the target object). This type of problem can occur when measuring reflecting surfaces and very thin materials such as plastic films and glass.
This measuring error when measuring objects with low emissivity can be reduced to a minimum if particular care is taken during installation, and the sensing head is shielded from these reflecting radiation sources.
Page 18
Install and Operation
CM Rev. B 06/2011 18
5 Install and Operation
5.1 Dimensions of Sensor
All sensors and accessories are supplied with 3/4-16 UNF-2A or M18x1 thread.
Figure 3: Dimensions of sensor
Page 19
Install and Operation
19 Rev. B 06/2011 CM
5.2 Mechanical Installation
All sensors come with a 1.0 m (3.3 ft) cable or 3.0 m (9.8 ft) and 2 mounting nuts. You can mount the sensor in brackets or cutouts of your own design, or you can use the mounting bracket accessories.
Figure 4: Sensor with fixed mounting bracket
5.3 Cable
The color code of the cable and 6 conductors are shown in the following table:
8
Outer Jacket
1
Power +
2
Power -**
3
RxD
4 TxD/ Alarm
5 TC+/ mV+
6 TC-/ mV-
7 Shield
J
brown
orange
black
blue
violet
white
red
K
yellow
yellow
red
0 to 5 V
grey
yellow
brown
** Die RS232’s Ground must be connected to Power-
Table 1: Sensor Wiring Color Code
Page 20
Install and Operation
CM Rev. B 06/2011 20
5.4 Wire Connection
Figure 5: Connection diagram
5.4.1 Analog output
There are 3 models available: 0 to 5 V, TCJ, TCK. Minimum load impedance for 0 to 5 V output should be 50 kΩ. Inner impedance of TC output circuit is 100 Ω.
5.4.2 Alarm output
RS232 TxD and alarm output share one single wire. Either can be selected by the DataTemp software or RS232 command. When alarm mode is active, the
CM can receive command from a PC via RS232, but can’t respond to the PC.
RS232 TxD can work normally after the alarm output is switched off by command K=0, see Section 10.3 Command Set. If unit is set by DataTemp software, alarm output is valid only after the unit is restarted.
Page 21
Install and Operation
21 Rev. B 06/2011 CM
5.5 LED indicator and blink mode
You can easily find the unit health status by the following LED blink mode:
status
LED-blink
LED-status
normal
slow blink 1
alarm
fast blink
out of range
double blink
○○○○○ ○○○○○
unstable*
slow blink 2
○○○ ○○○ ○○○ ○○○
alarm fault**
always lighting
* unstable is typically caused by head ambient temperature fluctuations due to initial warm up or thermal shock situations. ** alarm fault indicates the input of sensor’s alarm port is over current.
Table 2: LED blink mode
Page 22
Software
CM Rev. B 06/2011 22
6 Software
Raytek DataTemp Multidrop software allows the configuration and monitoring of CM sensor operating parameters, such as:
Emissivity Transmissivity Averaging Peak hold Valley hold Temperature scale of analog output Alarm temperature value 1 point field calibration offset Alarm output
Refer to DataTemp software online help for more detail.
Notes for CM sensors:
1. Use the Temperature unit in Degree C for field calibration, if in
Degree F, there is no effect.
2. CM shares the alarm line with the RS232 TxD and the alarm function
will be temporarily turned off and changed to RS232 mode when connecting to the DataTemp software. After re-powering the sensor without connecting to the DataTemp software, the alarm mode will function normally.
Page 23
Accessories
23 Rev. B 06/2011 CM
7 Accessories
7.1 Overview
Fixed Mounting Bracket XXXCIACFB
Adjustable Mounting Bracket XXXCIADJB
Air Purge Collar XXXCMACAP
metrical: XXXCMACAPM
Right Angle Mirror XXXCMACRA
metrical: XXXCMACRAM
Protective Window XXXCMACPW
metrical: XXXCMACPWM
Figure 6: Overview of available accessories
Adjustable Mounting Bracket
Fixed Mounting Bracket
Air Purge Collar
Protective Window
Right Angle Mirror
Page 24
Accessories
CM Rev. B 06/2011 24
7.2 Fixed Mounting Bracket
Figure 7: Dimensions of Fixed Mounting Bracket
Page 25
Accessories
25 Rev. B 06/2011 CM
7.3 Adjustable Mounting Bracket
Figure 8: Dimensions of Adjustable Mounting Bracket
Page 26
Accessories
CM Rev. B 06/2011 26
7.4 Air Purge Collar
The Air Purge Collar is used to keep dust, moisture, airborne particles, and vapors away from the lens. It can be mounted before or after the bracket. It has the push-in fitting. A 4 mm (0.16 in) outside diameter plastic tubing is recommended to connect the fitting. Air flows into the fitting and out the front aperture. The pressure of air should be 0.6 to 1 bar (8.7 to 15 PSI). Clean, oil free air is recommended.
Figure 9: Dimensions of Air Purge Collar
Page 27
Accessories
27 Rev. B 06/2011 CM
7.5 Right Angle Mirror
The Right Angle Mirror is used to turn the field of view by 90° against the sensor axis. It is recommended when space limitations or excessive radiation do not allow for direct alignment of the sensor to the target. The mirror must be installed after the bracket and after the Air Purge Collar and screwed in fully. In dusty or contaminated environments, air purging is required to keep the mirror surface clean.
Figure 10: Dimension of Right Angle Mirror
When using the Right Angle Mirror, adjust the emissivity or transmissivity settings downward by 5%. For example, for an object with an emissivity of 0.65, you adjust the value down to
0.62. Or, you can keep the emissivity 0.65 and adjust the transmissivity from 1.0 to 0.95. This correction accounts for energy losses in the mirror.
Page 28
Accessories
CM Rev. B 06/2011 28
7.6 Protective Window
The protective window comes with Silicon as window material.
Determination of transmissivity of an unknown protective window:
If transmissivity of the measuring screen is not indicated on the data sheet, you can also determine the transmissivity yourself. Please proceed as follows:
1. Measure the temperature of the target object with the sensing head,
without using the protective window. Note correct setting of emissivity.
2. Insert the protective window in the sensing head.
3. Adjust the transmissivity in the software until the same temperature is
displayed, as it was determined without the protective window.
Page 29
Programming
29 Rev. B 06/2011 CM
8 Programming
8.1 General Command Structure
Requesting a parameter
?E<CR> “?“ is the command for “Request“ “E“ is the parameter requested
<CR> (carriage return, 0Dh) is closing the request.
Remark: It is possible to close with <CR> <LF> (0Dh 0Ah), but <LF> (0Ah) is not necessary.
Setting a parameter (Poll Mode)
The parameter will be stored into the device flash memory.
E=0.975<CR> “E“ is the parameter to be set “=“ is the command for “set a parameter“ “0.975“ is the value for the parameter <CR> (carriage return, 0Dh) is closing the request
Remark: It is possible to close with <CR> <LF> (0Dh 0Ah), but <LF> (0Ah) is not necessary.
Setting a parameter without writing it into the device flash memory.
This function is for test purposes only.
E#0.975<CR> “E“ is the parameter to be set
“#“ is the command for “set parameter without writing it into the Flash“
“0.975“ is the value for the parameter
<CR> (carriage return, 0Dh) is closing the request.
Remark: It is possible to close with <CR> <LF> (0Dh 0Ah), but <LF> (0Ah) is not necessary.
Device response format:
!E0.975<CR><LF> “!“ is the parameter for “Answer“
“E“ is the Parameter “0.975“ is the value for the parameter
Page 30
Programming
CM Rev. B 06/2011 30
<CR> <LF> (0Dh 0Ah) is closing the answer.
Error message: *Syntax Error “*“ is the character for “Error“.
8.2 Device Setup
8.2.1 Temperature Calculation
U=C Physical Unit for the temperature value E=0.950 Emissivity setting XG=1.000 Setting for transmission
For the calculation of the temperature value, it is possible to set an offset (relative number to be added to the temperature value).
DO=-0.3 Offset adjustment -0.3 for the temperature signal
8.2.2 Post Processing
The following parameters can be set to determine the post-processing mode
P=5 maximum hold, hold time: 5 sec F=12.5 minimum hold, hold time: 12.5 sec G=10 averaging, average time (90%): 10 sec
8.3 Dynamic Data
To request the dynamic data, the following commands are available:
?T Target temperature ?I Detector ambient temperature ?XJ Temperature of Thermocouple cold end (only valid for TC) ?Q energy value of the target temperature
To check for resets (e.g. power shut down) use the command XI. Notice, after a reset the unit is re- initialized.
?XI asks for the reset status !XI0 no reset occurred !XI1 a reset occurred, new initialization of the unit
XI=0 sets the reset status back to 0
Page 31
Programming
31 Rev. B 06/2011 CM
8.4 Device Control
8.4.1 Output for target temperature
The output can provide a predefined value of full analog range when signal output is 0 5 V.
?XO Request for the output mode O=25 output of a constant voltage at 1.25 V (25% of 0 5 V) O=255 switches back to the temperature controlled output
8.4.2 Analog output, scaling
According to the temperature range of the model, it is possible to set the maximum voltage value according to a temperature value (e.g., the maximum voltage 5 V shall represent 200°C). The same setting is possible for the minimum value.
H=500 the maximum voltage value is set to 500°C L=0 the minimum voltage value is set to 0°C
You cannot set these values for thermocouple output. The mini­mum span between the maximum / minimum settings is 20 K.
8.4.3 Alarm output
The alarm output can be set to N.C. (relay contacts are closed while in home position) or N.O. (relay contacts are open while in home position). The alarm output can be activated by:
Internal sensing head temperature Target temperature
K=0 alarm output disabled K=4 Sensor head ambient temperature lower than threshold, relay
N.O.
K= 2, XS=125.3 Target temperature lower than threshold, relay N.O.,
threshold setting to 125.3(if U=C is set)
Page 32
Programming
CM Rev. B 06/2011 32
8.4.4 Factory default values
It is possible to reset the unit to the original factory default values.
XF factory default values will be set
Page 33
Maintenance
33 Rev. B 06/2011 CM
9 Maintenance
Our customer service representatives are always at your disposal for any questions you might have. This service includes any support regarding the proper application of your infrared measuring system, calibration or the solution to customer-specific solutions as well as repair.
In many cases your problems will be application-specific and can possibly be solved over the telephone. So, if you need to return equipment to us, please contact our Service Department before doing so. See phone and fax numbers at the beginning of this document.
9.1 Troubleshooting Minor Problems
Symptom
Possible Cause
Solution
No Output
Cable disconnected
Check Cable Connections
Erroneous Temperature
Cable damaged
Check Cable
Erroneous Temperature
Field of View Obstructed
Remove the Obstruction
Erroneous Temperature
Lens Dirty
Clean the Lens
Erroneous Temperature
Wrong Emissivity Setting
Correct the Setting (Appendix)
Temperature Fluctuates
Wrong Signal Processing
Correct Peak, Valley, or Average Settings
Temperature Fluctuates
Sensor not grounded
Check Wiring/Grounding
Table 3: Troubleshooting
Page 34
Maintenance
CM Rev. B 06/2011 34
9.2 Error Codes
Output
Error Code Description
T>>>>>>
Temperature over range
T<<<<<<
Temperature under range
Table 4: Error Codes (via RS232)
9.3 Automatic Error Indication
The automatic error indication (alarm output) shall warn the user and guarantee a secure output in the event of a system error. In the first place, however, its task is to switch the system off in case of a faulty setup or a defect in the sensing head or in the electronic circuits.
Never rely exclusively on the automatic error indication when monitoring critical heating processes. It is strongly recommended to take additional safety measures.
9.4 Cleaning the Lens
Care should be taken to keep the lens clean. Any foreign matter on the lens will affect the accuracy of the measurements. Be sure to take care when cleaning the lens. Please observe the following:
1. Blow off loose particles with clean air.
2. Gently brush off remaining particles with a soft camel hair brush.
3. To remove any severe contamination, use a clean, soft cloth
dampened with distilled water. In any case, do not scratch the lens surface!
For fingerprints or other grease, use any of the following:
Denatured alcohol Ethanol Kodak lens cleaner
Page 35
Maintenance
35 Rev. B 06/2011 CM
Apply any of the above to the lens. Wipe gently with a clean, soft cloth until you see colors on the lens surface, then allow to air dry. Never wipe the surface dry - this may scratch the surface. If the lens is contaminated with silicones (e.g. from hand creams), clean it carefully using Hexane. Allow the lens to air dry.
Do not use any ammonia or any cleaners containing ammonia to clean the lens. This may result in permanent damage to the lens’ surface.
Page 36
Appendix
CM Rev. B 06/2011 36
10 Appendix
10.1 Determination of Emissivity
Emissivity is a measure of an object’s ability to absorb and emit infrared
energy. It can have a value between 0 and 1.0. For example, a mirror has an emissivity of 0.1, while the so-called “Blackbody“ reaches an emissivity value of 1.0. If a higher than actual emissivity value is set, the output will read low, provided the target temperature is above its ambient temperature. For example, if you have set 0.95 and the actual emissivity is 0.9, the temperature reading will be lower than the true temperature.
An object’s emissivity can be determined by one of the following methods:
1. Determine the actual temperature of the material using an RTD (PT100),
a thermocouple, or any other suitable method. Next, measure the object’s temperature and adjust emissivity setting until the correct temperature value is reached. This is the emissivity for the measured material.
2. For relatively low temperatures (up to 260, 500), place a plastic
sticker on the object to be measured. This sticker should be large enough
to cover the target spot. Next, measure the stickers temperature using an
emissivity setting of 0.95. Finally, measure the temperature of an adjacent area on the object and adjust the emissivity setting until the same temperature is reached. This is the emissivity for the measured material.
3. If possible, apply flat black paint to a portion of the surface of the object.
The emissivity of the paint must be above 0.98. Next, measure the temperature of the painted area using an emissivity setting of 0.98. Finally, measure the temperature of an adjacent area on the object and adjust the emissivity until the same temperature is reached. This is the emissivity for the measured material.
10.2 Typical Emissivity Values
The following table provides a brief reference guide for determining emissivity and can be used when one of the above methods is not practical.
Page 37
Appendix
37 Rev. B 06/2011 CM
Emissivity values shown in the table are only approximate, since several parameters may affect the emissivity of a material. These include the following:
1. Temperature
2. Angle of measurement
3. Geometry (plane, concave, convex)
4. Thickness
5. Surface quality (polished, rough, oxidized, sandblasted)
6. Spectral range of measurement
7. Transmissivity (e.g. thin films plastics)
Page 38
Appendix
CM Rev. B 06/2011 38
METAL
Material
Emissivity/ Spectral range
3.9 µm
5 µm
8 – 14 µm
Aluminum
Unoxidized
0.02-0.1
Oxidized
0.2-0.4
Alloy A3003, Oxidized
0.3
Roughened
0.1-0.3
Polished
0.02-0.1
Lead
Polished
0.05-0.1
Rough
0.4
Oxidized
0.2-0.6
Chromium
0.02-0.2
Iron Oxidized
0.5-0.9
Unoxidized
0.05-0.2
Rusted
0.5-0.7
Molten
Iron, Cast
Oxidized
0.6-0.95
Unoxidized
0.2
Molten
0.2-0.3
Iron, Wrought
Dull
0.9
Gold
0.01-0.1
Haynes
Alloy
0.3-0.8
Inconel
Oxidized
0.7-0.95
Sandblasted
0.3-0.6
Electropolished
0.15
Copper
Polished
0.03
aufgeraut
0.05-0.1
Page 39
Appendix
39 Rev. B 06/2011 CM
METAL
Material
Emissivity/ Spectral range
3.9 µm
5 µm
8 – 14 µm
oxidiert
0.4-0.8
Magnesium
0.02-0.1
Brass
Polished
0.01-0.05
Burnished
0.3
Oxidized
0.5
Molybdenum
Oxidized
0.2-0.6
Unoxidized
0.1
Monel (Ni-Cu)
0.1-0.14
Nickel
Oxidized
0.2-0.5
Electrolytic
0.05-0.15
Platinum
Black
0.9
Mercury
0.05-0.15
Silver
0.02
Steel
Cold-Rolled
0.7-0.9
Ground Sheet
0.4-0.6
Polished Sheet
0.1
Molten
Oxidized
0.7-0.9
Stainless
0.1-0.8
Roughened
0.05-0.1
Oxidized
0.4-0.8
Titanium
Polished
0.05-0.2
Oxidized
0.5-0.6
Tungsten
0.03
Polished
0.03-0.1
Zinc
Oxidized
0.1
Page 40
Appendix
CM Rev. B 06/2011 40
METAL
Material
Emissivity/ Spectral range
3.9 µm
5 µm
8 – 14 µm
Polished
0.02
Tin (Unoxidized)
0.05
Table 5: Typical Emissivity Values
Page 41
Appendix
41 Rev. B 06/2011 CM
NON-METAL MATERIAL
Material
Emissivity/ Spectral range
3.9 µm
5 µm
8 – 14 µm
Asbestos
0.95
Asphalt
0.95
Basalt
0.7
Concrete
0.95
Ice
0.98
Paint (non-al.)
0.9-0.95
Gypsum
0.8-0.95
Glass
Plate
0.85
„Gob“
Rubber
0.95
Wood, Natural
0.9-0.95
Limestone
0.98
Karborund
0.9
Ceramic
0.95
Gravel
0.95
Carbon
Unoxidized
0.8-0.9
Graphite
0.7-0.8
Clay
0.95
Paper (any color)
0.95
Plastic (opaque, over 20 mils)
0.95
Salz
0.9-0.98
Sand
0.9
Snow
0.9
Cloth
0.95
Water
0.93
Table 6: Typical Emissivity Values Non- Metal Material
Page 42
Appendix
CM Rev. B 06/2011 42
To optimize surface temperature measurements, consider the following guidelines:
Determine the object emissivity using the instrument that will also be
used for the measurements.
Avoid reflections by shielding the object from surrounding
temperature sources.
For higher temperature objects, use instruments with the shortest
wavelength possible.
For translucent materials, such as plastic foils or glass, assure that the
background is uniform and lower in temperature than the object.
You should place the sensor perpendicular to the object’s surface (if
possible) or at any angle from the target up to 30°!
Page 43
Appendix
43 Rev. B 06/2011 CM
10.3 Command Set
P ... Poll, B ... Burst, S ... Set, N ... Notification
FORMATSET
Description
Char
Format
P S Example
Poll parameter
?
?X
?T
Set parameter
=
X=...
E=0.85
Set without Save
#
X#
E#0.85
FORMAT RESPONSE
Description
Char
Format
P S Example
Acknowledge
!
!XXX
!T020.0
Error message
* *Syntax error
COMMAND LIST
Description
Char
Format
P S Legal values
Factory default
Device adjustment gain**
DG
n.nnnn
0.8000 … 1.2000
1
Device adjustment offset **
DO
nn.n
-20.0 … +20.0°C
0
Device special Info.
DS
XXX
z.B. !DSRAY
DSRAY
Emissivity internal
E
n.nnn
0.100 … 1.100
0.95
Valley hold time
F
nnn.n
0.000 … 998.9 s (999 = infinite)
0
Average time
G
nnn.n
0.100 ... 999 s
0
Top of mV range
H
nnnn.n
0 … 500°C
500
Sensor/head ambient
I
nnn.n
In current scale (°C/°F)
Relay alarm output control
K n
0=Alarm Off 1=Alarm On 2= Target, normal open 3= Target, normal close 4= Head, normal open
5= Head, normal close 6= Over current protect*
Bottom of mV range
L
nnnn.n
-20 … 480°C
-20
Output voltage***
O
nnn
0-100=% of full range 255=controlled by unit
Page 44
Appendix
CM Rev. B 06/2011 44
Peak hold time
P
nnn.n
0.100~998.9 secs (999=infinite)
0
Power
Q
nnnnn
Target temperature
T
nnnn.n
In current scale (°C / °F)
Temperature unit
U
X
C / F
C
Device bottom range limit
XB
nnnn.n
-20°C
-20
Restore factory defaults
XF
Transmission
XG
n.nnn
0.100 … 1.000
1
Device high range limit
XH
nnnn.n
500°C
500
Sensor initialization
XI
n
1 = after RESET, 0 = if XI = 0
TC cold end temperature
XJ
nnn.n
In current scale (°C / °F)
Analog output mode
XO
n
1 = 0 ... 5 V 2 = TCJ 3 = TCK
FW revision
XR e.g. 1.000
Setpoint/Relay function
XS
nnnn.n
-17.2 … 497.2°C
497.2
Unit identification
XU
nnnn.n
e.g.!CMLTV
Serial number
XV e.g. 00012345
* Poll only
** only available when unit is in °C mode
*** only available when unit is in mV mode
Table 7: Command set
Loading...