WARNING: Improper installation, adjustment, alteration, service or maintenance can
cause property damage, personal injury, exposure to hazardous materials* or loss of
life. Review the information in this manual carefully. *This unit contains materials that
have been identified as carcinogenic, or possibly carcinogenic, to humans.
FOR YOUR SAFETY: Do not store or use gasoline or other flammable vapors and
liquids or other combustible materials in the vicinity of this or any other appliance. To
do so may result in an explosion or fire.
WHAT TO DO IF YOU SMELL GAS:
•Do not try to light any appliance.
•Do not touch any electrical switch; do not use any phone in your building.
•Immediately call your gas supplier from a neighbor's phone. Follow the gas
supplier's instructions.
•If you cannot reach your gas supplier, call the fire department.
Installation and service must be performed by a qualified installer, service agency or
the gas supplier.
This manual should be maintained in legible condition and kept adjacent to the heater or in a safe place for future
reference.
Product Receipt5
Model Identification5
Ratings and Certifications5
Installations at Elevation5
Component Locations6
General Information6
Time/Temperature Relationships
in Scalds7
GENERAL SAFETY7
INSTALLATION8
Installation Codes8
Equipment Base8
Clearances8
Combustion and Ventilation Air9
Conventional Combustion Air Supply11
Water Piping12
Hydronic Heating13
Gas Supply16
Electrical Power Connections17
Field Wiring Connection19
Venting23
Venting Installation Tips25
Venting Configurations25
Outdoor Installation31
Controls32
Operating Instructions35
WIRING DIAGRAM40
START-UP41
Pre Start-up41
Pre Start-up Check41
Initial Start-up41
Preparation42
Start-Up42
OPERATION44
Lighting Instructions44
To Turn Off Gas to Appliance45
XFyre Error Codes45
Heater Errors45
Heater Faults45
Inside Air Contamination52
Important Instructions for the
Commonwealth of Massachusetts53
WARRANTY54
START-UP CHECKLIST55
3
WARNINGS
Pay Attention to These Terms
ndicates the presence of immediate hazards which will cause severe
DANGER:
I
personal injury, death or substantial property damage if ignored.
WARNING:
CAUTION:
NOTE:
DANGER: Make sure the gas on which the boiler
will operate is the same type as that specified on the
boiler rating plate.
WARNING: Should overheating occur or the gas
supply valve fail to shut, do not turn off or disconnect
the electrical supply to the boiler. Instead, shut off
the gas supply at a location external to the boiler.
WARNING: Do not use this boiler if any part has
been under water. Immediately call a qualified
service technician to inspect the boiler and to
replace any part of the control system and any gas
control which has been under water.
Indicates the presence of hazards or unsafe practices which could cause
severe personal injury, death or substantial property damage if ignored.
Indicates the presence of hazards or unsafe practices which could cause
minor personal injury or product or property damage if ignored.
Indicates special instructions on installation, operation, or maintenance which
are important but not related to personal injury hazards.
WARNING - CALIFORNIA PROPOSITION
65: This product contains chemicals known to the
State of California to cause cancer, birth defects or
other reproductive harm.
CAUTION: If this boiler is to be installed above
radiation level, it must be provided with a low water
cut-off device at the time of boiler installation.
CAUTION: This boiler requires forced water
circulation when the burner is operating. See
minimum and maximum flow rates. Severe damage
will occur if the boiler is operated without proper
water flow circulation.
WARNING: To minimize the possibility of improper
operation, serious personal injury, fire, or damage to
the boiler:
•Always keep the area around the boiler free of
combustible materials, gasoline, and other
flammable liquids and vapors.
•Boiler should never be covered or have any
blockage to the flow of fresh air to the boiler.
WARNING: Risk of electrical shock. More than one
disconnect switch may be required to de-energize
the equipment before servicing.
CAUTION: If this boiler is to be installed in a
negative or positive pressure equipment room, there
are special installation requirements. Consult factory
for details.
NOTE: Minimum 18 AWG, 105°C, stranded wire
must be used for all low voltage (less than 30 volts)
external connections to the unit. Solid conductors
should not be used because they can cause
excessive tension on contact points. Install conduit
as appropriate. All high voltage wires must be the
same size (105°C, stranded wire) as the ones on the
unit or larger.
4
BEFORE INSTALLATION
Model Identification
Raypak strongly recommends that this manual be reviewed thoroughly before installing your XFyre heater.
Please review the General Safety information before
installing the heater. Factory warranty does not apply
to heaters that have been improperly installed or operated. (Refer to the warranty at the back of this
manual.) Installation and service must be performed
by a qualified installer, service agency or gas supplier.
If, after reviewing this manual, you still have questions
which this manual does not answer, please contact
your local Raypak representative or visit our website at
www.raypak.com.
Thank you for purchasing a Raypak product. We hope
you will be satisfied with the high quality and durability
of our equipment.
Product Receipt
WARNING:PumpmotorsshouldNOTbe
supported by any type of stand or support from
above due to possible misalignment of pump and
motor which may occur.
On receipt of your heater it is suggested that you visually check for external damage to the shipping crate. If
the crate is damaged, make a note to that effect on the
Bill of Lading when signing for the shipment. Next,
remove the heater from the shipping packaging.
Report any damage to the carrier immediately.
The model identification number and heater serial
umber are found on the heater rating plate located on
n
the upper rear jacket panel of the heater. The model
umber will have the form H7-850 or similar depend-
n
ing on the heater size and configuration. The letter(s)
in the first group of characters identifies the application
(H = Hydronic Heating, W = Hot Water). The number
which follows identifies the firing mode (7 = electronic
modulation). The second group of characters identifies
the size of the heater (three numbers representing the
approximate MBTUH input), and, where applicable, a
letter, indicating the manufacturing series.
Ratings and Certifications
Standards:
•ANSI Z21.13 · CSA 4.9 - latest edition, Gas-Fired
Hot Water Boilers
All Raypak heaters are National Board Registered,
and design-certified and tested by the Canadian
Standards Association (CSA) for the U.S. and Canada.
Each heater is constructed in accordance with Section
IV of the American Society of Mechanical Engineers
(ASME) Heater Pressure Vessel Code and bears the
ASME “H” stamp. This heater also complies with the
latest edition of the ASHRAE 90.1 Standard.
On occasion, items are shipped loose. Be sure that
you receive the correct number of packages as indicated on the Bill of Lading.
Claims for shortages and damages must be filed with
the carrier by consignee. Permission to return goods
must be received from the factory prior to shipping.
Goods returned to the factory without an authorized
Returned Goods Receipt number will not be accepted.
All returned goods are subject to a restocking charge.
When ordering parts, you must specify the model and
serial number of the heater. When ordering under warranty conditions, you must also specify the date of
installation.
Purchased parts are subject to replacement only
under the manufacturer’s warranty. Debits for defective replacement parts will not be accepted. Parts will
be replaced in kind only per Raypak’s standard warranties.
WARNING: Altering any Raypak pressure vessel
by installing replacement heat exchangers or any
ASME parts not manufactured and/or approved by
Raypak will instantly void the ASME and CSA ratings
of the vessel and any Raypak warranty on the
vessel. Altering the ASME or CSA ratings of the
vessel also violates national, state, and local
approval codes.
Installations at Elevation
Rated inputs are suitable for up to 2000 ft elevation
without de-rating. Consult your local representative or
the factory for installations at altitudes over 2000 ft
above sea level. No hardware changes are required to
the heaters for installations up to 10,000 ft (adjustments may be required).
5
Component Locations
Model 300 shown. Component locations may vary slightly in larger models.
Fig. 1: Component Locations — Sides
Fig. 2: Component Locations — Top
General Information
Model
No.
300300601-1/2”3/4”3/4”44
5005001002”1”1”44
8508501702”1-1/4” 1-1/4”66
Fig. 3: Component Locations — Rear
MBTUH
Input
Max. Min.NPFlue Intake
Water
conn.
(NPT)
Table A: Basic Data
Gas conn.
(NPT)
6
Vent Size
(inches)
Water temperature over 125°F can
cause instant severe burns or death
from scalds.
Children, disabled, and elderly are
at highest risk of being scalded.
See instruction manual before setting temperature at water heater.
Feel water before bathing or showering.
Temperature limiting valves are
available, see manual.
Water
Temp.
Time to Produce Serious
Burn
120°FMore than 5 minutes
125°F1-1/2 to 2 minutes
130°FAbout 30 seconds
135°FAbout 10 seconds
140°FLess than 5 seconds
145°FLess than 3 seconds
150°FAbout 1-1/2 seconds
155°FAbout 1 second
Table courtesy of T he Shriners Burn Institute
Model No.
3002.9
5004.2
8505.8
Table B: Heater Water Volume
Heater Water Volume
(gallons)
GENERAL SAFETY
To meet commercial hot water use needs, the high
limit safety control on this water heater will shut off the
main gas valve before the outlet temperature reaches
210°F. However, water temperatures over 125°F can
cause instant severe burns or death from scalds.
When supplying general purpose hot water, the recommended initial setting for the temperature control is
125°F.
Safety and energy conservation are factors to be considered when setting the water temperature on the
thermostat. The most energy-efficient operation will
result when the temperature setting is the lowest that
satisfies the needs of the application.
Water temperature over 125°F can cause instant
severe burns or death from scalds. Children, disabled
and elderly are at highest risk of being scalded.
•Feel water before bathing or showering.
•Temperature limiting valves are available.
NOTE: When this heater is supplying general
purpose hot water for use by individuals, a
thermostatically controlled mixing valve for reducing
point of use water temperature is recommended to
reduce the risk of scald injury. Contact a licensed
plumber or the local plumbing authority for further
information.
Maximum water temperatures occur just after the
heater’s burner has shut off. To determine the water
temperature being delivered, turn on a hot water
faucet and place a thermometer in the hot water
stream and read the thermometer.
CAUTION: Hotter water increases the risk of
scalding! There is a hot water scald potential if the
thermostat is set too high.
Time/Temperature
Relationships in Scalds
The following chart details the relationship of water
temperature and time with regard to scald injury and
may be used as a guide in determining the safest
water temperature for your applications.
Table C: Time to Produce Serious Burn
7
INSTALLATION
Clearances
Installation Codes
Installations must follow these codes:
•Local, state, provincial, and national codes, laws,
regulations and ordinances
•Standard for Controls and Safety Devices for
Automatically Fired Boilers, ANSI/ASME CSD-1,
(CSD-1) when required
•For Canada only: CAN/CSA B149 Natural Gas
and Propane Installation Code and CSA C22.1
C.E.C. Part 1 (C22.1)
Equipment Base
The heater must be mounted on a level, structurally
sound surface. The heater is approved for installation
on a combustible surface but must NEVER be
installed on carpeting. Gas-fueled equipment installed
in enclosed parking garages must be located at least
18 in. above the floor.
CAUTION: The boiler must be level to allow
condensate to drain properly from the heat
exchanger.
Indoor Installations
Heater
Side
Floor*0”0”
Rear24”24”
Right Side0”0”
Left Side0”0”
Top12”24”
FrontOpen24”
Vent1”1”
*DO NOT install on carpeting.
Table D: Clearances — Indoor Installations
When installed according to the listed minimum clearances from combustible construction, these heaters
can be serviced without removing permanent structural construction around the heater. However, for ease
of servicing, we recommend a clearance of at least 24
in. in front, at least 24 in. on the rear and 24 in. above
the top of the heater. This will allow the heater to be
serviced in its installed location without movement or
removal of the heater.
Min. Clearances
rom Combustible
f
Surfaces
Recommended
ervice
S
Clearances
CAUTION: This boiler should be located in an area
where water leakage will not result in damage to the
area adjacent to the appliances or to the structure.
When such locations cannot be avoided, it is
recommended that a suitable catch pan, adequately
drained, be installed under the appliance. The pan
must not restrict air flow.
In addition, the heater shall be installed such that the
gas ignition system components are protected from
water (dripping, spraying, rain, etc.) during appliance
operation or service (circulator replacement, control
replacement, etc.).
If the heater needs to be secured to the ground, use
the holes in the anchoring legs on the heater.
Service clearances less than the minimum may
require removal of the heater to service either the heat
exchanger or the burner components. In either case,
the heater must be installed in a manner that will
enable the heater to be serviced without removing any
structure around the heater.
Outdoor Installations
These heaters are design-certified for outdoor installation. Heaters must not be installed under an overhang
unless clearances are in accordance with local installation codes and the requirements of the gas supplier.
Three sides must be open in the area under the overhang. Roof water drainage must be diverted away
from heaters installed under overhangs.
8
24”
SERVICE
CLEARANCE
24”
SERVICE
CLEARANCE
24”
SERVICE
CLEARANCE
Heater
Side
Min. Clearances
from Combustible
urfaces
S
Recommended
Service
learances
C
Rear24”24”
Right Side0”0”
Left Side0”0”
TopUnobstructed24”
FrontOpen24”
Vent
Termination
Table E: Clearances — Outdoor Installations
12”12”
Combustion and Ventilation Air
NOTE: Use of this boiler in construction areas
where fine particulate matter, such as concrete or
dry-wall dust, is present may result in damage to the
boiler that is not covered by the warranty. If operated
in a construction environment, a clean source of
combustion air must be provided directly to the
boiler.
Indoor Units
This heater must be supplied with sufficient quantities
of non-contaminated air to support proper combustion
and equipment ventilation. Combustion air can be supplied via conventional means where combustion air is
drawn from the area immediately surrounding the
heater, or via direct vent, where combustion air is
drawn directly from outside. All installations must comply with the requirements of the NFGC (U.S.) and
B149 (Canada), and all local codes.
Venting not shown for clarity. Heater must be vented per
instructions in this manual
Fig. 4: Minimum Clearances from Combustible
Surfaces — Indoor and Outdoor Installations
CAUTION:Combustionairmustnotbe
contaminated by corrosive chemical fumes which
can damage the boiler and void the warranty. (See
the Appendix.)
NOTE: It is recommended that the intake vent be
insulated in cold climates to minimize sweating.
9
U.S. Installations
1
Canadian Insta llations
2
A
Clearance above grade, veranda, porch,
deck, or balcony
1 ft (30 cm)1 ft (30 cm)
B
Clearance to window or door that may be
opened
4 ft (1.2m) below or to side
of opening; 1 foot (30 cm)
above opening
3 ft (91 cm)
CClearance to permanently closed window**
D
Vertical clearance to ventilated soffit located
above the terminal within a horizontal distance of 2 ft (61cm) from the centerline of the
terminal
5 ft (1.5m)*
EClearance to unventilated soffit**
FClearance to outside corner**
GClearance to inside corner6 ft (1.83m)*
H
Clearance to each side of center line ex-
tended above meter/regulator assembly
*
3 ft (91 cm) within a height
15 ft above the me-
ter/regulator assembly
IClearance to service regulator vent outlet*6 ft (1.83m)
J
Clearance to non-mechanical air supply inlet
to building or the combustion air inlet to any
other appliance
4 ft (1.2m) below or to side
of opening; 1 ft (30 cm)
above opening
3 ft (91 cm)
KClearance to mechanical air supply inlet
3 ft (91 cm) above if within
10 ft (3m) horizontally
6 ft (1.83m)
L
Clearance above paved sidewalk or paved
driveway located on public property
7 ft (2.13m)
7 ft (2.13m) t
M
Clearance under veranda, porch, deck or
balcony
*12 in. (30 cm) TT
1
In accordance with the current ANSI Z223.1/NFP A 5 4 National Fuel Gas Code
2
In accordance with the current CAN/CGA-B149 Installation Codes
tVent terminal shall not terminat e directly above sidewalk or paved driveway located between 2 single family dwellings that serves
both dwellings
TTPermitted only if veranda, porc h, deck, or balcony is fully open on a minimu m of two sides beneath the floor and top of terminal and
underside of ver anda, porch, deck or balcony is greater than 1 ft (30c m)
*Clearances in accordance with local installation codes and the requirements of the gas supplier
Fig. 5: Minimum Clearances from Vent/Air Inlet Terminations – Indoor and Outdoor Installations
Table F: Vent/Air Inlet Termination Clearances
10
Combustion Air Filter
echanical room. All ducting must be self-supported.
m
This heater is supplied with an integral combustion air
filter. This filter will reduce the amount of particulates
that pass through the combustion system and heat
exchanger but will not protect against chemical inside
air contamination (See Appendix). The filter must be
checked periodically to verify that adequate combustion air is being supplied to the heater. See the
Maintenance section of this manual for information on
checking the filter and establishing service intervals.
Direct Vent
If outside air is drawn through the intake pipe directly
to the unit for combustion:
1. Install the combustion air ducting kit.
2. Install combustion air direct vent in accordance
with Fig. 23 (horizontal) or Fig. 24 (vertical) of this
manual.
3. Provide adequate ventilation of the space occupied by the heater(s) by an opening(s) for
ventilation air at the highest practical point communicatingwiththeoutdoors.Thetotal
cross-sectional area shall be at least 1 in.2of free
area per 20,000 BTUH (111 mm2per kW) of total
input rating of all equipment in the room when the
opening is communicating directly with the outdoors or through vertical duct(s). The total
cross-sectional area shall be at least 1 in.2of free
area per 10,000 BTUH (222 mm2per kW) of total
input rating of all equipment in the room when the
opening is communicating with the outdoors
through horizontal duct(s).
4. In cold climates, and to mitigate potential freezeup, Raypak highly recommends the installation of
a motorized sealed damper on the air intake to
prevent the circulation of cold air through the
heater during the non-operating hours.
TruSeal™ Combustion Air
In addition to the 4 previous steps, combustion air may
be ducted directly to the heater by using PVC, CPVC
or sealed single-wall galvanized ducting. The duct will
attach directly to the air collar located on the rear of the
heater when the combustion air ducting kit is installed,
using three or four sheet metal screws (not supplied)
equally positioned around the circumference of the
duct. The screws and duct connection point must be
sealed with RTV (not supplied). TruSeal is generally
used when damaging contaminants are present in the
CAUTION:UseTruSealcombustionairif
amaging airborne contaminants are or may be
d
present in the boiler area. See the Appendix of this
manual regarding air contamination.
Conventional Combustion Air
Supply
U.S. Installations
All Air from Inside the Building
The confined space shall be provided with TWO permanent openings communicating directly with an
additional room(s) of sufficient volume so that the combined volume of all spaces meets the criteria for a
room large in comparison (NFGC). The total input of all
gas utilization equipment installed in the combined
space shall be considered in making this determination. Each opening shall have a minimum free area of
2
per 1,000 BTUH (2,225 mm2per kW) of the total
1 in.
input rating of all gas utilization equipment in the confined space, but not less than 100 in.2(645 cm2). One
opening shall commence within 12 in. (305 mm) of the
top, and one opening shall commence within 12 in.
(305 mm) of the bottom of the enclosure. The minimum dimension of air openings shall be not less than
3 in. (76 mm) in any direction.
All Air from Outdoors
The confined space shall communicate with the outdoors in accordance with one of the methods below.
The minimum dimension of air openings shall not be
less than 3 in. (76 mm) in any direction. Where ducts
are used, they shall be of the same cross-sectional
area as the net free area of the openings to which they
connect.
1. Two permanent openings, one commencing
within 12 in. (305 mm) of the top, and one commencing within 12 in. (305 mm) of the bottom of
the enclosure, shall be provided. The openings
shall communicate directly, or by ducts, with the
outdoors or spaces (crawl or attic) that freely communicate with the outdoors.
a. Where directly communicating with the out-
doors or where communicating to the
outdoors through vertical ducts, each open-ing shall have a minimum free area of 1 in.
per 4,000 BTUH (550 mm2per kW) of total
input rating of all equipment in the enclosure.
2
11
b. Where communicating with the outdoors
through horizontal ducts, each opening shall
have a minimum free area of 1 in.2per 2,000
TUH (1,100 mm
B
2
er kW) of total input rat-
p
ing of all equipment in the enclosure.
2. One permanent opening, commencing within 12
n. (305 mm) of the top of the enclosure, shall be
i
permitted where the equipment has clearances of
at least 1 in. (25 mm) from the sides and back and
6 in. (152 mm) from the front of the appliance. The
opening shall directly communicate with the outdoors or shall communicate through a vertical or
horizontal duct to the outdoors or spaces that
freely communicate with the outdoors, and shall
have a minimum free area of:
2
a. 1 in.
per 3,000 BTUH (740 mm2per kW) of
the total input rating of all equipment located in
the enclosure, and
b. Not less than the sum of the areas of all vent
connectors in the confined space.
WARNING: Do not use the “one permanent
opening” method if the equipment room is under
negative pressure conditions.
Canadian Installations
and terminated 18 in. (450 mm) from the floor, but
not near piping. This air supply opening requirement shall be in addition to the air opening for
ventilation air required in 1. (above).
WARNING: Care must be taken to ensure that the
equipment room is not under negative pressure
conditions.
3. For heaters when air supply is provided by natural
air flow from outdoors for a power burner and
there is no draft regulator, drafthood or similar flue
gas dilution device installed in the same space, in
addition to the opening for ventilation air required
in 1., there shall be a permanent air supply opening(s) having a total cross-sectional area of not
less than 1 in.2for each 30,000 BTUH (74 mm2per
kW) of total rated input of the burner(s), and the
location of the opening(s) shall not interfere with
the intended purpose of the opening(s) for ventilation air referred to in 1. This opening(s) can be
ducted to a point not more than 18 in. (450 mm)
nor less than 6 in. (152 mm) above the floor level.
The duct can also “goose neck” through the roof.
The duct is preferred to be straight down 18 in.
(450 mm) from the floor, but not near piping.
4. Refer to the B149 Installation Code for additional
information.
CAUTION: All combustion air must be drawn from
the air outside of the building; the mechanical equipment room must communicate directly with the
outdoors.
1. Ventilation of the space occupied by the heater
shall be provided by an opening(s) for ventilation
air at the highest practical point communicating
with the outdoors. The total cross-sectional area of
such an opening(s) shall be at least 10% of the
area required in 2. and 3. (below), but in no case
shall the cross-sectional area be less than 10 in.
(65 cm2).
2. For heaters using a barometric damper in the vent
system, there shall be a permanent air supply
opening(s) having a cross section area of not less
2
than 1 in.
to and including 1 million BTUH, plus 1 in.
14,000 BTUH (160 mm
per 7,000 BTUH (320 mm2per kW) up
2
2
per kW) in excess of 1
per
million BTUH. This opening(s) shall be either
located at or ducted to a point not more than 18 in.
(450 mm) nor less than 6 in. (152 mm) above the
floor level. The duct can also “goose neck” through
the roof. The duct is preferred to be straight down
Water Piping
General
The heater should be located so that any water leaks
will not cause damage to the adjacent area or structures.
CAUTION: This boiler requires forced water
circulation when the burner is operating. See Table
G and Table H for minimum and maximum flow rates
2
and water pump selection. The pump must be
interlocked with the boiler to prevent heater
operation without water circulation.
NOTE: Minimum pipe size for in/out connections is
1-1/2” NPT for model 300 and 2” NPT for models 500
and 850. Verify proper flow rates and ∆T as instructed in this manual.
12
Relief Valve Installation and Piping
To perform hydrostatic test:
WARNING: Pressure relief valve discharge piping
must be piped near the floor and close to a drain to
eliminate the potential of severe burns. Do not pipe
to any area where freezing could occur. Refer to
ocal codes.
l
The heater is supplied with a Section IV “HV” stamped
relief valve sized for the full input of the unit. The relief
valve assembly is shipped loose and must be mounted directly to the heater outlet. No valve shall be
installed between the heater and the relief valve. The
relief valve shall be mounted with its spindle vertical
(see Fig. 1, 2 and 3 on page 6). Relief valve discharge
piping shall provide no less than the cross sectional
area of the relief valve outlet and must be routed to a
safe point of discharge. Installation must comply with
all national, state and local codes.
WARNING: The pressure relief valve must be
installed at the outlet of the boiler. No valve is
permitted to be installed between the boiler and the
relief valve.
1. Connect fill water supply. With bleed valve open,
fill heater with water. When water flows from bleed
valve, shut off water. Close bleed valve. Carefully
fill the rest of the system, making sure to eliminate
ny entrapped air by using high-point vents. Close
a
feed valve. Test at standard operating pressure for
at least 24 hours.
2. Make sure constant gauge pressure has been
maintained throughout test.
3. Check for leaks. Repair if found.
Hydronic Heating
Pump Selection
In order to ensure proper performance of your heater
system, you must install a correctly-sized pump. Raypak recommends designing for a ∆T within the range
of 20°F to 40°F (5°C to 20°C). See Table G for acceptable flow rates for each model (∆T is the temperature
difference between the inlet and outlet water when the
heater is firing at full rate).
Temperature & Pressure Gauge
The temperature and pressure gauge is shipped loose
for field installation and must be installed within 12
inches of the boiler outlet (if possible) in an easily
readable location. Installation must comply with ASME
Section IV as well as all applicable national, state and
local codes.
Hydrostatic Test
Unlike many types of heaters, this heater does not require hydrostatic testing prior to being placed in
operation. The heat exchanger has already been factory-tested and is rated for 160 psi operating pressure.
However, Raypak does recommend hydrostatic testing of the piping connections to the heater and the rest
of the system prior to operation. This is particularly
true for hydronic systems using expensive glycolbased anti-freeze. Raypak recommends conducting
the hydrostatic test before connecting gas piping or
electrical supply.
Leaks must be repaired at once to prevent damage to
the heater. NEVER use petroleum-based stop-leak
compounds.
Feedwater Regulator
Raypak recommends that a feedwater regulator be installed and set at 12 psi minimum pressure at the
highest point of the system. Install a check valve or
back flow device upstream of the regulator, with a
manual shut-off valve as required by local codes.
Piping
All high points should be vented. A heater installed
above radiation level must be provided with a low water cut-off device (sales order option F-10). This
heater, when used in connection with a refrigeration
system, must be installed so that the chilled medium is
piped in parallel with the heater with appropriate
valves to prevent the chilled medium from entering the
heater.
The piping system of a hot water heater connected to
heating coils located in air handling units where they
may be exposed to circulating refrigerated air, must be
equipped with flow control valves or other automatic
means to prevent gravity circulation of the heater
water during the cooling cycle. It is highly recommended that the piping be insulated.
13
Air-Separation/Expansion Tank
Fig. 6: Air-Separation/Expansion Tank
All heaters should be equipped with a properly sized
expansion tank and air separator fitting as shown in
Fig. 6 above.
Three-Way Valves
Three-way valves intended to regulate system water
temperatures by reducing flow in the boiler should not
be used. Raypak heaters are high-recovery, low-mass
heaters which are not subject to thermal shock.
*Maximum 4 times the pipe diameter or 12”, whichever is less.
Fig. 8: Dual Heaters (Reverse/Return)
with Primary/Secondary Piping
Domestic Hot Water
When designing the water piping system for domestic
hot water applications, water hardness should be considered. Table H indicates the suggested flow rates for
soft and medium water. Hard water must be softened
for direct heating with the XFyre. Water hardness is
expressed in grains per gallon.
*Maximum 4 times the pipe diameter or 12”, whichever is less.
Fig. 7: Single Heater — Low-Temperature (Heat Pump)
Notes: Basis for minimum flow is ∆T . Basis for maximum flow is gpm.
Table G: Heater Rates of Flow and Pressure Drops
14
Fig. 9: Single Domestic Hot Water Heater and Storage
Tank
NOTE: If local codes require a vacuum relief valve,
acquireonelocallyandinstallpervalve
manufacturer’s instructions.
Potable Water and Space Heating
CAUTION: When this heater is used for both
potable water and space heating, observe the
following to ensure proper operation.
1. All piping materials and components connected to
the water heater for the space heating application
shall be suitable for use with potable water.
2. Toxic chemicals, such as used for boiler treatment,
shall not be introduced into the potable water used
for space heating.
3. If the heater will be used to supply potable water,
it shall not be connected to any heating system or
components previously used with a non-potable
water heating appliance.
4. When the system requires water for space heating
at temperatures higher than 140°F (60°C), a
means such as a mixing valve shall be installed to
temper the water in order to reduce scald hazard
potential.
Fig. 10: Multiple Boilers — Reverse Return,
Primary/Secondary Piping with Indirect DHW
Model
No.
Soft (0–4 grains per gallon)Medium (5–15 grains per gallon)
∆Tgpm∆PMTSSHL∆Tgpm∆PMTSSHL
300301981.5102028171.520
5003031728204716218
850305317220208040246
∆T = Temperature rise, °F.
∆P = Pressure drop through heat exchanger, ft.
SHL = System head loss, ft (based on heater and tank placed no more than 5 ft apart and equivalent length of 25 ft of tubing).
gpm = Gallons per minute, flow rate.
MTS = Minimum tubing size.
CAUTION: For scale free operation with Medium water (5–15 grains per gallon of total hardness), the operating control must NOT
be set higher than 130°F. For higher than 130°F operation, or Hard water (>16 grains per gallon of total hardness), a water softener/treatment system must be utilized.
Table H: Domestic Water Heater Flow Rate Requirements
15
Gas Supply
DANGER: Make sure the gas on which the heater
will operate is the same type as specified on the rating plate.
CAUTION: Do not use Teflon tape on gas line pipe
thread. A pipe compound rated for use with natural
and propane gases is recommended. Apply
sparingly only on male pipe ends, leaving the two
nd threads bare.
e
Gas piping must have a sediment trap ahead of the
heater gas controls, and a manual shut-off valve located outside the heater jacket. It is recommended
that a union be installed in the gas supply piping adjacent to the heater for servicing. The gas supply
pressure to the heater must not exceed 10.5 in. WC for
natural gas or 13.0 in. WC for propane gas. A poundsto-inches regulator must be installed to reduce the gas
supply pressure if it is higher than noted above. This
regulator should be placed a minimum distance of 10
times the pipe diameter upstream of the heater gas
controls. Refer to Table J for maximum pipe lengths.
Gas Supply Connection
CAUTION: The heater must be disconnected from
the gas supply during any pressure testing of the gas
supply system at test pressures in excess of 1/2 psi
(3.45 kPa).
The heater must be isolated from the gas supply piping system by closing the upstream manual shut-off
valve during any pressure testing of the gas supply
piping system at test pressures equal to or less than
1/2 psi (3.45 kPa). Relieve test pressure in the gas
supply line prior to re-connecting the heater and its
manual shut-off valve to the gas supply line. FAILURE
TO FOLLOW THIS PROCEDURE MAY DAMAGE
THE GAS VALVE. Over-pressurized gas valves are
not covered by warranty. The heater and its gas connections shall be leak-tested before placing the
appliance in operation. Use soapy water for leak test.
DO NOT use an open flame.
CAUTION: Support gas supply piping with
hangers, not by the heater or its accessories. Make
sure the gas piping is protected from physical
damage and freezing, where required.
Gas Supply Pressure
A minimum of 4.0 in. WC and a maximum of 10.5 in.
WC upstream gas pressure is required under load and
no-load conditions for natural gas. A minimum of 4.0
in. WC and a maximum of 13.0 in. WC is required for
propane gas. The gas pressure regulator(s) supplied
on the heater is for low-pressure service. If upstream
pressure exceeds these values, an intermediate gas
pressure regulator, of the lockup type, must be
installed.
When connecting additional gas utilization equipment
to the gas piping system, the existing piping must be
checked to determine if it has adequate capacity for
the combined load. The gas valve pressure regulator
on the heater is nominally preset as noted in Table I.
During normal operation, carbon dioxide should be 8.5
to 9.0% at full fire for natural gas and between 9.0 and
9.5% for propane gas. Carbon monoxide should be
‹150 ppm.
Manifold Pressure (in. WC)
Model
No.
Natural GasPropane Gas
HighLowHighLow
Fig. 10: Gas Supply Connection
300-0.2-0.1-0.2-0.1
500-0.3-0.1-0.3-0.1
850-3.2-0.2-2.7-0.1
NOTE: Manifold pressures should be ±0.3 in. WC.
Table I: Manifold Gas Pressure Settings
16
Model
o.
N
3/4” NPT1” NPT1-1/4” NPT1-1/2” NPT2” NPT
NPNPNPNPNP
00
3
5
1
0
3
5
4
00
1
50010154065150150350
85015255555125175450
Natural Gas – 1,000 BTU/ft3, 0.60 specific gravity at 0.5 in. WC pressure drop
Propane Gas – 2,500 BTU/ft3, 1.53 specific gravity at 0.6 in. WC pressure drop
Table J: Maximum Equivalent Pipe Length
Electrical Power Connections
Installations must follow these codes:
•National Electrical Code and any other national,
state, provincial or local codes or regulations having jurisdiction.
•Safety wiring must be NEC Class 1.
•Heater must be electrically grounded as required
by the NEC.
•In Canada, CSA C22. 1 C.E.C. Part 1.
The XFyre 300–850 heaters are wired for 120 V single-phase 60 Hz power. Consult the wiring diagram
shipped with the heater. Before starting the heater,
check to ensure proper voltage to the heater and
pump(s). A larger circuit breaker may be needed for
pumps larger than 1/4 hp.
Boiler pumps up to 1 hp and DHW pumps up to 1/4 hp
get their power supply directly from the heater power
supply (connections in rear wiring box). XFyre heaters
75
1
00
4
90
3
may power up to two pumps directly (1 hp max boiler
pump, 3 A max DHW pump) and may control a third
system pump, depending on the configuration of the
controller and the installation requirements. Install a
circuit breaker sized sufficiently for both the heater and
the pump(s). DHW pumps larger than 1/4 hp or 3 A
must use a separate power supply and run the power
through an external field supplied pump contactor. Use
appropriately-sized wire as defined by NEC, CSA
and/or local codes. All primary wiring should be 125%
of minimum rating.
If any of the original wire as supplied with the heater
must be replaced, it must be replaced with 105°C wire
or its equivalent.
All 120 VAC field wiring connections to the XFyre
heater are made inside the rear wiring box as shown
in Fig. 11a. Power to the XFyre heater should be connected to terminals 1, 2, and 3 as shown in Fig. 11a.
Low voltage wiring is connected to the field wiring
board at the front of the unit. Sensors, Thermostat (TT)
Fig. 11a: Wiring Electrical Connections
Fig. 11b: Wiring Electrical Connections
Cascade Master
17
Loading...
+ 39 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.