• 12K Bytes of In-System Reprogrammable Downloadable Flash Memory
– SPI Serial Interface for Program Downloading
– Endurance: 1,000 Write/Erase Cycles
• 4V to 6V Operating Range
• Fully Static Operation: 0 Hz to 24 MHz
• Three-level Program Memory Lock
• 256 x 8-bit Internal RAM
• 32 Programmable I/O Lines
• Three 16-bit Timer/Counters
• Nine Interrupt Sources
• Programmable UART Serial Channel
• SPI Serial Interface
• Low-power Idle and Power-down Modes
• Interrupt Recovery From Power-down
• Programmable Watchdog Timer
• Dual Data Pointer
• Power-off Flag
™
Products
8-bit
Microcontroller
with 12K Bytes
Flash
Description
The AT89S53 is a low-power, high-performance CMOS 8-bit microcomputer with 12K
bytes of downloadable Flash programmable and erasable read only memory. The
device is manufactured using Atmel’s high-density nonvolatile memory technology
and is compatible with the industry-standard 80C51 instruction set and pinout. The onchip downloadable Flash allows the program memory to be reprogrammed in-system
through an SPI serial interface or by a conventional nonvolatile memory programmer.
By combining a versatile 8-bit CPU with downloadable Flash on a monolithic chip, the
Atmel AT89S53 is a powerful microcomputer which provides a highly-flexible and
cost-effective solution to many embedded control applications.
The AT89S53 provides the following standard features: 12K bytes of downloadable
Flash, 256 bytes of RAM, 32 I/O lines, programmable watchdog timer, two Data Pointers, three 16-bit timer/counters, a six-vector two-level interrupt architecture, a full
duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89S53 is
designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the
RAM, timer/counters, serial port, and interrupt system to continue functioning. The
Power-down mode saves the RAM contents but freezes the oscillator, disabling all
other chip functions until the next interrupt or hardware reset.
The downloadable Flash can change a single byte at a time and is accessible through
the SPI serial interface. Holding RESET active forces the SPI bus into a serial programming interface and allows the program memory to be written to or read from
unless Lock Bit 2 has been activated.
Port 0 is an 8-bit open drain bidirectional I/O port. As an
output port, each pin can sink eight TTL inputs. When 1s
are written to port 0 pins, the pins can be used as highimpedance inputs.
2
Port 0 can also be configured to be the multiplexed loworder address/data bus during accesses to external
program and data memory. In this mode, P0 has internal
pullups.
Port 0 also receives the code bytes during Flash programming and outputs the code bytes during program
verification. External pullups are required during program
verification.
Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pullups.
The Port 1 output buffers can sink/source four TTL inputs.
When 1s are written to Port 1 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 1 pins that are externally being pulled low will source
current (I
) because of the internal pullups.
IL
Block Diagram
AT89S53
V
CC
GND
B
REGISTER
RAM ADDR.
REGISTER
P0.0 - P0.7
PORT 0 DRIVERS
RAM
ACC
TMP2TMP1
PORT 0
LATCH
P2.0 - P2.7
PORT 2 DRIVERS
PORT 2
LATCH
STACK
POINTER
FLASH
PROGRAM
ADDRESS
REGISTER
BUFFER
PSEN
ALE/PROG
EA / V
RST
PC
ALU
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
PSW
TIMING
AND
PP
CONTROL
OSC
INSTRUCTION
REGISTER
WATCH
DOG
PORT 3
LATCH
PORT 3 DRIVERS
P3.0 - P3.7
PORT 1
LATCH
PORT 1 DRIVERS
P1.0 - P1.7
SPI
PORT
INCREMENTER
PROGRAM
COUNTER
DPTR
PROGRAM
LOGIC
3
Some Port 1 pins provide additional functions. P1.0 and
P1.1 can be configured to be the timer/counter 2 external
count input (P1.0/T2) and the timer/counter 2 trigger input
(P1.1/T2EX), respectively.
Pin Description
Port 3 pins that are externally being pulled low will source
current (I
) because of the pullups.
IL
Port 3 also serves the functions of various special features
of the AT89S53, as shown in the following table.
Port 3 also receives some control signals for Flash programming and verification.
Furthermore, P1.4, P1.5, P1.6, and P1.7 can be configured
as the SPI slave port select, data input/output and shift
clock input/output pins as shown in the following table.
Port PinAlternate Functions
P1.0T2 (external count input to Timer/Counter 2),
clock-out
P1.1T2EX (Timer/Counter 2 capture/reload trigger
and direction control)
P1.4SS
P1.5MOSI (Master data output, slave data input pin
P1.6MISO (Master data input, slave data output pin
Port 1 also receives the low-order address bytes during
Flash programming and verification.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pullups.
The Port 2 output buffers can sink/source four TTL inputs.
When 1s are written to Port 2 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port 2 pins that are externally being pulled low will source
current (I
) because of the internal pullups.
IL
Port 2 emits the high-order address byte during fetches
from external program memory and during accesses to
external data memory that use 16-bit addresses (MOVX @
DPTR). In this application, Port 2 uses strong internal pullups when emitting 1s. During accesses to external data
memory that use 8-bit addresses (MOVX @ RI), Port 2
emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some
control signals during Flash programming and verification.
Port 3
Port 3 is an 8 bit bidirectional I/O port with internal pullups.
The Port 3 output buffers can sink/source four TTL inputs.
When 1s are written to Port 3 pins, they are pulled high by
the internal pullups and can be used as inputs. As inputs,
Port PinAlternate Functions
P3.0RXD (serial input port)
P3.1TXD (serial output port)
P3.2INT0
P3.3INT1
P3.4T0 (timer 0 external input)
P3.5T1 (timer 1 external input)
P3.6WR
P3.7RD
(external interrupt 0)
(external interrupt 1)
(external data memory write strobe)
(external data memory read strobe)
RST
Reset input. A high on this pin for two machine cycles while
the oscillator is running resets the device.
ALE/PROG
Address Latch Enable is an output pulse for latching the
low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG
) during
Flash programming.
In normal operation, ALE is emitted at a constant rate of 1/6
the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE
pulse is skipped during each access to external data
memory.
If desired, ALE operation can be disabled by setting bit 0 of
SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is
weakly pulled high. Setting the ALE-disable bit has no
effect if the microcontroller is in external execution mode.
PSEN
Program Store Enable is the read strobe to external program memory.
When the AT89S53 is executing code from external program memory, PSEN
cycle, except that two PSEN
is activated twice each machine
activations are skipped during
each access to external data memory.
4
AT89S53
AT89S53
/VPP
EA
External Access Enable. EA must be strapped to GND in
enable voltage (V
volt programming is selected.
) during Flash programming when 12-
PP
order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH.
Note, however, that if lock bit 1 is programmed, EA
will be
internally latched on reset.
should be strapped to VCC for internal program execu-
EA
tions. This pin also receives the 12-volt programming
XTAL1
Input to the inverting oscillator amplifier and input to the
internal clock operating circuit.
XTAL2
Output from the inverting oscillator amplifier.
Table 1. AT89S53 SFR Map and Reset Values
0F8H0FFH
0F0H
0E8H0EFH
0E0H
0D8H0DFH
0D0H
0C8H
B
00000000
ACC
00000000
PSW
00000000
T2CON
00000000
T2MOD
XXXXXX00
RCAP2L
00000000
RCAP2H
00000000
TL2
00000000
SPCR
000001XX
TH2
00000000
0F7H
0E7H
0D7H
0CFH
0C0H0C7H
0B8H
0B0H
0A8H
0A0H
98H
90H
88H
80H
IP
XX000000
P3
11111111
IE
0X000000
P2
11111111
SCON
00000000
P1
11111111
TCON
00000000
P0
11111111
SBUF
XXXXXXXX
TMOD
00000000
SP
00000111
SPSR
00XXXXXX
TL0
00000000
DP0L
00000000
TL1
00000000
DP0H
00000000
TH0
00000000
DP1L
00000000
TH1
00000000
DP1H
00000000
WCON
00000010
SPDR
XXXXXXXX
PCON
0XXX0000
0BFH
0B7H
0AFH
0A7H
9FH
97H
8FH
87H
5
Special Function Registers
A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.
Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip.
Read accesses to these addresses will in general return
random data, and write accesses will have an indeterminate
effect.
User software should not write 1s to these unlisted loca-
Timer 2 Registers Control and status bits are contained in
registers T2CON (shown in Table 2) and T2MOD (shown in
Table 9) for Timer 2. The register pair (RCAP2H, RCAP2L)
are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.
Watchdog Control Register The WCON register contains
control bits for the Watchdog Timer (shown in Table 3). The
DPS bit selects one of two DPTR registers available.
tions, since they may be used in future products to invoke
new features. In that case, the reset or inactive values of the
new bits will always be 0.
Table 2. T2CON—Timer/Counter 2 Control Register
T2CON Address = 0C8HReset Value = 0000 0000B
Bit Addressable
TF2EXF2RCLKTCLKEXEN2TR2C/T2
Bit
SymbolFunction
TF2Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK =
EXF2Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1.
76543210
1 or TCLK = 1.
When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be
cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
CP/RL2
RCLKReceive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port
Modes 1 and 3. RCLK = 0 causes Timer 1 overflows to be used for the receive clock.
TCLKTransmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port
Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if
Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2
CP/RL2Capture/Reload select. CP/RL2 = 1 causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/RL2 = 0
Timer or counter select for Timer 2. C/T2 = 0 for timer function. C/T2 = 1 for external event counter (falling edge
triggered).
causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When
either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.
6
AT89S53
AT89S53
Table 3. WCON—Watchdog Control Register
WCON Address = 96HReset Value = 0000 0010B
PS2PS1PS0reservedreservedDPSWDTRSTWDTEN
Bit
SymbolFunction
PS2
PS1
PS0
DPSData Pointer Register Select. DPS = 0 selects the first bank of Data Pointer Register, DP0, and DPS = 1 selects the
WDTRSTWatchdog Timer Reset. Each time this bit is set to “1” by user software, a pulse is generated to reset the watchdog
WDTENWatchdog Timer Enable Bit. WDTEN = 1 enables the watchdog timer and WDTEN = 0 disables the watchdog timer.
SPI Registers Control and status bits for the Serial Peripheral Interface are contained in registers SPCR (shown in
Table 4) and SPSR (shown in Table 5). The SPI data bits
are contained in the SPDR register. Writing the SPI data
register during serial data transfer sets the Write Collision
bit, WCOL, in the SPSR register. The SPDR is double buffered for writing and the values in SPDR are not changed by
Reset.
Interrupt Registers The global interrupt enable bit and the
individual interrupt enable bits are in the IE register. In
addition, the individual interrupt enable bit for the SPI is in
76543210
Prescaler Bits for the Watchdog Timer. When all three bits are set to “0”, the watchdog timer has a nominal period of 16
ms. When all three bits are set to “1”, the nominal period is 2048 ms.
second bank, DP1
timer. The WDTRST bit is then automatically reset to “0” in the next instruction cycle. The WDTRST bit is Write-Only.
Dual Data Pointer Registers To facilitate accessing exter-
nal data memory, two banks of 16-bit Data Pointer
Registers are provided: DP0 at SFR address locations
82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR WCON
selects DP0 and DPS = 1 selects DP1. The user should
always initalize the DPS bit to the appropriate value before
accessing the respective Data Pointer register.
Power Off Flag The Power Off Flag (POF) is located at
bit_4 (PCON.4) in the PCON SFR. POF is set to “1” during
power up. It can be set and reset under software control
and is not affected by RESET.
the SPCR register. Two priorities can be set for each of the
six interrupt sources in the IP register.
7
Table 4. SPCR—SPI Control Register
SPCR Address = D5HReset Value = 0000 01XXB
SPIESPEDORDMSTRCPOLCPHASPR1SPR0
Bit
SymbolFunction
SPIESPI Interrupt Enable. This bit, in conjunction with the ES bit in the IE register, enables SPI interrupts: SPIE = 1 and ES
SPESPI Enable. SPI = 1 enables the SPI channel and connects SS
DORDData Order. DORD = 1 selects LSB first data transmission. DORD = 0 selects MSB first data transmission.
, MOSI, MISO and SCK to pins P1.4, P1.5, P1.6, and
P1.7. SPI = 0 disables the SPI channel.
transmitting. Please refer to figure on SPI Clock Phase and Polarity Control.
slave. Please refer to figure on SPI Clock Phase and Polarity Control.
SPI Clock Rate Select. These two bits control the SCK rate of the device configured as master. SPR1 and SPR0 have
no effect on the slave. The relationship between SCK and the oscillator frequency, F
SPR1SPR0SCK = F
004
0116
1064
11 128
divided by
OSC.
, is as follows:
OSC.
Table 5. SPSR—SPI Status Register Data Memory - RAM
SPSR Address = AAHReset Value = 00XX XXXXB
SPIFWCOL––––––
Bit
Symbol Function
SPIFSPI Interrupt Flag. When a serial transfer is complete, the SPIF bit is set and an interrupt is generated if SPIE = 1 and
WCOLWrite Collision Flag. The WCOL bit is set if the SPI data register is written during a data transfer. During data transfer,
76543210
ES = 1. The SPIF bit is cleared by reading the SPI status register with SPIF and WCOL bits set, and then accessing
the SPI data register.
the result of reading the SPDR register may be incorrect, and writing to it has no effect. The WCOL bit (and the SPIF
bit) are cleared by reading the SPI status register with SPIF and WCOL set, and then accessing the SPI data register.
Table 6. SPDR—SPI Data Register
SPDR Address = 86HReset Value = unchanged
SPD7SPD6SPD5SPD4SPD3SPD2SPD1SPD0
Bit
76543210
8
AT89S53
AT89S53
Data Memory - RAM
The AT89S53 implements 256 bytes of RAM. The upper
128 bytes of RAM occupy a parallel space to the Special
Function Registers. That means the upper 128 bytes have
the same addresses as the SFR space but are physically
separate from SFR space.
When an instruction accesses an internal location above
address 7FH, the address mode used in the instruction
specifies whether the CPU accesses the upper 128 bytes
of RAM or the SFR space. Instructions that use direct
addressing access SFR space.
For example, the following direct addressing instruction
accesses the SFR at location 0A0H (which is P2).
MOV 0A0H, #data
Instructions that use indirect addressing access the upper
128 bytes of RAM. For example, the following indirect
addressing instruction, where R0 contains 0A0H, accesses
the data byte at address 0A0H, rather than P2 (whose
address is 0A0H).
MOV @R0, #data
Note that stack operations are examples of indirect
addressing, so the upper 128 bytes of data RAM are available as stack space.
Programmable Watchdog Timer
The programmable Watchdog Timer (WDT) operates from
an independent oscillator. The prescaler bits, PS0, PS1
and PS2 in SFR WCON are used to set the period of the
Watchdog Timer from 16 ms to 2048 ms. The available
timer periods are shown in the following table and the
actual timer periods (at V
nominal.
The WDT is disabled by Power-on Reset and during
Power-down. It is enabled by setting the WDTEN bit in SFR
WCON (address = 96H). The WDT is reset by setting the
WDTRST bit in WCON. When the WDT times out without
being reset or disabled, an internal RST pulse is generated
to reset the CPU.
Table 7. Watchdog Timer Period Selection
= 5V) are within ±30% of the
CC
Table 7. Watchdog Timer Period Selection
100256 ms
101512 ms
1101024 ms
1112048 ms
Timer 0 and 1
Timer 0 and Timer 1 in the AT89S53 operate the same way
as Timer 0 and Timer 1 in the AT89C51, AT89C52 and
AT89C55. For further information, see the October 1995
Microcontroller Data Book, page 2-45, section titled,
“Timer/Counters.”
Timer 2
Timer 2 is a 16-bit Timer/Counter that can operate as either
a timer or an event counter. The type of operation is
selected by bit C/T2
Timer 2 has three operating modes: capture, auto-reload
(up or down counting), and baud rate generator. The
modes are selected by bits in T2CON, as shown in Table 8.
Timer 2 consists of two 8-bit registers, TH2 and TL2. In the
Timer function, the TL2 register is incremented every
machine cycle. Since a machine cycle consists of 12 oscil-
lator periods, the count rate is 1/12 of the oscillator
frequency.
In the Counter function, the register is incremented in
response to a 1-to-0 transition at its corresponding external
input pin, T2. In this function, the external input is sampled
during S5P2 of every machine cycle. When the samples
show a high in one cycle and a low in the next cycle, the
count is incremented. The new count value appears in the
register during S3P1 of the cycle following the one in which
the transition was detected. Since two machine cycles (24
oscillator periods) are required to recognize a 1-to-0 transi-
tion, the maximum count rate is 1/24 of the oscillator
frequency. To ensure that a given level is sampled at least
once before it changes, the level should be held for at least
one full machine cycle.
in the SFR T2CON (shown in Table 2).
WDT Prescaler Bits
Period (nominal)PS2PS1PS0
000 16 ms
001 32 ms
010 64 ms
011128 ms
Table 8. Timer 2 Operating Modes
RCLK + TCLKCP/RL2TR2MODE
00116-bit Auto-Reload
01116-bit Capture
1X1Baud Rate Generator
XX0(Off)
9
Capture Mode
In the capture mode, two options are selected by bit
EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer
or counter which upon overflow sets bit TF2 in T2CON.
This bit can then be used to generate an interrupt. If
EXEN2 = 1, Timer 2 performs the same operation, but a lto-0 transition at external input T2EX also causes the
Figure 1. Timer 2 in Capture Mode
OSC
T2 PIN
T2EX PIN
÷12
TRANSITION
DETECTOR
C/T2 = 0
C/T2 = 1
TR2
CAPTURE
CONTROL
EXEN2
current value in TH2 and TL2 to be captured into RCAP2H
and RCAP2L, respectively. In addition, the transition at
T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit,
like TF2, can generate an interrupt. The capture mode is
illustrated in Figure 1.
TH2TL2
CONTROL
RCAP2LRCAP2H
EXF2
TF2
OVERFLOW
TIMER 2
INTERRUPT
Auto-reload (Up or Down Counter)
Timer 2 can be programmed to count up or down when
configured in its 16-bit auto-reload mode. This feature is
invoked by the DCEN (Down Counter Enable) bit located in
the SFR T2MOD (see Table 9). Upon reset, the DCEN bit
is set to 0 so that timer 2 will default to count up. When
DCEN is set, Timer 2 can count up or down, depending on
the value of the T2EX pin.
Figure 2 shows Timer 2 automatically counting up when
DCEN = 0. In this mode, two options are selected by bit
EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to
0FFFFH and then sets the TF2 bit upon overflow. The
overflow also causes the timer registers to be reloaded with
the 16-bit value in RCAP2H and RCAP2L. The values in
RCAP2H and RCAP2L are preset by software. If EXEN2 =
1, a 16-bit reload can be triggered either by an overflow or
by a 1-to-0 transition at external input T2EX. This transition
also sets the EXF2 bit. Both the TF2 and EXF2 bits can
generate an interrupt if enabled.
Setting the DCEN bit enables Timer 2 to count up or down,
as shown in Figure 3. In this mode, the T2EX pin controls
the direction of the count. A logic 1 at T2EX makes Timer 2
count up. The timer will overflow at 0FFFFH and set the
TF2 bit. This overflow also causes the 16-bit value in
RCAP2H and RCAP2L to be reloaded into the timer regis-
ters, TH2 and TL2, respectively.
A logic 0 at T2EX makes Timer 2 count down. The timer
underflows when TH2 and TL2 equal the values stored in
RCAP2H and RCAP2L. The underflow sets the TF2 bit and
causes 0FFFFH to be reloaded into the timer registers.
The EXF2 bit toggles whenever Timer 2 overflows or
underflows and can be used as a 17th bit of resolution. In
this operating mode, EXF2 does not flag an interrupt.
10
AT89S53
Loading...
+ 23 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.