Rainbow Electronics AT89C51RC User Manual

Features

Compatible with MCS-51
32K Bytes of Reprogrammable Flash Memory
Endurance: 1000 Write/Erase Cycles
4V to 5.5V Operating Range
Fully Static Operation: 0 Hz to 33 MHz
Three-level Program Memory Lock
512 x 8-bit Internal RAM
32 Programmable I/O Lines
Three 16-bit Timer/Counters
Eight Interrupt Sources
Programmable Serial Channel
Low-power Idle and Power-down Modes
Interrupt Recovery from Power-down Mode
Hardware Watchdog Timer
Dual Data Pointer
Power-off Flag
Products

Description

The AT89C51RC is a low-power, high-performance CMOS 8-bit microcomputer with 32K bytes of Flash programmable read only memory and 512 bytes of RAM. The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 and 80C52 instruction set and
(continued)
8-bit Microcontroller with 32K Bytes Flash
AT89C51RC

Pin Configurations

TQFP
P1.4
P1.3
P1.2
P1.1 (T2 EX)
P1.0 (T2)NCVCC
P0.0 (AD0)
4443424140393837363534
1
P1.5
2
P1.6
3
P1.7
4
RST
(T0) P3.4 (T1) P3.5
5 6
NC
7 8 9 10 11
1213141516171819202122
GND
GND
XTAL2
XTAL1
(A8) P2.0
(RD) P3.7
(WR) P3.6
(A9) P2.1
(RXD) P3.0
(TXD) P3.1 (INT0) P3.2 (INT1) P3.3
P0.1 (AD1)
P0.2 (AD2)
P0.3 (AD3)
(A10) P2.2
(A11) P2.3
(A12) P2.4
33 32 31 30 29 28 27 26 25 24 23
P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP NC ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13)
P1.5 P1.6 P1.7 RST
(RXD) P3.0
(T0) P3.4 (T1) P3.5
1
(T2) P1.0
P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST
(T0) P3.4 (T1) P3.5
(RD) P3.7
XTAL2 XTAL1
GND
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
(T2EX) P1.1
(RXD) P3.0 (TXD) P3.1 (INT0) P3.2 (INT1) P3.3
(WR) P3.6
PLCC
P1.4
P1.3
P1.2
P1.1 (T2 EX)
65432 7 8 9 10 11 12
NC
13 14 15 16 17
1819202122232425262728
XTAL2
XTAL1
(RD) P3.7
(WR) P3.6
PDIP
P1.0 (T2)NCVCC
1
NC
GND
40
VCC
39
P0.0 (AD0)
38
P0.1 (AD1)
37
P0.2 (AD2)
36
P0.3 (AD3)
35
P0.4 (AD4)
34
P0.5 (AD5)
33
P0.6 (AD6)
32
P0.7 (AD7)
31
EA/VPP
30
ALE/PROG
29
PSEN
28
P2.7 (A15)
27
P2.6 (A14)
26
P2.5 (A13)
25
P2.4 (A12)
24
P2.3 (A11)
23
P2.2 (A10)
22
P2.1 (A9)
21
P2.0 (A8)
P0.0 (AD0)
P0.1 (AD1)
P0.2 (AD2)
4443424140
(A8) P2.0
(A9) P2.1
(A10) P2.2
(A11) P2.3
P0.3 (AD3)
39
P0.4 (AD4)
38
P0.5 (AD5)
37
P0.6 (AD6)
36
P0.7 (AD7)
35
EA/VPP
34
NC
33
ALE/PROG
32
PSEN
31
P2.7 (A15)
30
P2.6 (A14)
29
P2.5 (A13)
(A12) P2.4
Rev. 1920A–08/00
1
pinout. The on-chip Flash allows the program memory to be user programmed by a conventional nonvolatile memory programmer. A total of 512 bytes of internal RAM are avail­able in the AT89C51RC. The 256-byte expanded internal RAM is accessed via MOVX instructions after clearing bit 1 in the SFR located at address 8EH. The other 256-byte

Block Diagram

P0.0 - P0.7
V
CC
PORT 0 DRIVERS
GND
RAM segment is accessed the same way as the Atmel AT89-series and other 8052-compatible products. By com­bining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51RC is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.
P2.0 - P2.7
PORT 2 DRIVERS
PSEN
ALE/PROG
EA / V
RST
RAM ADDR.
REGISTER
B
REGISTER
TIMING
AND
PP
CONTROL
ACC
INSTRUCTION
REGISTER
RAM
TMP2
PSW
ALU
PORT 0
LATCH
TMP1
PORT 2
LATCH
INTERRUPT, SERIAL PORT,
AND TIMER BLOCKS
STACK
POINTER
QUICK FLASH
PROGRAM
ADDRESS
REGISTER
BUFFER
PC
INCREMENTER
PROGRAM COUNTER
DUAL DPTR
PORT 1
WATCH
DOG
OSC
2
AT89C51RC
LATCH
PORT 1 DRIVERS
P1.0 - P1.7
PORT 3
LATCH
PORT 3 DRIVERS
P3.0 - P3.7
AT89C51RC
The AT89C51RC provides the following standard features: 32K bytes of Flash, 512 bytes of RAM, 32 I/O lines, three 16-bit timer/counters, a six-vector two-level interrupt archi­tecture, a full duplex serial port, on-chip oscillator, and clock circuitry. In addition, the AT89C51RC is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port, and interrupt system to continue functioning. The Power-down mode saves the RAM con­tents but freezes the oscillator, disabling all other chip func­tions until the next external interrupt or hardware reset.

Pin Description

VCC
Supply voltage.
GND
Ground.

Port 0

Port 0 is an 8-bit open drain bidirectional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high­impedance inputs.
Port 0 can also be configured to be the multiplexed low­order address/data bus during accesses to external program and data memory. In this mode, P0 has internal pull-ups.
Port 0 also receives the code bytes during Flash program­ming and outputs the code bytes during program verifica­tion. External pull-ups are required during program verification.

Port 1

Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (I
In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table.
Port 1 also receives the low-order address bytes during Flash programming and verification.
Port Pin Alternate Functions
P1.0 T2 (external count input to Timer/Counter 2),
P1.1 T2EX (Timer/Counter 2 capture/reload trigger
) because of the internal pull-ups.
IL
clock-out
and direction control)

Port 2

Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (I
) because of the internal pull-ups.
IL
Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pull­ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

Port 3

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (I
) because of the pull-ups.
IL
Port 3 also serves the functions of various special features of the AT89C51RC, as shown in the following table.
Port 3 also receives some control signals for Flash pro­gramming and verification.
Port Pin Alternate Functions
P3.0 RXD (serial input port)
P3.1 TXD (serial output port)
P3.2 INT0
P3.3 INT1 (external interrupt 1)
P3.4 T0 (timer 0 external input)
P3.5 T1 (timer 1 external input)
P3.6 WR
P3.7 RD
(external interrupt 0)
(external data memory write strobe)
(external data memory read strobe)
RST
Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. This pin drives High for 96 oscillator periods after the Watchdog times out. The DISRTO bit in SFR AUXR (address 8EH) can be used to disable this feature. In the default state of bit DISTRO, the RESET HIGH out feature is enabled.

ALE/PROG

Address Latch Enable is an output pulse for latching the low byte of the address during accesses to external
3
memory. This pin is also the program pulse input (PROG during Flash programming.
In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external data memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only dur­ing a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

PSEN

Program Store Enable is the read strobe to external pro­gram memory.
When the AT89C51RC is executing code from external program memory, PSEN
is activated twice each machine
)
cycle, except that two PSEN each access to external data memory.
EA
/VPP
External Access Enable. EA order to enable the device to fetch code from external pro­gram memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA internally latched on reset.
should be strapped to VCC for internal program
EA executions.
This pin also receives the 12-volt programming enable volt­age (V
) during Flash programming.
PP

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier.
activations are skipped during
must be strapped to GND in
Table 1. AT89C51RC SFR Map and Reset Values
0F8H 0FFH
will be
0F0H
0E8H 0EFH
0E0H
0D8H 0DFH
0D0H
0C8H
0C0H 0C7H
0B8H
0B0H
0A8H
0A0H
98H
90H
88H
80H
B
00000000
ACC
00000000
PSW
00000000
T2CON
00000000
IP
XX000000
P3
11111111
IE
0X000000
P2
11111111
SCON
00000000
P1
11111111
TCON
00000000
P0
11111111SP00000111
T2MOD
XXXXXX00
SBUF
XXXXXXXX
TMOD
00000000
RCAP2L
00000000
AUXR1
XXXXXXX0
TL0
00000000
DP0L
00000000
RCAP2H
00000000
TL1
00000000
DP0H
00000000
TL2
00000000
TH0
00000000
DP1L
00000000
TH2
00000000
TH1
00000000
DP1H
00000000
WDTRST
XXXXXXXX
AUXR
XXX00000
PCON
0XXX0000
0F7H
0E7H
0D7H
0CFH
0BFH
0B7H
0AFH
0A7H
9FH
97H
8FH
87H
4
AT89C51RC
AT89C51RC

Special Function Registers

A map of the on-chip memory area called the Special Func­tion Register (SFR) space is shown in Table 1.
Note that not all of the addresses are occupied, and unoc­cupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indetermi­nate effect.
User software should not write 1s to these unlisted loca­tions, since they may be used in future products to invoke
Table 2. T2CON – Timer/Counter 2 Control Register
T2CON Address = 0C8H Reset Value = 0000 0000B
Bit Addressable
Bit TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2
76543210
Symbol Function
new features. In that case, the reset or inactive values of the new bits will always be 0.
Timer 2 Registers: Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 4) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit cap­ture mode or 16-bit auto-reload mode.
Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.
CP/RL2
TF2 Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK = 1
or TCLK = 1.
EXF2 Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When
Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down counter mode (DCEN = 1).
RCLK Receive clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in serial port
Modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.
TCLK Transmit clock enable. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in serial port
Modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.
EXEN2 Timer 2 external enable. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer
2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.
TR2 Start/Stop control for Timer 2. TR2 = 1 starts the timer.
C/T2
CP/RL2
Timer or counter select for Timer 2. C/T2 = 0 for timer function. C/T2 = 1 for external event counter (falling edge triggered).
Capture/Reload select. CP/RL2 = 1 causes captures to occur on negative transitions at T2EX if EXEN2 = 1. CP/RL2 = 0 causes automatic reloads to occur when Timer 2 overflows or negative transitions occur at T2EX when EXEN2 = 1. When either RCLK or TCLK = 1, this bit is ignored and the timer is forced to auto-reload on Timer 2 overflow.
5
Table 3a. AUXR: Auxiliary Register
AUXR Address = 8EH Reset Value = XXX00X00B
Not Bit Addressable
–––WDIDLE DISRTO EXTRAM DISALE
Bit 7 6 5 4 3 2 1 0
Reserved for future expansion
DISALE Disable/Enable ALE
DISALE Operating Mode
0 ALE is emitted at a constant rate of 1/6 the oscillator frequency
1 ALE is active only during a MOVX or MOVC instruction
EXTRAM Internal External RAM (00H-FFH) access using MOVX @ Ri/DPTR
EXTRAM Operating Mode
0 Internal ERAM (00H-FFH) access using MOVX @ Ri/DPTR
1 External data memory access
DISTRO Disable/Enable Reset out
DISRTO
0 Reset pin is driven High after WDT times out
1 Reset pin is input only
WDIDLE Disable/Enable WDT in IDLE mode
WDIDLE
0 WDT continues to count in IDLE mode
1 WDT halts counting in IDLE mode
Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate
value before accessing the respective Data Pointer Register.
Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to “1” during power up. It can be set and rest under software control and is not affected by reset.
Table 3b. AUXR1: Auxiliary Register 1
AUXR1 Address = A2H Reset Value = XXXXXXX0B
Not Bit Addressable
––– – – – –DPS
Bit 7 6 5 4 3 2 1 0
Reserved for future expansion
DPS Data Pointer Register Select
DPS
0 Selects DPTR Registers DP0L, DP0H
1 Selects DPTR Registers DP1L, DP1H
6
AT89C51RC

Memory Organization

MCS-51 devices have a separate address space for Pro­gram and Data Memory. Up to 64K bytes each of external Program and Data Memory can be addressed.

Program Memory

If the EA pin is connected to GND, all program fetches are directed to external memory.
On the AT89C51RC, if EA fetches to addresses 0000H through 7FFFH are directed to internal memory and fetches to addresses 8000H through FFFFH are to external memory.

Data Memory

The AT89C51RC has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM, 128 bytes special function regis­ter (SFR) and 256 bytes expanded RAM (ERAM).
The four segments are:
1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only.
4. The 256-byte expanded RAM (ERAM, 00H-FFH) is indirectly accessed by MOVX instructions, and with the EXTRAM bit cleared.
The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. This means they have the same address, but are physically separate from the SFR space.
When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space. For example:
MOV 0A0H, # data
accesses the SFR at location 0S0H (which is P2). Instruc­tions that use indirect addressing access the Upper 128 bytes of data RAM. For example:
MOV@R0, # data
where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).
is connected to VCC, program
AT89C51RC
Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are avail­able as stack space.
The 256 bytes of ERAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instruc­tions. This part of memory is physically located on-chip, logically occupying the first 256 bytes of external data memory.
Figure 1. Internal and External Data Memory Address
(with EXTRAM = 0)
FF
ERAM 256 BYTES
00
FF
80
00
UPPER 128 BYTES INTERNAL RAM
LOWER 128 BYTES INTERNAL RAM
FF
SPECIAL FUNCTION REGISTER
80
With EXTRAM = 0, the ERAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to ERAM will not affect ports P0, P2, P3.6 (WR
). For example, with EXTRAM = 0,
(RD
MOVX@R0, # data
where R0 contains 0A0H, accesses the ERAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e. 0100H to FFFFH) will be performed with the MOVX DPTR instruc­tions in the same way as in the standard MCS-51, i.e., with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Figure 1.
With EXTRAM = 1, MOVX @ Ri and MOVX@DPTR will be similar to the standard MCS-51. MOVX@Ri will provide an 8-bit address multiplexed with data on Port 0 and any out­put port pins can be used to output higher-order address bits. This is to provide the external paging capability. MOVX@DPTR will generate a 16-bit address. Port 2 out­puts the high-order 8 address bits (the contents of DP0H), while Port 0 multiplexes the low-order 8 address bits (the contents of DP0L) with data. MOVX@Ri and MOVX@DPTR will generate either read or write signals on P3.6 (WR
) and P3.7 (RD).
The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack may not be located in the ERAM.
FF
0100 0000
), and P3.7
EXTERNAL DATA MEMORY
7

Hardware Watchdog Timer (One-time Enabled with Reset-out)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 14-bit counter and the WatchDog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is run­ning. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.

Using the WDT

To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT over­flow. The 14-bit counter overflows when it reaches 16383 (3FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is 98xTOSC, where TOSC=1/FOSC. To make the best use of the WDT, it should be serviced in those sec­tions of code that will periodically be executed within the time required to prevent a WDT reset.

WDT During Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89C51RC is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabi­lize. When the interrupt is brought high, the interrupt is ser­viced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down mode.
To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down mode.
Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89C51RC while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.
With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.

UART

The UART in the AT89C51RC operates the same way as the UART in the AT89C51 and AT89C52. For further infor­mation, see the December 1997 Microcontroller Data Book, page 2-48, section titled, Serial Interface”.

Timer 0 and 1

Timer 0 and Timer 1 in the AT89C51RC operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52.

Timer 2

Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The type of operation is selected by bit C/T2 Timer 2 has three operating modes: capture, auto-reload (up or down counting), and baud rate generator. The modes are selected by bits in T2CON, as shown in Table 4.
Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.
Table 4. Timer 2 Operating Modes
RCLK +TCLK CP/RL2 TR2 MODE
0 0 1 16-bit Auto-reload
0 1 1 16-bit Capture
1 X 1 Baud Rate Generator
X X 0 (Off)
In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which
in the SFR T2CON (shown in Table 2).
8
AT89C51RC
Loading...
+ 17 hidden pages