Rainbow Electronics AT84AD001B User Manual

Features

Dual ADC with 8-bit Resolution
1 Gsps Sampling Rate per Channel, 2 Gsps in Interlaced Mode
Single or 1:2 Demultiplexed Output
LVDS Output Format (100Ω)
500 mVpp Analog Input (Differential Only)
Power Supply: 3.3V (Analog), 3.3V (Digital), 2.25V (Output)
LQFP144 Package
Temperature Range:
– 0°C < TA < 70°C (Commercial Grade) – -40°C < TA < 85°C (Industrial Grade)
3-wire Serial Interface
– 16-bit Data, 3-bit Address – 1:2 or 1:1 Output Demultiplexer Ratio Selection – Full or Partial Standby Mode – Analog Gain (±1.5 dB) Digital Control – Input Clock Selection – Analog Input Switch Selection – Binary or Gray Logical Outputs – Synchronous Data Ready Reset – Data Ready Delay Adjustable on Both Channels – Interlacing Functions:
Offset and Gain (Channel to Channel) Calibration Digital Fine SDA (Fine Sampling Delay Adjust) on One Channel
– Internal Static or Dynamic Built-In Test (BIT)
Dual 8-bit 1 Gsps ADC
AT84AD001B Smart ADC

Performance

Low Power Consumption: 0.7W Per Channel
Power Consumption in Standby Mode: 120 mW
1.5 GHz Full Power Input Bandwidth (-3 dB)
SNR = 42 dB Typ (6.8 ENOB), THD = -51 dBc, SFDR = -54 dBc at Fs = 1 Gsps Fin = 500 MHz
2-tone IMD3: -54 dBc (499 MHz, 501 MHz) at 1 Gsps
DNL = 0.25 LSB, INL = 0.5 LSB
Channel to Channel Input Offset Error: 0.5 LSB Max (After Calibration)
Gain Matching (Channel to Channel): 0.5 LSB Max (After Calibration)
Low Bit Error Rate (10
-13
) at 1 Gsps

Application

Instrumentation
Satellite Receivers
Direct RF Down Conversion
• WLAN
2153C–BDC–04/04
1

Description The AT84AD001B is a monolithic dual 8-bit analog-to-digital converter, offering low

1.4W power consumption and excellent digitizing accuracy. It integrates dual on-chip track/holds that provide an enhanced dynamic performance with a sampling rate of up to 1 Gsps and an input frequency bandwidth of over 1.5 GHz. The dual concept, the inte­grated demultiplexer and the easy interleaving mode make this device user-friendly for all dual channel applications, such as direct RF conversion or data acquisition. The smart function of the 3-wire serial interface eliminates the need for external compo­nents, which are usually necessary for gain and offset tuning and setting of other parameters, leading to space and power reduction as well as system flexibility.

Functional Description

The AT84AD001B is a dual 8-bit 1 Gsps ADC based on advanced high-speed BiCMOS technology.
Each ADC includes a front-end analog multiplexer followed by a Sample and Hold (S/H), and an 8-bit flash-like architecture core analog-to-digital converter. The output data is followed by a switchable 1:1 or 1:2 demultiplexer and LVDS output buffers (100Ω).
Two over-range bits are provided for adjustment of the external gain control on each channel.
A 3-wire serial interface (3-bit address and 16-bit data) is included to provide several adjustments:
Analog input range adjustment (±1.5 dB) with 8-bit data control using a 3-wire bus interface (steps of 0.18 dB)
Analog input switch: both ADCs can convert the same analog input signal I or Q
Gray or binary encoder output. Output format: DMUX 1:1 or 1:2 with control of the output frequency on the data ready output signal
Partial or full standby on channel I or channel Q
Clock selection: – Two independent clocks: CLKI and CLKQ – One master clock (CLKI) with the same phase for channel I and channel Q – One master clock but with two phases (CLKI for channel I and CLKIB for
channel Q)
ISA: Internal Settling Adjustment on channel I and channel Q
FiSDA: Fine Sampling Delay Adjustment on channel Q
Adjustable Data Ready Output Delay on both channels
Test mode: decimation mode (by 16), Built-In Test.
A calibration phase is provided to set the two DC offsets of channel I and channel Q close to code 127.5 and calibrate the two gains to achieve a maximum difference of
0.5 LSB. The offset and gain error can also be set externally via the 3-wire serial
interface.
The AD84AD001B operates in fully differential mode from the analog inputs up to the digital outputs. The AD84AD001B features a full-power input bandwidth of 1.5 GHz.
2
AT84AD001B
2153C–BDC–04/04
Figure 1. Simplified Block Diagram
AT84AD001B
Vini
Vinib
Vinq
Vinqb
INPUT
MUX
CLKI
DDRB
Gain control I Calibration Gain/offset ISA I
Gain control Q Calibration Gain/offset ISA Q & FiSDA
+
S/H
-
Input switch
+
S/H
-
Clock Buffer
ADC
ADC
8bit
8bit
Q
Divider
2 to16
DoirI
I
8
BIT
DoirQ
8
DMUX
DMUX
DRDA
I
1:2
or
1:1
I
DMUX control
3-wire Serial Interface
3WSI
DMUX control
1: 2
or
1: 1
Q
LVDS
Clock Buffer
LVDS Buffer
I
LVDS buffer
Q
16
16
16
16
2
CLKIO
DOAI DOAIN
DOBI DOBIN
2
DOIRI DOIRIN
Data
Clock
Ldn
Mode
2
DOIRQ DOIRQN
DOAQ DOAQN
DOBQ DOBQN
CLKQ
DDRB
Clock Buffer
Divider 2 to 16
DRDA
Q
LVDS Clock Buffer
2
CLKQO
2153C–BDC–04/04
3

Typical Applications

Figure 2. Satellite Receiver Application
Satellite
Dish
I
Control Functions:
Clock and Carrier
Recovery...
Q
Low Noise Converter
(Connected to the Dish)
Bandpass Amplifier
11..12 GHz
Local oscillator
Bandpass Amplifier
I
Q
Demodulation
1..2 GHz
Low Pass
Filter
AT84AD001B
Clock
Satellite Tuner
Tunable
Band Filter
Synthesizer
1.5 … 2.5 GHz
I
Local Oscillator
Q
Q
Band Filter
0
90
Quadrature
IF
AGC
4
AT84AD001B
2153C–BDC–04/04
Figure 3. Dual Channel Digital Oscilloscope Application
DAC
Channel B
A
Channel A
A
Gain
ADC B
DAC
Offset
DAC
Offset
Analog switch
DAC Gain
ADC A
FISO RAM
AT84AD001B
Display
µP
Channel Mode
Selection
Clock selection
Timing
circuit
DACs
Smart dual
ADC
DACs
Table 1. Absolute Maximum Ratings
Parameter Symbol Value Unit
Analog positive supply voltage V
Digital positive supply voltage V
Output supply voltage V
Maximum difference between V
Minimum V
CCO
Analog input voltage
CCA
and V
CCD
V
CCA
V
V
or V
INI
V
or V
INQ
Digital input voltage V
Clock input voltage V
Maximum difference between V
CLK
and V
CLKB
CLK
V
or VC
CLK
Maximum junction temperature T
Storage temperature T
Lead temperature (soldering 10s) T
CCA
CCD
CCO
to V
CCO
D
- V
J
stg
leads
CCD
INIB
INQB
LKB
CLKB
3.6 V
3.6 V
3.6 V
± 0.8 V
1.6 V
1/-1 V
-0.3 to V
-0.3 to V
+ 0.3 V
CCD
+ 0.3 V
CCD
-2 to 2 V
125 °C
-65 to 150 °C
300 °C
Note: Absolute maximum ratings are limiting values (referenced to GND = 0V), to be applied individually, while other parameters are
within specified operating conditions. Long exposure to maximum ratings may affect device reliability.
5
2153C–BDC–04/04
Table 2. Recommended Conditions of Use
Parameter Symbol Comments Recommended Value Unit
Analog supply voltage V
Digital supply voltage V
Output supply voltage V
V
Differential analog input voltage (full-scale)
INi
V
INQ
-V
CCA
CCD
CCO
-V
IniB
or
INQB
3.3 V
3.3 V
2.25 V
500 mVpp
Differential clock input level Vinclk 600 mVpp
Internal Settling Adjustment (ISA) with a 3-wire serial interface for channel I and channel Q
Operating temperature range T
ISA -50 ps
Ambient
Commercial grade
Industrial grade
< 70
0 < T
A
-40 < TA < 85

Electrical Operating Characteristics

Unless otherwise specified:
•V
•V
LVDS digital outputs (100Ω)
•T
Full temperature range: 0° C < T
= 3.3V; V
CCA
- V
INI
INB
(typical) = 25° C
A
or V
CCD
INQ
(industrial grade)
= 3.3V; V
- V
INQB
= 2.25V
CCO
= 500 mVpp full-scale differential input
< 70° C (commercial grade) or -40°C < TA < 85° C
A
°C
Table 3. Electrical Operating Characteristics in Nominal Conditions
Parameter Symbol Min Typ Max Unit
Resolution 8Bits
Power Requirements
Positive supply voltage
- Analog
- Digital
Output digital (LVDS) and serial interface
Supply current (typical conditions)
- Analog
- Digital
- Output
Supply current (1:2 DMUX mode)
- Analog
- Digital
- Output
6
AT84AD001B
V
V V
I
CCA
I
CCD
I
CCO
I
CCA
I
CCD
I
CCO
CCA
CCD
CCO
3.15
3.15
2.0
3.3
3.3
2.25
150 230 100
150 260 175
3.45
3.45
2.5
180 275 120
180 310 210
V V V
mA mA mA
mA mA
2153C–BDC–04/04
AT84AD001B
Table 3. Electrical Operating Characteristics in Nominal Conditions (Continued)
Parameter Symbol Min Typ Max Unit
Supply current (2 input clocks, 1:2 DMUX mode)
- Analog
- Digital
- Output
Supply current (1 channel only, 1:1 DMUX mode)
- Analog
- Digital
- Output
Supply current (1 channel only, 1:2 DMUX mode)
- Analog
- Digital
- Output
I
CCA
I
CCD
I
CCO
I
CCA
I
CCD
I
CCO
I
CCA
I
CCD
I
CCO
150 290 180
80
160
55
80
170
90
180 350 215
95
190
65
95 205 110
mA
mA mA
mA
mA mA
mA
Supply current (full standby mode)
- Analog
- Digital
- Output
Nominal dissipation (1 clock, 1:1 DMUX mode, 2 channels)
I
CCA
I
CCD
I
CCO
P
12 24
3
D
1.4 1.7 W
17
34
5
mA mA mA
Nominal dissipation (full standby mode) stbpd 120 mW
Analog Inputs
- V or
- V
IN
IniB
INQB
mV
450 500 550
mV
2pF
V
INi
Full-scale differential analog input voltage
V
INQ
Analog input capacitance I and Q C
Full power input bandwidth (-3 dB) FPBW 1.5 GHz
Gain flatness (-0.5 dB) 500 MHz
Clock Input
Logic compatibility for clock inputs and DDRB Reset (pins 124,125,126,127,128,129)
PECL/ECL/LVDS
PECL/LVDS clock inputs voltages (V
CLKI/IN
or V
CLKQ/QN
)
- V
V
IL
IH
600 mV
Differential logical level
Clock input power level -9 0 6 dBm
Clock input capacitance 2 pF
Digital Outputs
Logic compatibility for digital outputs (depending on the value of V
CCO
)
Differential output voltage swings (assuming V
2153C–BDC–04/04
= 2.25V)
CCO
V
OD
LV DS
220 270 350 mV
7
Table 3. Electrical Operating Characteristics in Nominal Conditions (Continued)
Parameter Symbol Min Typ Max Unit
Output levels (assuming V 100Ω differentially terminated Logic 0 voltage Logic 1 voltage
Output offset voltage (assuming V 100Ω differentially terminated
Output impedance R
Output current (shorted output) 12 mA
Output current (grounded output) 30 mA
Output level drift with temperature 1.3 mV/°C
Digital Input (Serial Interface)
Maximum clock frequency (input clk) Fclk 50 MHz
Input logical level 0 (clk, mode, data, ldn) -0.4 0 0.4 V
= 2.25V)
CCO
= 2.25V)
CCO
V
OL
V
OH
V
OS
O
1.0
1.25
1125 1250 1325 mV
1.1
1.35
1.2
1.45
50 W
V V
Input logical level 1 (clk, mode, data, ldn) V
- 0.4 V
CCO
- 0.4 V
CCO
+ 0.4 V
CCO
Output logical level 0 (cal) -0.4 0 0.4 V
Output logical level 1 (cal) V
- 0.4 V
CCO
CCO
V
+ 0.4 V
CCO
Maximum output load (cal) 15 pF
Note: The gain setting is 0 dB, one clock input, no standby mode [full power mode], 1:1 DMUX, calibration off.
Table 4. Electrical Operating Characteristics
Parameter Symbol Min Typ Max Unit
DC Accuracy
No missing code Guaranteed over specified temperature range
Differential non-linearity DNL 0.25 0.6 LSB
Integral non-linearity INL 0.5 1 LSB
Gain error (single channel I or Q) with calibration -0.5 0 0.5 LSB
Input offset matching (single channel I or Q) with calibration -0.5 0 0.5 LSB
Gain error drift against temperature Gain error drift against V
CCA
0.062
0.064
Mean output offset code with calibration 127 127.5 128 LSB
Transient Performance
LSB/°C
LSB/mV
Bit Error Rate Fs = 1 Gsps
BER 10
-13
Fin = 250 MHz
ADC settling time channel I or Q (between 10% - 90% of output response) V
-V
= 500 mVpp
Ini
iniB
TS 170 ps
Note: Gain setting is 0 dB, two clock inputs, no standby mode [full power mode], 1:2 DMUX, calibration on.
8
AT84AD001B
-10
10
2153C–BDC–04/04
Error/
sample
AT84AD001B
Table 5. AC Performances
Parameter Symbol Min Typ Max Unit
AC Performance
Signal-to-noise Ratio
Fs = 1 Gsps Fin = 20 MHz
Fs = 1 Gsps Fin = 500 MHz 40 42 dBc
Fs = 1 Gsps Fin = 1 GHz 41 dBc
Effective Number of Bits
Fs = 1 Gsps Fin = 20 MHz
Fs = 1 Gsps Fin = 500 MHz 6.5 6.8 Bits
Fs = 1 Gsps Fin = 1 GHz 6.2 Bits
Total Harmonic Distortion (First 9 Harmonics)
Fs = 1 Gsps Fin = 20 MHz
Fs = 1 Gsps Fin = 500 MHz 45 51 dBc
Fs = 1 Gsps Fin = 1 GHz 42 dBc
Spurious Free Dynamic Range
Fs = 1 Gsps Fin = 20 MHz
Fs = 1 Gsps Fin = 500 MHz 48 54 dBc
Fs = 1 Gsps Fin = 1 GHz 43 dBc
Two-tone Inter-modulation Distortion (Single Channel)
= 499 MHz , F
F
IN1
Band flatness from DC up to 600 MHz ±0.5 dB
= 501 MHz at Fs = 1 Gsps IMD -54 dBc
IN2
SNR
ENOB
|THD|
|SFDR|
42 44 dBc
77.2 Bits
48 54 dBc
50 56 dBc
Phase matching using auto-calibration and FiSDA in interlace mode (channel I and Q) Fin = 250 MHz Fs = 1 Gsps
Crosstalk channel I versus channel Q Fin = 250 MHz, Fs = 1 Gsps
Notes: 1. Differential input [-1 dBFS analog input level], gain setting is 0 dB, two input clock signals, no standby mode,
1:1 DMUX, ISA = -50 ps.
2. Measured on the AT84AD001TD-EB Evaluation Board.
2153C–BDC–04/04
(2)
dϕ -0.7 0 0.7 °
Cr -55 dB
9
Table 6. AC Performances in Interlace Mode
Parameter Symbol Min Typ Max Unit
Interlace Mode
Maximum equivalent clock frequency Fint = 2 x Fs Where Fs = external clock frequency
Minimum clock frequency F
F
int
int
2Gsps
20 Msps
Differential non-linearity in interlace mode intDNL 0.25 LSB
Integral non-linearity in interlace mode intINL 0.5 LSB
Signal-to-noise Ratio in Interlace Mode
Fint = 2 Gsps Fin = 20 MHz
42 dBc
iSNR
Fint = 2 Gsps Fin = 250 MHz 40 dBc
Effective Number of Bits in Interlace Mode
Fint = 2 Gsps Fin = 20 MHz
7.1 Bits
iENOB
Fint = 2 Gsps Fin = 250 MHz 6.8 Bits
Total Harmonic Distortion in Interlace Mode
Fint = 2 Gsps Fin = 20 MHz
52 dBc
|iTHD|
Fint = 2 Gsps Fin = 250 MHz 49 dBc
Spurious Free Dynamic Range in Interlace Mode
Fint = 2 Gsps Fin = 20 MHz
|iSFDR|
54 dBc
Fint = 2 Gsps Fin = 250 MHz 52 dBc
Two-tone Inter-modulation Distortion (Single Channel) in Interlace Mode
= 249 MHz , F
F
IN1
= 251 MHz at F
IN2
= 2 Gsps iIMD -54 dBc
int
Note: One analog input on both cores, clock I samples the analog input on the rising and falling edges. The calibration
phase is necessary. The gain setting is 0 dB, one input clock I, no standby mode, 1:1 DMUX, FiSDA adjustment.
10
AT84AD001B
2153C–BDC–04/04
AT84AD001B
Table 7. Switching Performances
Parameter Symbol Min Typ Max Unit
Switching Performance and Characteristics - See “Timing Diagrams” on page 12.
Maximum operating clock frequency F
Maximum operating clock frequency in BIT and decimation modes
(BIT, DEC)
S
F
S
1 Gsps
750 Msps
Minimum clock frequency (no transparent mode)
Minimum clock frequency (with transparent mode) 1 Ksps
Minimum clock pulse width [high] (No transparent mode)
Minimum clock pulse width [low] (No transparent mode)
Aperture delay: nominal mode with ISA & FiSDA TA 1 ns
Aperture uncertainty Jitter 0.4 ps (rms)
Data output delay between input clock and data TDO 3.8 ns
Data Ready Output Delay TDR 3 ns
Data Ready Reset to Data Ready TRDR 2 ns
Data Output Delay with Data Ready TD2
Data Ready (CLKO) Delay Adjust (140 ps steps) Tdrda range -560 to 420 ps
Output skew 50 100 ps
Output rise/fall time for DATA (20% - 80%) TR/TF 300 350 500 ps
Output rise/fall time for DATA READY (20% - 80%) TR/TF 300 350 500 ps
Data pipeline delay (nominal mode)
Data pipeline delay (nominal mode) in S/H transparent mode
F
S
TC1 0.4 0.5 50 ns
TC2 0.4 0.5 50 ns
3.5 (port A, 1:1 DMUX mode)
TPD
4 (port A, 1:2 DMUX mode)
3 (port A, 1:1 DMUX mode)
3.5 (port A, 1:2 DMUX mode)
10 Msps
1/2 Fs
+Tdrda
3 (port B)
2.5 (port B)
ps
Clock cycles
DDRB recommended pulse width 1 ns
2153C–BDC–04/04
11

Timing Diagrams

Figure 4. Timing Diagram, ADC I or ADC Q, 1:2 DMUX Mode, Clock I for ADC I, Clock Q for ADC Q
Address: D7 D6 D5 D4 D3 D2 D1 D0 1 1 X X 1 X 0 0
TA
VIN
N + 1
N
N + 2
CLKI or CLKQ
Pipeline delay = 4 clock cycles
DOIA[0:7]
or DOQA[0:7]
DOIB[0:7]
or DOQB[0:7]
N - 4
Pipeline delay = 3 clock cycles
N - 3 N - 1 N +1
TD2
CLKOI or CLKOQ
(= CLKI/2)
CLKOI or CLKOQ
(= CLKI/4)
Figure 5. 1:1 DMUX Mode, Clock I = ADC I, Clock Q = ADC Q
Address: D7 D6 D5 D4 D3 D2 D1 D0 1 1 X X 0 X 0 0
N + 3
N - 2
Programmable delay
TDO
N
TDO
12
TA
VIN
N
N + 1
CLKI or CLKQ
Pipeline delay = 3.5 clock cycles
DOIA[0:7]
or DOQA[0:7]
N - 3
CLKOI or CLKOQ
DOIB[0:7] and DOQB[0:7] are high impedance
AT84AD001B
N + 2
N - 2
N + 3
N - 1
TDO
N
N + 1
2153C–BDC–04/04
Figure 6. 1:2 DMUX Mode, Clock I = ADC I, Clock I = ADC Q
Address: D7 D6 D5 D4 D3 D2 D1 D0 1 0 X X 1 X 0 0
AT84AD001B
TA
VIN
N
CLKI
DOIA[0:7]
DOIB[0:7]
DOQA[0:7]
DOQB[0:7]
CLKOI
(= CLKI/2)
CLKOI
(= CLKI/4)
CLKOQ is high impedance
N + 1
Pipeline delay = 4 clock cycles
NI - 4
Pipeline delay = 3 clock cycles
NI - 3 NI - 1 NI +1
NQ - 4 NQ - 2 NQ
NQ - 3 NQ - 1 NQ +1
N + 2
TD2
N + 3
NI - 2
TDO
NI
TDO
2153C–BDC–04/04
13
Figure 7. 1:1 DMUX Mode, Clock I = ADC I, Clock I = ADC Q
Address: D7 D6 D5 D4 D3 D2 D1 D0 1 0 X X 0 X 0 0
TA
VIN
N
N + 1
CLKI
Pipeline delay = 3.5 clock cycles
DOIA[0:7]
DOQA[0:7]
N - 3
N - 3
CLKOI
DOIB[0:7] and DOQB[0:7] are high impedance CLKOQ is high impedance
N + 2
N - 2
N - 2
N + 3
N - 1
N - 1
TDO
N
N
N + 1
N + 1
14
AT84AD001B
2153C–BDC–04/04
Figure 8. 1:2 DMUX Mode, Clock I = ADC I, Clock IN = ADC Q
Address: D7 D6 D5 D4 D3 D2 D1 D0 0 X X X 1 X 0 0
N + 4
N + 5
VIN
CLKI
CLKIN
TA
N + 2
N + 1
N
N + 3
AT84AD001B
N + 6
DOQA[0:7]
DOQB[0:7]
DOIA[0:7]
DOIB[0:7]
CLKOI
(= CLKI/2)
CLKOI
(= CLKI/4)
CLKOQ is high impedance
Pipeline delay = 4 clock cycles
N - 8
Pipeline delay = 3 clock cycles
N - 6 N - 2 N + 2
Pipeline delay = 3.5 clock cycles
N - 7 N - 3 N + 1
N - 5 N - 1 N + 3
TD2
N - 4
TDO
N
TDO
TDO
2153C–BDC–04/04
15
Figure 9. 1:1 DMUX Mode, Clock I = ADC I, Clock IN = ADC Q
Address: D7 D6 D5 D4 D3 D2 D1 D0 0 X X X 0 X 0 0
N + 4
N + 5
VIN
CLKI
CLKIN
TA
N + 2
N + 1
N
N + 3
N + 6
Pipeline delay = 3.5 clock cycles
DOQA[0:7]
DOIA[0:7]
N - 6
Pipeline delay = 3 clock cycles
N - 5
N - 4
N - 3
CLKOI
(= CLKI/2)
DOIB[0:7] and DOQB[0:7] are high impedance CLKOQ is high impedance
Figure 10. 1:1 DMUX Mode, Decimation Mode Test (1:16 Factor)
Address: D7 D6 D5 D4 D3 D2 D1 D0 1 0 X X 0 X 0 0
N + 16
VIN
N - 16
16 clock cycles
N
N - 2
N - 1
N + 32
TDO
TDO
N
N + 1
N + 2
N + 3
CLKI
DOIA[0:7]
DOQA[0:7]
N - 16
N - 16
N
N
N + 16 N + 32 N + 48
N + 16 N + 32 N + 48
CLKOI
DOIB[0:7] and DOQB[0:7] are high impedance CLKOQ is high impedance
Notes: 1. The maximum clock input frequency in decimation mode is 750 Msps.
2. Frequency(CLKOI) = Frequency(Data) = Frequency(CLKI)/16.
16
AT84AD001B
2153C–BDC–04/04
Figure 11. Data Ready Reset
AT84AD001B
500 ps
CLKI or
CLKQ
1 ns min
DDRB
Figure 12. Data Ready Reset 1:1 DMUX Mode
TA
VIN
Clock in
Reset
CLKI or
CLKQ
DOIA[0:7] or
DOQA[0:7]
N
ALLOWED
N + 1
500 ps
FORBIDDENFORBIDDEN
ALLOWED
Pipeline Delay + TDO
N
TDR
CLKOI or
CLKOQ
2 ns
TDR
DDRB
1 ns min
Note: The Data Ready Reset is taken into account only 2 ns after it is asserted. The output clock first completes its cycle (if the reset
occurs when it is high, it goes low only when its half cycle is complete; if the reset occurs when it is low, it remains low) and then only, remains in reset state (frozen to a low level in 1:1 DMUX mode). The next falling edge of the input clock after reset makes the output clock return to normal mode (after TDR).
2153C–BDC–04/04
17
Figure 13. Data Ready Reset 1:2 DMUX Mode
TA
VIN
CLKI or
CLKQ
DOIA[0:7] or
DOQA[0:7]
Clock in
Reset
N
N + 1
Pipeline Delay + TDO
N
DOIB[0:7] or
DOQB[0:7]
CLKOI or CLKOQ
(= CLKI/2)
CLKOI or CLKOQ
(= CLKI/4)
DDRB
Notes: 1. In 1:2 DMUX, Fs/2 mode:
The Data Ready Reset is taken into account only 2 ns after it is asserted. The output clock first completes its cycle (if the reset occurs when it is low, it goes high only when its half cycle is complete; if the reset occurs when it is high, it remains high) and then only, remains in reset state (frozen to a high level in 1:2 DMUX Fs/2 mode). The next rising edge of the input clock after reset makes the output clock return to normal mode (after TDR).
2. In 1:2 DMUX, Fs/4 mode: The Data Ready Reset is taken into account only 2 ns after it is asserted. The output clock first completes its cycle (if the reset occurs when it is high, it goes low only when its half cycle is complete; if the reset occurs when it is low, it remains low) and then only, remains in reset state (frozen to a low level in 1:2 DMUX Fs/4 mode). The next rising edge of the input clock after reset makes the output clock return to normal mode (after TDR).
N + 1
TDR
TDR
TDR + 2 cycles
TDR + 2 cycles
2 ns
1 ns min
18
AT84AD001B
2153C–BDC–04/04
Loading...
+ 42 hidden pages