How it works .................................................................................................................................................. 5
III. Installation ............................................................................................................................................... 12
Pre-Installation preparation: analog signal levels (RAVE 160, 161, and 188 only) .................................. 1 2
IV. Connections.............................................................................................................................................. 1 4
Analog audio connections ...........................................................................................................................14
Digital audio connections............................................................................................................................15
AC power .....................................................................................................................................................16
RS232 port ................................................................................................................................................... 17
Status indicators .......................................................................................................................................... 18
Channel signal indicators...................................................................................................... ...................... 19
VI. FAQ: Frequently Asked Questions .......................................................................................................21
VII. Specifications ..........................................................................................................................................23
VIII. Appendix ................................................................................................................................................... 24
IX. Address & Telephone Information ...................................................................................................... 25
lintrérieur dun triangle équilatéral est utilisé
pour alerter lutilisateur de la presence à
lintérieur du coffret de voltage dangereux
non isolé dampleur suffisante pour constituer
un risque delétrocution.
Le point dexclamation à lintérieur dun tri-
angle équilatéral est employé pour alerter les
utilisateurs de la présence dinstructions
importantes pour le fonctionnement et
lentretien (service) dans le livret dinstruction
accompagnant lappareil.
ERKLÄRUNG DER GRAPHISCHEN
SYMBOLE
Der Blitz nach unten zeigendem Pfeil in einem
gleichseitigen Dreieck weist den Benutzer auf
das Vorhandensein einer unisolierten,
gefährlichen Spannung im Gehäuse hin, die
stark sein kann, einer Person einen
elektrischen Schlag zu versetzen.
Das Ausrufzeichen in einem gleichseitigen
Dreieck weist den Benutzer auf wichtige
Betriebs- und Wartungs- vorschriften in den
beiliegenden Unterlagen des Gerätes hin.
CAUTION
RISK OF ELECTRIC SHOCK
DO NOT OPEN
CAUTION: To reduce the risk of electric shock, do not remove
the cover. No user-serviceable parts inside. Refer servicing
to qualified service personnel.
WARNING: To prevent fire or electric shock, do not expose this
equipment to rain or moisture.
AVIS
RISQUE DE CHOC ÉLECTRIQUE
NE PAS OUVRIR
ATTENTION: Pour eviter les risques de choc électrique, ne pas
enlever le courvercle. Aucun entretien de pièces intérieures
par lusager. Confier lentretien au personnel qualifié.
AVIS: Pour eviter les risques dincendie ou délectrocution,
nexposez pas cet article à la pluie ou a lhumidité.
VORSICHT
GEFAHR EINES ELEKTRISCHEN
SCHLAGES. NICHT ÖFFNEN!
VORSICHT: Um das Risiko eines elektrischen Schlages zu
vermindern, Abdeckung nicht entfernen! Keine Benutzer
Wartungsteile im Innern. Wartung nur durch qualifiertes
Wartungspersonal.
WARNUNG: Zur vermeidung von Feuer oder elektrischen
Schlägen, das Gerät nicht mit Regen oder Feuchtigkeit in
Berührung bringen!
SAFEGUARDS
Electrical energy can perform many useful functions.
This unit has been engineered and manufactured to
assure your personal safety. Improper use can result in
potential electrical shock or fire hazards. In order not to
defeat the safeguards, observe the following instruc-
tions for its installation, use and servicing.
FEDERAL
COMMUNICATIONS
COMMISSION (FCC)
INFORMATION
NOTE: This equipment has been
tested and found to comply
with the limits for a Class A
digital device, pursuant to Part
15 of the FCC Rules. These
limits are designed to provide
reasonable protection against
harmful interference in a commercial installation. This
equipment generates, uses,
and can radiate radio frequency
energy and, if not installed and
used in accordance with the
instructions, may cause harmful interference to radio communications. Operation of this
equipment in a residential area
is likely to cause harmful interference, in which case the
user will be required to correct
the interference at his or her
own expense.
PRECAUTIONS
DECLARATION OF CONFORMITY
for all RAVE models
We declare as our sole responsibility that this
product is in compliance with the EMC Direc-
tive 89/336/EEC and conforms to the require-
ments of the Harmonized Product Standards
EN 55013 (Product Emissions), and EN 55020
(Product Immunity).
Lénergie électrique peut remplir de nombreuses fonctions
utiles. Cet appariel a été conçu et réalisé pour assurer
une sécurité personnelle entiére. Une utilisation impropre
peut entraîner des risques délectrocution ou dincendie.
Dans le but de ne pas rendre inutiles les mesures de
sécurité, bien observer les instructions suivantes pour
linstallation, lutilisation et lentretien de lappareil.
2
I. Introduction
RAVE Digital Audio Router products provide a means of transporting audio signals over a data network. Using
common Fast Ethernet as the physical medium, a RAVE system has a maximum capacity of 64 channels on a
100baseTX network. RAVE transports the audio signals over the network in a 48 kHz 20-bit digital format. Each
unit has a female RJ-45 connector on its rear panel for connecting to a standard Ethernet twisted-pair cable.
For economy and flexibility, you can use standard off-the-shelf Fast Ethernet devices such as hubs and fiber optic
media converters with your RAVE system.
You need at least two RAVE devices—one to send and one to receive, or two to both send and receive—to route
audio over an Ethernet. There are currently six RAVE models, with three basic send/receive configurations (16
channels send, 16 channels receive, or 8 channels send/8 channels receive), with either analog or digital AES3
(often called AES/EBU) ins and outs. The six models are numbered as follows:
A RAVE system handles routing in groups of 8 individual audio channels.
Power LED
Front view of a RAVE 161; other models are simliar
Network channel
selector switches
(behind cover)
Network status LEDsAudio signal level LEDs
3
Rear views,
from top:
RAVE 160,
RAVE 188,
RAVE 161,
RAVE 80,
RAVE 88, and
RAVE 81.
GLOSSARY
Below are some terms used in this manual that RAVE users should be familiar with.
AES3—A technological specification for inter-device conveyance of a dual-channel (stereo) digital audio
signal. Also called AES/EBU.
Crossover cable—A type of twisted-pair Ethernet patch cable, but somewhat analogous in function to a
null modem cable. Unlike a normal patch cable, the transmit and receive wire pairs are swapped at
one end, permitting a direct connection of two nodes without a hub in between. A crossover cable is
also suitable for cascading hubs that don’t have an available uplink port. It also has nothing to do with
an audio crossover.
Network channel—A RAVE network group of eight audio channels, with a channel number designated by
a switch on the sending unit. Don’t confuse this term with actual audio channels. A RAVE network
multiplexes eight audio channels onto a single network channel and routes the entire network channel
as a whole. A receiving RAVE unit set to a particular network channel will output all eight of the network
channel’s audio signals.
Uplink port—A special port on a hub, used for cascading to another hub. Usually it’s offered in tandem with
a normal port so you can use one or the other, but not both. For example, a 5-port hub with an uplink
allows you to connect to five nodes via the normal ports, or to four nodes via normal ports plus one
hub via the uplink port.
4
HOW IT WORKS
Ethernet networks are most often used for computer systems; a typical application would be in an office with
servers, workstations, and shared printers. These devices use the Ethernet medium in an unregulated, nondeterministic way. This means that they transmit data messages (called “packets”) only when necessary, and
the length of the messages may vary depending on the sending device and on the type and amount of data being
sent. When it has a message to send on the network, a device, or node, waits until there is no traffic, then sends
it. If two or more nodes try to send messages at the same time, a collision occurs; each node then waits a random
length of time before trying again. In this type of application, reasonable latency (the length of time from when
the transmitting node has a message ready to send, to when the receiving node actually receives it) is not a
problem, since a second or two delay in the
transmission of a print job or an e-mail message won’t have any noticeable effect.
Audio signals (especially multi-channel), however, generally can’t tolerate a delay of even
a significant fraction of a second, or even
worse, a varying, unpredictable delay. This
would cause glitches, dropouts, noise, and
other nasty and undesirable artifacts in the
final audio signal.
Internal block diagram of a RAVE unit; chief difference among the different models is the
audio I/O (below)
RAVE 160: 16 analog outsRAVE 161: 16 analog insRAVE 188: 8 analog ins + 8
analog outs
Therefore, the CobraNet™ technology used in a
RAVE system employs a regulated, deterministic
system of packet timing to ensure consistent and
reliable transmission without dropouts or glitches.
The RAVE devices on a common network will automatically negotiate the time slots among themselves. For efficiency, the sample data from eight
audio channels are grouped together in each packet.
RAVE units will synchronize themselves over the
network, and they have BNC connectors on the rear
panels for sending sync signals. This allows them to
synchronize external digital audio equipment to the
RAVE network.
5
Channel routing
A RAVE network handles routing in groups of eight audio channels, and each group of eight transmitted on the
network makes up one network channel. Each RAVE device handles two network channels—two sent, two
received, or one of each. For example, a RAVE 161 unit, with 16 analog audio inputs, represents two transmitted
groups, and thus two separate network channels; one comprises audio channels 1 through 8—the other, channels
9 through 16.
Similarly, a RAVE 80, with eight AES3 digital outputs, represents two receiving groups (each AES3 channel carries
two audio channels). Either one can be configured to receive any network channel—even the same one, if you
needed what would essentially be a digital “Y” cable.
A RAVE device that both sends and receives, such as the RAVE 188 (eight analog inputs and 8 analog outputs)
or RAVE 88 (4 AES3 inputs and 4 AES3 outputs), transmits one network channel and can receive another. It can
receive the same network channel that it transmits, but only if it is connected to a hub or another unit, on a valid
network.
Behind a removable cover on the front panel of a RAVE unit are four hexadecimal rotary switches for selecting
the network channels of the device’s two groups. The two switches on the left set the address of the device’s
first group (channels 1 through 8 on the RAVE 80, 81, 160, and 161; inputs 1 through 8 on the RAVE 88 and 188),
while the two on the right set the address of the device’s second group (channels 8 through 16 on the RAVE 80,
81, 160, and 161; outputs 1 through 8 on the RAVE 88 and 188). Detailed instructions on setting network channel
numbers follow later in the Operation chapter.
II. Network Design
There are several ways to configure a RAVE network, from very simple to relatively complex. The number of RAVE
units in the network, where they are located, and your future expansion plans will determine what net topology
would be best. The same techniques you would use in designing a conventional 100-Mbps Fast Ethernet will assist
you in designing a RAVE network.
RAVE units can use unshielded twisted pair wiring, but it must be at least Category 5 (or CAT-5, for short) quality.
Anything less may cause unreliable operation of the network, if it runs at all. Fortunately, most new Ethernet
cable installations in buildings use Category 5 cable.
6
NETWORK TOPOLOGY EXAMPLES
Two nodes with a direct cable connection
Advantages: very low cost; very high reliability; simple to implement
Disadvantages: limited to 100 meters (328 feet) total network size; no expandability; uses non-standard
wiring of RJ-45 connectors on Ethernet cable
The simplest and most direct RAVE network
comprises two RAVE units connected by a
single crossover cable. This network has only
one segment, so the 100-meter limit applies
to the segment and thus to the entire network. There are no hardware costs other than
the RAVE units themselves and the cable for
the interconnection. Also, there are few potential failure points. However, there is no way to connect additional
RAVE units without resorting to adding a hub, and because a crossover cable isn’t usually an off-the-shelf item,
you’ll probably have to wire it yourself.
Two nodes with a 100baseTX hub
Advantages: greater network size—up to 200 meters (656 feet); high reliability; readily expandable; uses
standard Ethernet patch cables
Disadvantages: higher cost
This network is similar to the previous one,
but with a hub in between, breaking up the
network into two segments which can each
be up to 100 meters long. Yes, there is the
added expense of a hub, and you are adding
the slight possibility of a hub failure, but the
net media can be simple off-the-shelf patch
cables, and you can easily expand the network by connecting additional nodes to the hub. Astute observers and those who read ahead in the manual will
notice that this network configuration is really just a star topology with only two nodes.
7
Star topology
Advantages: greater network size—up to 200 meters (656 feet); high reliability; readily expandable; uses
standard Ethernet patch cables
Disadvantages: higher cost
Add nodes—i.e., RAVE units—to the previous net layout and you have the classic star
topology. This name comes from the hub
being at the center and the nodes radiating
out from it like the points of a star. It doesn’t
matter if the nodes are actually right next to
one another while the hub is in another
room—it’s still a star topology. You can
connect as many RAVE units as there are ports on the hub.
Distributed star topology
Advantages: greater network size; high reliability; readily expandable; uses standard Ethernet patch
cables
Star network topology
Disadvantages: higher cost
What do you do when you have more RAVE units than available hub ports? Add more hubs, of course. Most Fast
Ethernet hubs now are stackable, either through an uplink port that lets you connect an additional hub to one
already in the network, or through a backplane connection. The resulting network topolgy is called a distributed
star, because it is made up of interconnected multiple stars. The maximum UTP cable length from hub to hub,
or from hub to RAVE unit, is 100 meters (328 feet).
The example shown on the following page uses three hubs. The maximum size of this particular CobraNet network
would be 400 meters (1312 feet), allowing two 100-meter cable runs among the three hubs, plus 100-meter cable
runs on the end hubs.
You can expand the distances even further by daisy-chaining more hubs and cable segments. There are technical
and practical limits to this strategy; see the section on network limitations for further information.
LONGER DISTANCE THROUGH FIBER
Sometimes a network may span long distances without any practical need for hubs distributed along the way.
The computer networking industry, on whom we’re already relying for an economical and rugged transport
medium, has an answer to this need also: fiber optics.
8
Loading...
+ 19 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.