Philips TDA6103Q User Manual

INTEGRATED CIRCUITS
DATA SH EET
TDA6103Q
Triple video output amplifier
Preliminary specification File under Integrated Circuits, IC02
Philips Semiconductors
March 1994
Philips Semiconductors Preliminary specification
Triple video output amplifier TDA6103Q

FEATURES

High bandwidth: 7.5 MHz typical; 60 V (peak-to-peak value)
High slew rate: 1600 V/µs
Simple application with a variety of colour decoders
Only one supply voltage needed
Internal protection against positive appearing
Cathode-Ray Tube (CRT) flashover discharges
One non-inverting input with a low minimum input voltage of 1 V
Thermal protection
Controllable switch-off behaviour.

ORDERING INFORMATION

EXTENDED TYPE
NUMBER
PINS PIN POSITION MATERIAL CODE
TDA6103Q 9 DBS9 plastic SOT111BE

BLOCK DIAGRAM

GENERAL DESCRIPTION

The TDA6103Q includes three video output amplifiers in one single in-line 9-pin medium power (SIL9MP) package SOT111BE, using high-voltage DMOS technology, intended to drive the three cathodes of a colour CRT.
PACKAGE
V
oc
(3x)
inverting
input
(3x)
9,8,7
1,2,3
3x
FLASH-
DIODE
V
DD
V
DD
MIRROR 2
V
DD
1x
LEVEL-
SHIFTER 1
V
bias
V
DD
MIRROR 3
DIFFERENTIAL
STAGE
V
DD
LEVEL-
SHIFTER 2
MIRROR 1
V
DD
CURRENT SOURCES
4
6
TDA6103Q
THERMAL
PROTECTION
GND
MGA968
non-inverting
5
V
ip
input
Fig.1 Block diagram (one amplifier shown).
Philips Semiconductors Preliminary specification
Triple video output amplifier TDA6103Q

PINNING

SYMBOL PIN DESCRIPTION
1
V V V
GND
V
V
DD
V
oc3
V
oc2
V
oc1
i1
2
i2
3
i3
4
TDA6103Q
5
ip
6 7 8 9
MGA969
V
i1
V
i2
V
i3
1 inverting input 1 2 inverting input 2
3 inverting input 3 GND 4 ground, fin V
ip
V
DD
V
oc3
V
oc2
V
oc1
5 non-inverting input
6 supply voltage
7 cathode output 3
8 cathode output 2
9 cathode output 1
Fig.2 Pin configuration.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages measured with respect to GND (pin 4); currents as specified in Fig.1; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DD
V
i
V
idm
V
oc
I
ocsmL
supply voltage 0 250 V
input voltage 0 12 V
differential mode input voltage 6+6V
cathode output voltage 0 V
LOW non-repetitive peak cathode
flashover discharge = 50 µC05A
DD
V
output current I
ocsmH
HIGH non-repetitive peak cathode
flashover discharge = 100 nC 0 10 A
output current T
stg
T
j
V
es
storage temperature 55 +150 °C
junction temperature 20 +150 °C
electrostatic handling
human body model (HBM) tbf V machine model (MM) tbf V

HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see
“Handling MOS Devices”
).

QUALITY SPECIFICATION

Quality specification
“SNW-FQ-611 part E”
is applicable and can be found in the
“Quality reference pocketbook”
(ordering
number 9398 510 34011).
Philips Semiconductors Preliminary specification
Triple video output amplifier TDA6103Q

THERMAL RESISTANCE

SYMBOL PARAMETER THERMAL RESISTANCE
R
th j-fin
R
th h-a
Note
1. An external heatsink is necessary.
6
5
P
tot
(W)
4
3
from junction to fin; note 1 11 K/W from heatsink to ambient 18 K/W

Thermal protection

MGA972
The internal thermal protection circuit gives a decrease of the slew rate at high temperatures: 10% decrease at 130 °C and 30% decrease at 145 °C (typical values on the spot of the thermal protection circuit).
(1)
2
1
0
(1) Infinite heatsink. (2) No heatsink.
Fig.3 Power derating curves.
(2)
0 50 100–50
T ( C)
amb
150
o
OUTPUTS
5 K/W
Thermal protection circuit
6 K/W
FIN
MGA970
Fig.4 Equivalent thermal resistance network.
Philips Semiconductors Preliminary specification
Triple video output amplifier TDA6103Q

CHARACTERISTICS

Operating range: T Test conditions (unless otherwise specified): T
= 10 pF (CL consists of parasitic and cathode capacitance); R
C
L
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
I
DD
I
bias
quiescent supply current 7.0 9.25 11.5 mA input bias current inverting inputs
(pins 1, 2 and 3)
I
bias
input bias current non-inverting input (pin 5)
V
i(offset)
input offset voltage (pins 1, 2 and 3)
V
i(offset)
differential input offset voltage temperature drift between pins 1 and 5; 2 and 5; 3 and 5
C
icm
common-mode input capacitance (pins 1, 2 and 3)
C
icm
common-mode input capacitance (pin 5)
C
idm
differential mode input capacitance between 1 and 5; 2 and 5; 3 and 5
V
oc(min)
minimum output voltage (pins 7, 8 and 9)
V
oc(max)
maximum output voltage (pins 7, 8 and 9)
GB gain-bandwidth product of
open-loop gain: V
B
S
small signal bandwidth (pins 7, 8 and 9)
B
L
large signal bandwidth (pins 7, 8 and 9)
t
pd
cathode output propagation delay time 50% input to 50% output (pins 7, 8 and 9)
t
p
difference in cathode output propagation time 50% input to 50% output (pins 7 and 8, 7 and 9 and 8 and 9)
t
r
cathode output rise time 10% output to 90% output (pins 7, 8 and 9)
t
f
cathode output fall time 90% output to 10% output (pins 7, 8 and 9)
= 20 to 150 °C; VDD = 180 to 210 V; Vip = 1 to 4 V.
j
= 25 °C; VDD = 200 V; Vip = 1.3 V; V
amb
V
= V
15
V
= V
15
note 1 f = 500 kHz 0.75 GHz
oc1, 2, 3/Vi1-5, 2-5, 3-5
V
= 60 V 6 7.5 MHz
oc(p-p)
V
= 100 V 5 7 MHz
oc(p-p)
V
= 100 V square
oc(p-p)
wave; f < 1 MHz; tr=tf= 40 ns (pins 1, 2 and 3); see Figs 7 and 8
V
= 100 V square
oc(p-p)
wave; f < 1 MHz; tr=tf= 40 ns (pins 1, 2 and 3)
Voc = 50 to 150 V square wave; f < 1 MHz; tf = 40 ns (pins 1, 2 and 3); see Fig.7
Vo = 150 to 50 V square wave; f < 1 MHz; tr = 40 ns (pins 1, 2 and 3); see Fig.8
25
25
= V
= V
oc1
oc2
= 18 K/W; measured in test circuit Fig.5.
th h-a
=1⁄2VDD;
oc3
5 1+A
15 3+A
50 +50 mV
tbf mV/K
5 pF
10 pF
1 pF
= V
= 1V 510V
35
= V
35
= 1 V;
VDD− 10 VDD− 6 V
38 ns
10 0 +10 ns
48 60 73 ns
48 60 73 ns
Loading...
+ 11 hidden pages