Philips saa7140a, saa7140b DATASHEETS

INTEGRATED CIRCUITS
DATA SH EET
SAA7140A; SAA7140B
High Performance Scaler (HPS)
Objective specification Supersedes data of 1996 Jul 26 File under Integrated Circuits, IC22
1996 Sep 04
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B

CONTENTS

1 FEATURES 2 GENERAL DESCRIPTION 3 ORDERING INFORMATION 4 BLOCK DIAGRAM 5 PINNING (SAA7140A) 6 PINNING (SAA7140B) 7 FUNCTIONAL DESCRIPTION
7.1 Data format/reformatter and reference signal generation
7.1.1 Data formats and reference signals of the DMSD port
7.1.2 Data formats and reference signals of the expansion port
7.2 Acquisition control
7.3 BCS control
7.4 Scaling unit
7.4.1 Horizontal prescaling
7.4.2 Vertical scaler
7.4.3 Horizontal variable phase scaling
7.5 CSM (Colour Space Matrix), dither and gamma correction
7.6 Output formatter and output FIFO register
7.6.1 Data formats and reference signals of the VRAM port
7.7 Data transfer modes
7.7.1 Expansion port modes
7.8 VRAM port modes
7.8.1 Data burst transfer mode (FIFO Mode)
7.8.2 Continuous data transfer mode (transparent mode)
7.8.3 I2C-bus controlled pseudo sleep mode
8I
8.1 I2C-bus format
8.2 I2C-bus bitmap
8.3 Description of the I2C-bus bits
8.3.1 Initial settings for the expansion and DMSD
8.3.2 Initial settings for the VRAM port;
8.3.3 Port I/O control; subaddress 21H
8.3.4 Register set A (02H to 1FH) and B
9 LIMITING VALUES 10 HANDLING 11 THERMAL CHARACTERISTICS 12 DC CHARACTERISTICS 13 AC CHARACTERISTICS
2
C-BUS PROTOCOL
port; Subaddress 00H
subaddress 01H
(22H to 3FH)
14 PACKAGE OUTLINE 15 SOLDERING
15.1 Introduction
15.2 Reflow soldering
15.3 Wave soldering
15.3.1 QFP
15.3.2 SO
15.3.3 Method (QFP and SO)
15.4 Repairing soldered joints 16 DEFINITIONS 17 LIFE SUPPORT APPLICATIONS 18 PURCHASE OF PHILIPS I2C COMPONENTS
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B

1 FEATURES

Scaling of video pictures down to randomly sized
windows
Horizontal upscaling (zoom)
Two dimensional phase-correct data processing for
improved signal quality of scaled data, especially for compression applications
Processing of a maximum of 2047 active samples per
line (V-processing in bypass) and 2047 active lines per frame
16-bit YUV data input port
Bidirectional expansion port with full duplex functionality
(D1) or 16-bit YUV input/output
Discontinuous data stream supported
Field-wise switching between two data sources
2
Two independent I
Brightness, contrast and saturation controls for scaled
outputs
Chroma key (α generation)
YUV-to-RGB conversion including anti-gamma
correction for RGB
16-word FIFO register for 32-bit output data
Output configurable for 32, 24, 16 and 8-bit video data
Scaled 16-bit 4 :2:2 YUV output
Scaled 15-bit RGB (5, 5, 5) + α with dither and 24-bit
RGB (8, 8, 8) + α output
Scaled 8-bit monochrome output
Four independent user configurable general purpose I/O
pins
Low power consumption in I2C-bus controlled pseudo
sleep mode
Support of 5 V (SAA7140A) and pure 3.3 V
(SAA7140B) signalling environment.
C-bus programming sets

2 GENERAL DESCRIPTION

The SAA7140A and SAA7140B are CMOS High Performance Scaler (HPS) and is a highly integrated circuit designed for use in DeskTop Video (DTV) applications. The devices resample digital video signals using two dimensional phase-correct interpolation in order to display it in an arbitrarily sized window.
The SAA7140A fits perfectly into a 5 V signal environment and requires two different supply voltages (5 V and 3.3 V). The SAA7140B is a pure 3.3 V design and therefore has only 3.3 V supply pins. With respect to functions and programming, both devices are identical.
The devices incorporate additional functions such as control of brightness, saturation, contrast, chroma key generation, YUV-to-RGB conversion, compensation of gamma precorrection, dithering and choice of several output formats.
The SAA7140A and SAA7140B accepts data from 1 or 2 input signal sources, via it’s 16-bit YUV input port and/or the bidirectional expansion port. They deliver scaled data on the 32-bit VRO output port and, if selected, also on the bidirectional expansion port. A synchronous (transparent) together with an asynchronous (burst) data transfer mode is supported at the 32-bit VRO port.

3 ORDERING INFORMATION

TYPE
NUMBER
SAA7140A LQFP128 plastic low profile quad flat package; 128 leads; body 14 × 20 × 1.4 mm SOT425-1 SAA7140B LQFP128 plastic low profile quad flat package; 128 leads; body 14 × 20 × 1.4 mm SOT425-1
NAME DESCRIPTION VERSION
PACKAGE
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B

4 BLOCK DIAGRAMS

PORT
VRAM
VRO31 to 0
HGTV
VSYV
FLDV
PXQV
INCADR
HFL
47
46
454855
54
MHA117
Y
U
V
dbook, full pagewidth
EXPANSION PORT
VIDH7 to 0 VIDL7 to 0 LLCIO PXQIO HIO VIO FDIO
1 125 126 127 105 to 112 117 to 124 128 104 103 102 97
LLCIN PXQIN HIN VIN
SSD(core) 1 to 4
V
DDD(core) 1 to 4
V
SAA7140A
EXPANSION PORT INTERFACE
reference
DATA
FORMATTER/
18 to 11
FINE 
HORIZONTAL
ARITHMETIC
SCALING UNIT
REFORMATTER
LINE
VERTICAL PROCESSING
MEMORY
HORIZONTAL
PRESCALING
Y
V
U
BCS
CONTROL
Y
UV
CONTROL
ACQUISITION
UV
AND
6
PXQ
SIGNAL
REFERENCE
GENERATION
7
Y
28 to 21
SCALING
CONTROL
V
H
8
5
CLK
57 to 65, 70 to 81, 86 to 96
OUTPUT FORMATTER
OUTPUT FIFO REGISTER
RGB
CSM
DITHERING
γ-CORRECTION
YUV
status
controls
C
2
I
CONTROL
32
31
38 to 41
33
VCLKVOEN
5243 44 49 50 56
VMUX
Fig.1 Block diagram (SAA7140A).
AP SP BTST
42
VS
CREF
UVIN7 to 0
DMSD
HREF
PORT
SSD(bord) 1 to 11
DDD(bord) 1 to 12
V
V
YIN7 to 0
1996 Sep 04 4
LLC
SCL
PORT3 to 0
SDA
IICSA
RES
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
PORT
VRAM
VRO31 to 0
HGTV
VSYV
FLDV
PXQV
INCADR
HFL
47
46
454855
54
MHA360
Y
U
V
andbook, full pagewidth
EXPANSION PORT
VIDH7 to 0 VIDL7 to 0 LLCIO PXQIO HIO VIO FDIO
1 125 126 127 105 to 112 117 to 124 128 104 103 102 97
LLCIN PXQIN HIN VIN
SAA7140B
EXPANSION PORT INTERFACE
reference
DATA
FORMATTER/
FINE 
HORIZONTAL
ARITHMETIC
SCALING UNIT
REFORMATTER
LINE
VERTICAL PROCESSING
MEMORY
HORIZONTAL
PRESCALING
Y
V
U
BCS
CONTROL
Y
UV
CONTROL
ACQUISITION
UV
AND
PXQ
SIGNAL
REFERENCE
GENERATION
Y
SCALING
CONTROL
V
H
CLK
57 to 65, 70 to 81, 86 to 96
OUTPUT FORMATTER
OUTPUT FIFO REGISTER
RGB
CSM
DITHERING
γ-CORRECTION
YUV
status
controls
C
2
I
CONTROL
VCLKVOEN
5243 44 49 50 56
VMUX
Fig.2 Block diagram (SAA7140B).
AP SP BTST
18 to 11
6
7
28 to 21
CREF
DDD1 to 16
V
SSD1 to 15
V
YIN7 to 0
UVIN7 to 0
DMSD
HREF
PORT
1996 Sep 04 5
8
5
VS
LLC
38 to 41
PORT3 to 0
32
31
33
42
SCL
SDA
IICSA
RES
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B

5 PINNING (SAA7140A)

SYMBOL PIN I/O DESCRIPTION
LLCIN 1 I line-locked system clock input; expansion port
V
DDD(bord)1
V
SSD(bord)1
V
DDD(bord)2
LLC 5 I line-locked system clock input, maximum 32 MHz (2 × pixel rate); DMSD port CREF 6 I clock qualifier input (HIGH indicates valid input data YUV on DMSD port) HREF 7 I horizontal reference input signal; DMSD port VS 8 I vertical sync input signal; DMSD port
V
DDD(core)1
V
SSD(bord)2
YIN0 11 I luminance input data (bit 0); DMSD port YIN1 12 I luminance input data (bit 1); DMSD port YIN2 13 I luminance input data (bit 2); DMSD port YIN3 14 I luminance input data (bit 3); DMSD port YIN4 15 I luminance input data (bit 4); DMSD port YIN5 16 I luminance input data (bit 5); DMSD port YIN6 17 I luminance input data (bit 6); DMSD port YIN7 18 I luminance input data (bit 7); DMSD port
V
DDD(bord)3
V
SSD(core)1
UVIN0 21 I time-multiplexed colour-difference input data (bit 0); DMSD port UVIN1 22 I time-multiplexed colour-difference input data (bit 1); DMSD port UVIN2 23 I time-multiplexed colour-difference input data (bit 2); DMSD port UVIN3 24 I time-multiplexed colour-difference input data (bit 3); DMSD port UVIN4 25 I time-multiplexed colour-difference input data (bit 4); DMSD port UVIN5 26 I time-multiplexed colour-difference input data (bit 5); DMSD port UVIN6 27 I time-multiplexed colour-difference input data (bit 6); DMSD port UVIN7 28 I time-multiplexed colour-difference input data (bit 7); DMSD port
V
DDD(bord)4
V
SSD(bord)3
SDA 31 I/O serial data input/output (I SCL 32 I serial clock input (I IICSA 33 I set address input (I
V
DDD(bord)5
V
SSD(bord)4
V
DDD(bord)6
V
SSD(bord)5
PORT3 38 I/O general purpose port 3 input/output (set via I PORT2 39 I/O general purpose port 2 input/output (set via I PORT1 40 I/O general purpose port 1 input/output (set via I
2 digital border supply voltage 1 (+5 V) 3 digital border ground 1 (0 V) 4 digital border supply voltage 2 (+5 V)
9 digital core supply voltage 1 (+3.3 V)
10 digital border ground 2 (0 V)
19 digital border supply voltage 3 (+5 V) 20 digital core ground 1 (0 V)
29 digital border supply voltage 4 (+5 V) 30 digital border ground 3 (0 V)
2
C-bus)
2
C-bus)
2
C-bus) 34 digital border supply voltage 5 (+5 V) 35 digital border ground 4 (0 V) 36 digital border supply voltage 6 (+5 V) 37 digital border ground 5 (0 V)
2
C-bus)
2
C-bus)
2
C-bus)
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
SYMBOL PIN I/O DESCRIPTION
PORT0 41 I/O general purpose port 0 input/output (set via I2C-bus) RES 42 I reset input (active LOW for at least 30 clock cycles) AP 43 I connected to ground (action pin for testing) SP 44 I connected to ground (shift pin for testing) FLDV 45 O field identification output signal; VRAM port VSYV 46 O vertical sync output signal; VRAM port HGTV 47 O horizontal reference output signal; VRAM port PXQV 48 O pixel qualifier output signal to mark active pixels of a qualified line; VRAM port BTST 49 I connected to ground; BTST = HIGH sets all outputs to high-impedance state
(testing)
VOEN 50 I enable input signal for VRAM port
V
DDD(core)2
VMUX 52 I VRAM output multiplexing, control input for the 32 to 16-bit multiplexer
V
SSD(core)2
HFL 54 O FIFO half-full flag output signal INCADR 55 O line increment/vertical reset control output VCLK 56 I/O clock input/output signal for VRAM port VRO31 57 O 32-bit digital VRAM port output (bit 31) VRO30 58 O 32-bit digital VRAM port output (bit 30) VRO29 59 O 32-bit digital VRAM port output (bit 29) VRO28 60 O 32-bit digital VRAM port output (bit 28) VRO27 61 O 32-bit digital VRAM port output (bit 27) VRO26 62 O 32-bit digital VRAM port output (bit 26) VRO25 63 O 32-bit digital VRAM port output (bit 25) VRO24 64 O 32-bit digital VRAM port output (bit 24) VRO23 65 O 32-bit digital VRAM port output (bit 23)
V
DDD(bord)7
V
SSD(bord)6
V
DDD(bord)8
V
SSD(bord)7
VRO22 70 O 32-bit VRAM port output (bit 22) VRO21 71 O 32-bit VRAM port output (bit 21) VRO20 72 O 32-bit VRAM port output (bit 20) VRO19 73 O 32-bit VRAM port output (bit 19) VRO18 74 O 32-bit VRAM port output (bit 18) VRO17 75 O 32-bit VRAM port output (bit 17) VRO16 76 O 32-bit VRAM port output (bit 16) VRO15 77 O 32-bit VRAM port output (bit 15) VRO14 78 O 32-bit VRAM port output (bit 14) VRO13 79 O 32-bit VRAM port output (bit 13) VRO12 80 O 32-bit VRAM port output (bit 12)
51 digital core supply voltage 2 (+3.3 V)
53 digital core ground 2 (0 V)
66 digital border supply voltage 7 (+5 V) 67 digital border ground 6 (0 V) 68 digital border supply voltage 8 (+5 V) 69 digital border ground 7 (0 V)
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
SYMBOL PIN I/O DESCRIPTION
VRO11 81 O 32-bit VRAM port output (bit 11)
V
SSD(bord)8
V
DDD(bord)9
V
SSD(core)3
V
DDD(core)3
VRO10 86 O 32-bit VRAM port output (bit 10) VRO9 87 O 32-bit VRAM port output (bit 9) VRO8 88 O 32-bit VRAM port output (bit 8) VRO7 89 O 32-bit VRAM port output (bit 7) VRO6 90 O 32-bit VRAM port output (bit 6) VRO5 91 O 32-bit VRAM port output (bit 5) VRO4 92 O 32-bit VRAM port output (bit 4) VRO3 93 O 32-bit VRAM port output (bit 3) VRO2 94 O 32-bit VRAM port output (bit 2) VRO1 95 O 32-bit VRAM port output (bit 1) VRO0 96 O 32-bit VRAM port output (bit 0) FDIO 97 I/O field identification output signal; 7196 DIR input signal expansion port, I
V
DDD(bord)10
V
SSD(bord)9
V
DDD(bord)11
V
SSD(bord)10
VIO 102 I/O vertical sync input/output signal; expansion port HIO 103 I/O horizontal sync input/output signal; expansion port PXQIO 104 I/O pixel qualifier input/output signal to mark valid pixels; expansion port VIDH7 105 I/O bidirectional expansion port, high byte (bit 7) in 16-bit mode luminance
VIDH6 106 I/O bidirectional expansion port, high byte (bit 6) in 16-bit mode luminance
VIDH5 107 I/O bidirectional expansion port, high byte (bit 5) in 16-bit mode luminance
VIDH4 108 I/O bidirectional expansion port, high byte (bit 4) in 16-bit mode luminance
VIDH3 109 I/O bidirectional expansion port, high byte (bit 3) in 16-bit mode luminance
VIDH2 110 I/O bidirectional expansion port, high byte (bit 2) in 16-bit mode luminance
VIDH1 111 I/O bidirectional expansion port, high byte (bit 1) in 16-bit mode luminance
VIDH0 112 I/O bidirectional expansion port, high byte (bit 0) in 16-bit mode luminance
V
DDD(bord)12
82 digital border ground 8 (0 V) 83 digital border supply voltage 9 (+5 V) 84 digital core ground 3 (0 V) 85 digital core supply voltage 3 (+3.3 V)
controlled 98 digital border supply voltage 10 (+5 V) 99 digital border ground 9 (0 V)
100 digital border supply voltage 11 (+5 V) 101 digital border ground 10 (0 V)
component Y
component Y
component Y
component Y
component Y
component Y
component Y
component Y
113 digital border supply voltage 12 (+5 V)
2
C-bus
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
SYMBOL PIN I/O DESCRIPTION
V
SSD(bord)11
V
DDD(core)4
V
SSD(core)4
VIDL7 117 I/O bidirectional expansion port, low byte (bit 7) in 16-bit mode time-multiplexed
VIDL6 118 I/O bidirectional expansion port, low byte (bit 6) in 16-bit mode time-multiplexed
VIDL5 119 I/O bidirectional expansion port, low byte (bit 5) in 16-bit mode time-multiplexed
VIDL4 120 I/O bidirectional expansion port, low byte (bit 4) in 16-bit mode time-multiplexed
VIDL3 121 I/O bidirectional expansion port, low byte (bit 3) in 16-bit mode time-multiplexed
VIDL2 122 I/O bidirectional expansion port, low byte (bit 2) in 16-bit mode time-multiplexed
VIDL1 123 I/O bidirectional expansion port, low byte (bit 1) in 16-bit mode time-multiplexed
VIDL0 124 I/O bidirectional expansion port, low byte (bit 0) in 16-bit mode time-multiplexed
PXQIN 125 I pixel qualifier input signal to mark valid pixels; expansion port HIN 126 I horizontal sync input signal; expansion port VIN 127 I vertical sync input signal; expansion port LLCIO 128 I/O line-locked system clock input/output; expansion port
114 digital border ground 11 (0 V) 115 digital core supply voltage 4 (+3.3 V) 116 digital core ground 4 (0 V)
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
handbook, full pagewidth
SSD(core)4
DDD(core)4
SSD(bord)11
V
115
DDD(bord)12
V
V
114
113
VIDH0
VIDH1
112
111
VIDH2
110
VIDH3
VIDH4
109
108
VIDH5
107
VIDH6
VIDH7
106
105
PXQIO
HIO
104
103
102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
VIO
V
SSD(bord)10
V
DDD(bord)11
V
SSD(bord)9
V
DDD(bord)10
FDIO VRO0 VRO1 VRO2 VRO3 VRO4 VRO5 VRO5 VRO7 VRO8 VRO9 VRO10
V
DDD(core)3
V
SSD(core)3
V
DDD(bord)9
V
SSD(bord)8
VRO11 VRO12 VRO13 VRO14 VRO15 VRO16 VRO17 VRO18 VRO19 VRO20 VRO21 VRO22
V
SSD(bord)7
V
DDD(bord)8
V
SSD(bord)6
V
DDD(bord)7
VRO23
V
DDD(bord)1
V
SSD(bord)1
V
DDD(bord)2
V
DDD(core)1
V
SSD(bord)2
V
DDD(bord)3
V
SSD(core)1
V
DDD(bord)4
V
SSD(bord)3
V
DDD(bord)5
V
SSD(bord)4
V
DDD(bord)6
V
SSD(bord)5
PORT3
LLCIN
LCC CREF HREF
VS
YIN0 YIN1 YIN2 YIN3 YIN4 YIN5 YIN6 YIN7
UVIN0 UVIN1 UVIN2 UVIN3 UVIN4 UVIN5 UVIN6 UVIN7
SDA
SCL
IICSA
VIN
LLCIO
HIN
PXQIN
VIDL0
VIDL1
VIDL2
VIDL3
VIDL4
VIDL5
VIDL6
VIDL7
V
127
128
126
125
124
123
122
121
120
119
118
117
116
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
SAA7140A
40394142434445464748495051525354555657585960616263
AP
SP
PORT1
PORT2
RES
PORT0
FLDV
VSYV
HGTV
PXQV
BTST
VOEN
DDD(core)2
V
Fig.3 Pin configuration (SAA7140A).
1996 Sep 04 10
VMUX
SSD(core)2
V
HFL
VCLK
INCADR
VRO31
VRO30
VRO29
VRO28
VRO27
VRO26
64
VRO25
VRO24
MHA362
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B

6 PINNING (SAA7140B)

SYMBOL PIN I/O DESCRIPTION
LLCIN 1 I line-locked system clock input; expansion port
V
DDD1
V
SSD1
V
DDD2
LLC 5 I line-locked system clock input, maximum 32 MHz (2 × pixel rate); DMSD port CREF 6 I clock qualifier input (HIGH indicates valid input data YUV on DMSD port) HREF 7 I horizontal reference input signal; DMSD port VS 8 I vertical sync input signal; DMSD port
V
DDD3
V
SSD2
YIN0 11 I luminance input data (bit 0); DMSD port YIN1 12 I luminance input data (bit 1); DMSD port YIN2 13 I luminance input data (bit 2); DMSD port YIN3 14 I luminance input data (bit 3); DMSD port YIN4 15 I luminance input data (bit 4); DMSD port YIN5 16 I luminance input data (bit 5); DMSD port YIN6 17 I luminance input data (bit 6); DMSD port YIN7 18 I luminance input data (bit 7); DMSD port
V
DDD4
V
SSD3
UVIN0 21 I time-multiplexed colour-difference input data (bit 0); DMSD port UVIN1 22 I time-multiplexed colour-difference input data (bit 1); DMSD port UVIN2 23 I time-multiplexed colour-difference input data (bit 2); DMSD port UVIN3 24 I time-multiplexed colour-difference input data (bit 3); DMSD port UVIN4 25 I time-multiplexed colour-difference input data (bit 4); DMSD port UVIN5 26 I time-multiplexed colour-difference input data (bit 5); DMSD port UVIN6 27 I time-multiplexed colour-difference input data (bit 6); DMSD port UVIN7 28 I time-multiplexed colour-difference input data (bit 7); DMSD port
V
DDD5
V
SSD4
SDA 31 I/O serial data input/output (I SCL 32 I serial clock input (I IICSA 33 I set address input (I
V
DDD6
V
SSD5
V
DDD7
V
SSD6
PORT3 38 I/O general purpose port 3 input/output (set via I PORT2 39 I/O general purpose port 2 input/output (set via I PORT1 40 I/O general purpose port 1 input/output (set via I
2 digital supply voltage 1 (+3.3 V) 3 digital ground 1 (0 V) 4 digital supply voltage 2 (+3.3 V)
9 digital supply voltage 3 (+3.3 V)
10 digital ground 2 (0 V)
19 digital supply voltage 4 (+3.3 V) 20 digital ground 3 (0 V)
29 digital supply voltage 5 (+3.3 V) 30 digital ground 4 (0 V)
2
C-bus)
2
C-bus)
2
C-bus) 34 digital supply voltage 6 (+3.3 V) 35 digital ground 5 (0 V) 36 digital supply voltage 7 (+3.3 V) 37 digital ground 6 (0 V)
2
C-bus)
2
C-bus)
2
C-bus)
1996 Sep 04 11
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
SYMBOL PIN I/O DESCRIPTION
PORT0 41 I/O general purpose port 0 input/output (set via I2C-bus) RES 42 I reset input (active LOW for at least 30 clock cycles) AP 43 I connected to ground (action pin for testing) SP 44 I connected to ground (shift pin for testing) FLDV 45 O field identification output signal; VRAM port VSYV 46 O vertical sync output signal; VRAM port HGTV 47 O horizontal reference output signal; VRAM port PXQV 48 O pixel qualifier output signal to mark active pixels of a qualified line; VRAM port BTST 49 I connected to ground; BTST = HIGH sets all outputs to high-impedance state
(testing)
VOEN 50 I enable input signal for VRAM port
V
DDD8
VMUX 52 I VRAM output multiplexing, control input for the 32 to 16-bit multiplexer
V
SSD7
HFL 54 O FIFO half-full flag output signal INCADR 55 O line increment/vertical reset control output VCLK 56 I/O clock input/output signal for VRAM port VRO31 57 O 32-bit digital VRAM port output (bit 31) VRO30 58 O 32-bit digital VRAM port output (bit 30) VRO29 59 O 32-bit digital VRAM port output (bit 29) VRO28 60 O 32-bit digital VRAM port output (bit 28) VRO27 61 O 32-bit digital VRAM port output (bit 27) VRO26 62 O 32-bit digital VRAM port output (bit 26) VRO25 63 O 32-bit digital VRAM port output (bit 25) VRO24 64 O 32-bit digital VRAM port output (bit 24) VRO23 65 O 32-bit digital VRAM port output (bit 23)
V
DDD9
V
SSD8
V
DDD10
V
SSD9
VRO22 70 O 32-bit VRAM port output (bit 22) VRO21 71 O 32-bit VRAM port output (bit 21) VRO20 72 O 32-bit VRAM port output (bit 20) VRO19 73 O 32-bit VRAM port output (bit 19) VRO18 74 O 32-bit VRAM port output (bit 18) VRO17 75 O 32-bit VRAM port output (bit 17) VRO16 76 O 32-bit VRAM port output (bit 16) VRO15 77 O 32-bit VRAM port output (bit 15) VRO14 78 O 32-bit VRAM port output (bit 14) VRO13 79 O 32-bit VRAM port output (bit 13) VRO12 80 O 32-bit VRAM port output (bit 12)
51 digital supply voltage 8 (+3.3 V)
53 digital ground 7 (0 V)
66 digital supply voltage 9 (+3.3 V) 67 digital ground 8 (0 V) 68 digital supply voltage 10 (+3.3 V) 69 digital ground 9 (0 V)
1996 Sep 04 12
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
SYMBOL PIN I/O DESCRIPTION
VRO11 81 O 32-bit VRAM port output (bit 11)
V
SSD10
V
DDD11
V
SSD11
V
DDD12
VRO10 86 O 32-bit VRAM port output (bit 10) VRO9 87 O 32-bit VRAM port output (bit 9) VRO8 88 O 32-bit VRAM port output (bit 8) VRO7 89 O 32-bit VRAM port output (bit 7) VRO6 90 O 32-bit VRAM port output (bit 6) VRO5 91 O 32-bit VRAM port output (bit 5) VRO4 92 O 32-bit VRAM port output (bit 4) VRO3 93 O 32-bit VRAM port output (bit 3) VRO2 94 O 32-bit VRAM port output (bit 2) VRO1 95 O 32-bit VRAM port output (bit 1) VRO0 96 O 32-bit VRAM port output (bit 0) FDIO 97 I/O field identification output signal; 7196 DIR input signal expansion port, I
V
DDD13
V
SSD12
V
DDD14
V
SSD13
VIO 102 I/O vertical sync input/output signal; expansion port HIO 103 I/O horizontal sync input/output signal; expansion port PXQIO 104 I/O pixel qualifier input/output signal to mark valid pixels; expansion port VIDH7 105 I/O bidirectional expansion port, high byte (bit 7) in 16-bit mode luminance
VIDH6 106 I/O bidirectional expansion port, high byte (bit 6) in 16-bit mode luminance
VIDH5 107 I/O bidirectional expansion port, high byte (bit 5) in 16-bit mode luminance
VIDH4 108 I/O bidirectional expansion port, high byte (bit 4) in 16-bit mode luminance
VIDH3 109 I/O bidirectional expansion port, high byte (bit 3) in 16-bit mode luminance
VIDH2 110 I/O bidirectional expansion port, high byte (bit 2) in 16-bit mode luminance
VIDH1 111 I/O bidirectional expansion port, high byte (bit 1) in 16-bit mode luminance
VIDH0 112 I/O bidirectional expansion port, high byte (bit 0) in 16-bit mode luminance
V
DDD15
82 digital ground 10 (0 V) 83 digital supply voltage 11 (+3.3 V) 84 digital ground 11 (0 V) 85 digital supply voltage 12 (+3.3 V)
controlled 98 digital supply voltage 13 (+3.3 V) 99 digital ground 12 (0 V)
100 digital supply voltage 14 (+3.3 V) 101 digital ground 13 (0 V)
component Y
component Y
component Y
component Y
component Y
component Y
component Y
component Y
113 digital supply voltage 15 (+3.3 V)
2
C-bus
1996 Sep 04 13
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
SYMBOL PIN I/O DESCRIPTION
V
SSD14
V
DDD16
V
SSD15
VIDL7 117 I/O bidirectional expansion port, low byte (bit 7) in 16-bit mode time-multiplexed
VIDL6 118 I/O bidirectional expansion port, low byte (bit 6) in 16-bit mode time-multiplexed
VIDL5 119 I/O bidirectional expansion port, low byte (bit 5) in 16-bit mode time-multiplexed
VIDL4 120 I/O bidirectional expansion port, low byte (bit 4) in 16-bit mode time-multiplexed
VIDL3 121 I/O bidirectional expansion port, low byte (bit 3) in 16-bit mode time-multiplexed
VIDL2 122 I/O bidirectional expansion port, low byte (bit 2) in 16-bit mode time-multiplexed
VIDL1 123 I/O bidirectional expansion port, low byte (bit 1) in 16-bit mode time-multiplexed
VIDL0 124 I/O bidirectional expansion port, low byte (bit 0) in 16-bit mode time-multiplexed
PXQIN 125 I pixel qualifier input signal to mark valid pixels; expansion port HIN 126 I horizontal sync input signal; expansion port VIN 127 I vertical sync input signal; expansion port LLCIO 128 I/O line-locked system clock input/output; expansion port
114 digital ground 14 (0 V) 115 digital supply voltage 16 (+3.3 V) 116 digital ground 15 (0 V)
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
colour-difference components U and V
1996 Sep 04 14
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
handbook, full pagewidth
SSD15VDDD16VSSD14VDDD15
VIDL6
VIDL7
V
118
117
116
SAA7140B
115
114
113
VIDH0
VIDH1
112
111
VIDH2
VIDH3
110
109
VIDH4
108
VIDH5
VIDH6
107
106
VIDH7
PXQIO
105
104
HIO
103
102 101 100
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
VIO
V
SSD13
V
DDD14
V
SSD12
V
DDD13
FDIO VRO0 VRO1 VRO2 VRO3 VRO4 VRO5 VRO6 VRO7 VRO8 VRO9 VRO10
V
DDD12
V
SSD11
V
DDD11
V
SSD10
VRO11 VRO12 VRO13 VRO14 VRO15 VRO16 VRO17 VRO18 VRO19 VRO20 VRO21 VRO22
V
SSD9
V
DDD10
V
SSD8
V
DDD9
VRO23
LLCIN
V
DDD1
V
SSD1
V
DDD2
LLC CREF HREF
VS
V
DDD3
V
SSD2
YIN0 YIN1 YIN2 YIN3 YIN4 YIN5 YIN6 YIN7
V
DDD4
V
SSD3
UVIN0 UVIN1 UVIN2 UVIN3 UVIN4 UVIN5 UVIN6 UVIN7
V
DDD5
V
SSD4
SDA SCL
IICSA
V
DDD6
V
SSD5
V
DDD7
V
SSD6
PORT3
VIN
LLCIO
HIN
PXQIN
VIDL0
VIDL1
VIDL2
VIDL3
VIDL4
VIDL5
127
128
126
125
124
123
122
121
120
119
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
40394142434445464748495051525354555657585960616263
AP
SP
PORT1
PORT2
RES
PORT0
FLDV
VSYV
HGTV
PXQV
BTST
VOEN
Fig.4 Pin configuration (SAA7140B).
1996 Sep 04 15
DDD8
V
VMUX
V
SSD7
HFL
VCLK
INCADR
VRO31
VRO30
VRO29
VRO28
VRO27
VRO26
64
VRO25
VRO24
MHA359
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B

7 FUNCTIONAL DESCRIPTION

The SAA7140A and SAA7140B accepts YUV data in a 16-bit wide parallel format at the DMSD port and accepts YUV input in a 16-bit wide parallel format and in an 8-bit byte-multiplexed Cb-Y-Cr-Y- format (CCIR-656 or D1 oriented) at the expansion port.
Depending on the selected port modes, the incoming data is formatted to the internal data representation, where reference signals or codes are detected in the Data Formatter/Reformatter (DFR). The horizontal and vertical timing reference can be defined under I Based on that timing reference, the active processing window is defined in a versatile way via the programming. Two programming sets can be loaded simultaneously, and become valid for processing in a field alternating way. Before being processed in the central scaling unit, the incoming data passes through the BCS control unit where monitor control functions, for adjusting brightness, contrast (luminance) and saturation (chrominance) are implemented.
The scaling is performed in three steps:
1. Horizontal prescaling (bandwidth limitation for anti-aliasing, via FIR prefiltering and subsampling)
2. Vertical scaling (generating phase interpolated or vertically low-passed lines)
3. Horizontal variable phase scaling (phase-correct scaling to the new geometric relationships).
The scaled output data is fed back to the DFR unit and may be used as output signals from the bidirectional expansion port (if the mode is selected). They are converted in parallel from the YUV to the RGB domain in a digital matrix. Anti-gamma correction of gamma-corrected input signals can be performed in the RGB data path. The output formatter then formats the scaled data to one of the various output formats (e.g. monochrome, 16-bit YUV or 32-bit RGB (5, 5, 5).
To ease frame buffer applications, the data can be transferred in a synchronous way (transparent mode), using separate reference and qualifier signals and a continuous output clock (VCLK). The data can also be transferred in an asynchronous way (burst mode) using the HFL and INCADR flags and a discontinuous input clock burst on VCLK.
2
C-bus control.
In a typical application, the 16-bit wide YUV input receives clock, sync and data from a video decoder (SAA71xx) via the DMSD port. An MPEG compression/decompression circuit can be connected at the expansion port to receive the decoder data, scaled or unscaled, or to deliver data to the scaling processor. The scaling operation of the SAA7140A and SAA7140B can be performed on the data from a video decoder, or on the data from the MPEG-codec at the expansion port input. The source selection can be static or toggled on a field-by-field basis. For example, during the odd field the video decoder signal is scaled in accordance with the ‘odd’ parameter set for display in a window. The compression codec receives unscaled data. During the even field the decompressed data from the MPEG decoder gets sized for a second display window in accordance with the ‘even’ parameter set. The resulting output from the scaling operation is delivered via the 32-bit wide output (VRAM port) and to the expansion port output (optional).

7.1 Data format/reformatter and reference signal generation

The video data can be formatted/reformatted in accordance with the selected expansion port mode, from 16-bit (DMSD port) to serial 8-bit (expansion port output), from serial 8-bit (expansion port input) to internal parallel 16-bit format and from 24-bit (scaler output) to 16-bit/8-bit respectively (expansion port output). The definition of the timing references for the acquisition and field detection (polarity and edge selection) are based on the selected reference signal source. The field detector regenerates the field information from the selected incoming reference signals (see Fig.5).
The field sequence flag (FLD), detects the state of the H-sync signal at the reference edge of the V-sync signal. The detection is controlled by I INVOE. The detection output can be seen on pins FLDV and FDIO (if FLDC = 0). Bits IREGS and SREGS control the mapping of the detected sequence to the I2C-bus register sets A and B (I2C-bus subaddress 02 to 1F and 22 to 3F).
2
C-bus bits REVFLD and
1996 Sep 04 16
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
handbook, full pagewidth
(corresponding
REGISTER 00
INVOE
active
horizontal
state
SOURCE SELECT
FIELD DETECTION
H
F
to VF)
FIELD DETECTION
REVFLD
active
vertical
edge
V
F
(1)
detected field
V source select
H/V expansion port
H/V DMSD
REGISTER 00
REGISTER SET
MAPPING FIELD
REGISTER A REGISTER B
MULTIPLEXER
active
horizontal
edge
n × τ
m × τ
active
vertical
edge
SOURCE SELECT
SCALER
HV
AQUISITION CONTROL
SCALER
FIDO (expansion port)
FLDV (VRAM)
(or frame sync)
select
H/V
source
select
FLD IIC
MHA118
FLD detection modes (I2C-bus bits FICO1 and FICO0); (1) In the normal mode: the FLD signal is detected from the incoming
H andV signals. In the improved mode: the FLD signal is resynchronized only after
the H andV sequence runs stable for a certain period of time. In the force toggle mode: the FLD signal toggles with every event on
the V signal (His independent).
Fig.5 Field detection/register set mapping.
7.1.1 DATA FORMATS AND REFERENCE SIGNALS OF THE DMSD PORT
The 16-bit YUV colour difference and luminance signals (straight binary) are available in parallel on a 16-bit wide data stream. The code is in accordance with CCIR-601; black = 16, white = 235, no colour = 128, 100% colour saturation = 16 to 240 etc. Overshoots and undershoots are permitted and supported, i.e. processed as they are. The 16-bit wide YUV data format from the DMSD port (input only) is defined with Line-Locked Clock (LLC) with a double pixel clock frequency. Every second clock cycle is qualified with CREF, in pixel rate frequency.
Register set mapping modes (I2C-bus bits IREGS and SREGS); The FLD_IIC signal carries the detected FLD or the inverted FLD. The signal is fixed to 0 (Register setA forced) or forced to 1
(Register set A forced).
The internal processing of the SAA7140A and SAA7140B relies on the presence of LLC, i.e. a clock of at least twice the sampling rate of the input data stream. The maximum LLC rate is 32 MHz.
The horizontal sync input (HREF) may be supplied as a H-pulse or horizontal gate signal. The positive or negative edge, (programmable by I
2
C-bus bit REHAW), indicates the horizontal timing reference. The first valid pixels may occur not exactly at the start of the line but with a certain offset (counted in qualified pixels).
1996 Sep 04 17
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
The vertical timing is indicated by the positive or negative edge (programmable by I2C-bus bit REVAW) of the sync input signal VS. The first valid line may occur not exactly at the start of the field but with a certain offset, counted in lines, with qualified pixels. Input signal VS defines, in relation to HREF, the odd/even field detection (see
SAA7191B
7.1.2 D
).
ATA FORMATS AND REFERENCE SIGNALS OF THE
EXPANSION PORT
The expansion port (input/output) supports several modes; simultaneous (parallel) D1 input and D1 output (full duplex) with auxiliary sync and qualifying signals, or 16-bit wide YUV input or output (half duplex), selected via programming with clock, qualify and sync signal. A discontinuous data stream is supported by accepting or generating a pixel/byte qualifying signal (PXQ), a generalization of the CREF definition at the DMSD port (PXQ = 1 qualified pixel, PXQ = 0 invalid data).
16-bit YUV (half duplex mode = field alternating data I/O): 16-bit YUV data stream (Y = VIDH7 to VIDH0, UV = VIDL7 to VIDL0). For the 16-bit YUV data input format, PXQ is inhibited from qualifying adjacent LLC clock cycles. There must be at least one empty clock cycle between two valid pixels.
8-bit Cb-Y-Cr-Y; CCIR 656 or D1 (full duplex mode): the colour difference signals and the luminance signal (straight binary) are byte-wise multiplexed onto the same 8-bit wide data stream, with sequence and timing in accordance with CCIR 656 recommendations (according to D1 for 60 Hz application respectively). The code is in accordance with CCIR 601 (black = 16, white = 235, no colour = 128, 100% colour saturation = 16 or 240, etc. Overshoots and undershoots are permitted and supported, i.e. processed as they are.
If the CCIR 656 output is selected, the video signal is clipped to 01H and FEH in order to leave the codes 00H and FFH for SAV and EAV encoding (SAV and EAV encoding not yet supported). The clock rate for this format is twice the pixel clock.
The horizontal sync input HIN is processed in an identical manner to HREF at the DMSD port. If the CCIR 656 data input format is selected, the horizontal timing reference is decoded from the input data stream (SAV, EAV and SHVS = 1) or taken from the selected H-reference signal HIN, HREF or HIO (SHVS = 0). The start condition to enable synchronization to the correct Cb-Y-Cr-Y­sequence is provided by the selected horizontal reference signal. The sequence only increments with qualified bytes.
Instead of a vertical sync signal, as described for the DMSD port, the expansion port also supports an odd/even signal applied to the input pin VIN or VIO (controlled by
2
I
C-bus bit FSEL). The frame and the field timing is then indicated by a positive or negative edge of the V input. This may occur with a certain offset at the frame and field start, and is normally counted in lines.
If the CCIR 656 data input format is selected, the vertical timing reference is decoded from the input data stream by SAV and EAV (SHVS = 1) or taken from the selected V reference signal VIN, VS or VIO (SHVS = 0). The vertical synchronization pin can be programmed to carry either a vertical sync signal or an odd/even signal.
The horizontal and vertical sync outputs HIO and VIO are expansion port mode dependent and can be selected via the I2C-bus (VD1/VD0 and HD1/HD0):
Should the DMSD port be selected as the output source, HIO will carry a copy of HREF and VIO will carry a copy of VS.
If the expansion port carries data from the scaler output, then HIO is a gate signal enveloping the range of active video along a line and VIO is a positive sync pulse with a length of 4 lines
If HIN/VIN is selected as the output source, HIO carries a copy of HIN and VIO carries a copy of VIN (short cut).
If the CCIR 656 data output format is selected, the horizontal and vertical sync output signals are only supplied at pins HIO and VIO (SAV and EAV are not encoded as outputs).
Due to compatibility reasons to the expansion port definition of the SAA7194/SAA7196 circuits, the bidirectional pins HIO, VIO and PXQIO can also be configured as input pins (see Table 3).
The definition of the pin FDIO is I2C-bus selectable. Configured as an output pin, FDIO carries an odd/even signal generated in the FLD detection (see Fig.5). Configured as an input pin, FDIO controls the direction of the expansion port (compatibility to SAA7194/SAA7196, (see Table 3 and Chapter 8).
1996 Sep 04 18
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
handbook, full pagewidth
LLC
CREF
PXQIN
VIDL7 to 0
VIDH7 to 0
HIN
Cb0
Cr0 Cb2 Cr2
Y0 Y1 Y2 Y3
Fig.6 Timing of PXQIN for 16-bit data input from DMSD to expansion port.
MHA126
handbook, full pagewidth
LLC
CREF
PXQIN
VIDL7 to 0
HIN
Cb Y Y Y Cr Cb
Fig.7 Timing of PXQIO for serial 8-bit data input at expansion port.
1996 Sep 04 19
MHA130
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
handbook, full pagewidth
LLC
CREF
PXQIN/PXQIO
VIDL7 to 0
PXQIN/PXQIO
VIDL7 to 0
handbook, full pagewidth
LLC
CREF
FFH 00H 00H Cb SAV
Y Cr Y FFH 00H 00H
Y Cr
Fig.8 Timing of PXQIN/PXQIO for CCIR 656 data input at expansion port.
EAV
MHA129
PXQIO
VIDL7 to 0
VIDH7 to 0
HIO
Cb0 Cr0
Y0 Y1
Fig.9 Timing of PXQIO for non-zoomed 16-bit data output at expansion port.
1996 Sep 04 20
Cb2
Y2
Cr2
Y3
MHA127
Philips Semiconductors Objective specification
High Performance Scaler (HPS) SAA7140A; SAA7140B
handbook, full pagewidth
LLC
CREF
PXQIO
VIDL7 to 0
VIDH7 to 0
HIO
handbook, full pagewidth
LLC
CREF
Cb0 Cr0 Cb2 Cr2 Cr4 Cb4
Y0 Y1 Y2 Y3 Y5 Y6 Y4
Cb6 Cr6
Fig.10 Timing of PXQIN for zoomed 16-bit data output at expansion port.
Y7
MHA128
PXQIO
VIDL7 to 0
HIO
Cb Y Y Y Cr Cb
Fig.11 Timing of PXQIO for serial 8-bit data output at expansion port.
1996 Sep 04 21
Cr Y
MHA131
Loading...
+ 47 hidden pages