Philips SAA7102E, SAA7102H, SAA7103E, SAA7103H Datasheet

INTEGRATED CIRCUITS
DATA SH EET
SAA7102; SAA7103
Digital video encoder
Product specification File under Integrated Circuits, IC22
2001 Sep 25
Digital video encoder SAA7102; SAA7103
CONTENTS
1 FEATURES 2 GENERAL DESCRIPTION 3 ORDERING INFORMATION 4 QUICK REFERENCE DATA 5 BLOCK DIAGRAM 6 PINNING 7 FUNCTIONAL DESCRIPTION
7.1 Reset conditions
7.2 Input formatter
7.3 RGB LUT
7.4 Cursor insertion
7.5 RGB Y-CB-CR matrix
7.6 Horizontal scaler
7.7 Vertical scaler and anti-flicker filter
7.8 FIFO
7.9 Border generator
7.10 Oscillator and Discrete Time Oscillator (DTO)
7.11 Low-pass Clock Generation Circuit (CGC)
7.12 Encoder
7.13 RGB processor
7.14 Triple DAC
7.15 Timing generator
7.16 I2C-bus interface
7.17 Programming the SAA7102; SAA7103
7.18 Input levels and formats
7.19 Bit allocation map
7.20 I2C-bus format
7.21 Slave receiver
7.22 Slave transmitter 8 BOUNDARY SCAN TEST
8.1 Initialization of boundary scan circuit
8.2 Device identification codes 9 LIMITING VALUES 10 THERMAL CHARACTERISTICS 11 CHARACTERISTICS
11.1 Teletext timing
12 APPLICATION INFORMATION
12.1 Analog output voltages
12.2 Suggestions for a board layout 13 PACKAGE OUTLINES 14 SOLDERING
14.1 Introduction to soldering surface mount packages
14.2 Reflow soldering
14.3 Wave soldering
14.4 Manual soldering
14.5 Suitability of surface mount IC packages for wave and reflow soldering methods
15 DATA SHEET STATUS 16 DEFINITIONS 17 DISCLAIMERS 18 PURCHASE OF PHILIPS I2C COMPONENTS
2001 Sep 25 2
Digital video encoder SAA7102; SAA7103

1 FEATURES

Digital PAL/NTSC encoder with integrated high quality scaler and anti-flicker filter for TV output from a PC
27 MHz crystal-stable subcarrier generation
Maximum graphics pixelclock 45 MHz at double edged
clocking, synthesized on-chip or from external source
Up to 800 × 600 graphics data at 60 Hz or 50 Hz with programmable underscan range
Three Digital-to-Analog Converters (DACs) at 27 MHz sample rate for CVBS (BLUE, CB), VBS (GREEN, CVBS) and C (RED, CR) (signals in parenthesis are optional); all at 10-bit resolution
Non-interlaced CB-Y-CR or RGB input at maximum 4:4:4 sampling
Downscaling from 1 : 1 to 1 : 2 and up to 20% upscaling
Optional interlaced CB-Y-CRinput Digital Versatile Disk
(DVD)
Optional non-interlaced RGB output to drive second VGA monitor (bypass mode, maximum 45 MHz)
3 × 256 bytes RGB Look-Up Table (LUT)
Support for hardware cursor
Programmable border colour of underscan area
On-chip 27 MHz crystal oscillator (3rd-harmonic or
fundamental 27 MHz crystal)
Fast I2C-bus control port (400 kHz)
Encoder can be master or slave
Programmable horizontal and vertical input
synchronization phase
Programmable horizontal sync output phase
Internal Colour Bar Generator (CBG)
Optional support of various Vertical Blanking Interval
(VBI) data insertion
Macrovision Pay-per-View copy protection system rev. 7.01and rev. 6.1 as option; this appliestoSAA7102 only. The device is protected by USA patent numbers 4631603, 4577216 and 4819098 and other intellectual property rights. Use of the Macrovision anti-copy process in the device is licensed for non-commercial home use only. Reverse engineering or disassembly is prohibited. Please contact your nearest Philips Semiconductors sales office for more information.
Power-save modes
Joint Test Action Group (JTAG) boundary scan test
Monolithic CMOS 3.3 V device, 5 V tolerant I/Os
QFP44 and BGA156 packages
Same footprint as SAA7108E; SAA7109E.

2 GENERAL DESCRIPTION

The SAA7102; SAA7103 is used to encode PC graphics data at maximum 800 × 600 resolution to PAL (50 Hz) or NTSC (60 Hz) video signals. A programmable scaler and interlacer ensures properly sized and flicker-free TV display as CVBS or S-video output.
Alternatively, the three Digital-to-Analog Converters (DACs) can output RGB signals together with a TTL composite sync to feed SCART connectors.
When the scaler/interlacer is bypassed, a second VGA monitor can be connected to the RGB outputs and separate H and V-syncs as well, thereby serving as an auxiliary monitor at maximum 800 × 600 resolution/60 Hz (PIXCLK < 45 MHz).
The device includes a sync/clock generator and on-chip DACs.
2001 Sep 25 3
Digital video encoder SAA7102; SAA7103

3 ORDERING INFORMATION

TYPE NUMBER
PACKAGE
NAME DESCRIPTION VERSION
SAA7102E BGA156 plastic ball grid array package; 156 balls; body SAA7103E
15 × 15 × 1.15 mm
SAA7102H QFP44 plastic quad flat package; 44 leads (lead length 1.3 mm); SAA7103H
body 10 × 10 × 1.75 mm
SOT472-1
SOT307-2

4 QUICK REFERENCE DATA

SYMBOL PARAMETER MIN. TYP. MAX. UNIT
V V I
DDA
I
DDD
V V
DDA DDD
i o(p-p)
analog supply voltage 3.15 3.3 3.45 V digital supply voltage 3.0 3.3 3.6 V analog supply current 1 110 140 mA digital supply current 1 70 90 mA input signal voltage levels TTL compatible analog CVBS output signal voltage for a 100/100
1.23 V
colour bar at 75/2 load (peak-to-peak value)
R
L
ILE DLE T
amb
lf(DAC)
lf(DAC)
load resistance 37.5 −Ω low frequency integral linearity error of DACs −−±3 LSB low frequency differential linearity error of DACs −−±1 LSB ambient temperature 0 70 °C
2001 Sep 25 4
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
2001 Sep 25 5

5 BLOCK DIAGRAM

Philips Semiconductors Product specification
Digital video encoder SAA7102; SAA7103
PD11 to
PD0
PIXCLKI
PIXCLKO
4 to 1, 44 to 41, 16 to 19
15
20
V
DDD1
10
INPUT
FORMATTER
DECIMATOR
4 : 4 : 4 to 4 : 2 : 2
(OR BYPASS)
BORDER
GENERATOR
CGC
LOW-PASS
V
SSD1
9
TTX_SRES
V
DDD2
V
40
RGB LUT
(OR BYPASS)
HORIZONTAL
SCALER
VIDEO
ENCODER
OSCILLATOR/
XTALI
27 MHz
SSD2
DTO
V
DDA1
V
SSA1
29
INSERTION
VERTICAL
SCALER AND
ANTI-FLICKER
SAA7102H SAA7103H
GENERATOR
13343523
VSVGC
FSVGC
DUMP
33
CURSOR
FILTER
TIMING
14 21
CBO
RSET
32
31
HSVGC
TTXRQ_XCLKO2
TRST
TDI
38
TCLK
8
37
RGB TO Y-CB-C
MATRIX
(OR BYPASS)
FIFO
TRIPLE
DAC
I2C-BUS
CONTROL
11 522 24
12
SDA
SCL
TDO
7
R
RESET
TMS
6
30
BLUE_CB_CVBS
28
GREEN_VBS_CVBS
27
RED_CR_C
26
HSM_CSYNC
25
VSM
MHB963
V
DDA2
39
36
XTAL
handbook, full pagewidth
Fig.1 Block diagram.
Digital video encoder SAA7102; SAA7103

6 PINNING

SYMBOL
PIN
BGA156 QFP44
PIN
TYPE
(1)
DESCRIPTION
PD8 B2 1 I see Tables 25 to 29 for pin assignment PD9 B1 2 I see Tables 25 to 29 for pin assignment PD10 C2 3 I see Tables 25 to 29 for pin assignment PD11 C1 4 I see Tables 25 to 29 for pin assignment RESET D2 5 I reset input; active LOW TMS D3 6 I test mode select input for Boundary Scan Test (BST); note 2 TDO D1 7 O test data output for BST; note 2 TCLK E1 8 I test clock input for BST; note 2 V
SSD1
V
DDD1
SCL E2 11 I I SDA G2 12 I/O I
E4 9 S digital ground 1 (peripheral cells) F4 10 S digital supply voltage 1 (3.3 V, peripheral cells)
2
C-bus serial clock input
2
C-bus serial data input/output
FSVGC G1 13 I/O frame synchronization output to Video Graphics Controller
(VGC) (optional input) VSVGC F1 14 I/O vertical synchronization output to VGC (optional input) PIXCLKI F2 15 I pixel clock input (looped through) PD3 F3 16 I MSB 4 with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for pin
B
assignment PD2 H1 17 I MSB 5 with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for
B
pin assignment PD1 H2 18 I MSB 6 with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for
B
pin assignment PD0 H3 19 I MSB 7 with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for
B
pin assignment PIXCLKO G4 20 O pixel clock output to VGC CBO G3 21 O composite blanking output to VGC; active LOW HSVGC E3 22 I/O horizontal synchronization output to VGC (optional input) TTX_SRES C3 23 I teletext input or sync reset input TTXRQ_XCLKO2 C4 24 O teletext request output or 13.5 MHz clock output of the crystal
oscillator VSM D7 25 O vertical synchronization output to monitor (non-interlaced
auxiliary RGB) HSM_CSYNC D8 26 O horizontal synchronization output to monitor (non-interlaced
auxiliary RGB) or composite sync for RGB-SCART RED_CR_C C8 27 O analog output of RED or C
or C signal
R
GREEN_VBS_CVBS C7 28 O analog output of GREEN or VBS or CVBS signal V
DDA1
A10,B9,
29 S analog supply voltage 1 (3.3 V for DACs)
C9, D9
BLUE_CB_CVBS C6 30 O analog output of BLUE or C
or CVBS signal
B
2001 Sep 25 6
Digital video encoder SAA7102; SAA7103
SYMBOL
PIN
BGA156 QFP44
PIN
TYPE
(1)
DESCRIPTION
RSET A9 31 O DAC reference pin; connected via 1 kresistor to analog ground
(do not use capacitor in parallel with 1 k resistor) DUMP A7, B7 32 O DAC reference pin; connected via 12 resistor to analog
ground V
SSA1
A8, B8 33 S analog ground 1 XTALO A6 34 O crystal oscillator output XTALI A5 35 I crystal oscillator input V
DDA2
B6, D6 36 S analog supply voltage 2 (3.3 V for DACs and oscillator) TRST A4 37 I test reset input for BST; active LOW; notes 3 and 4 TDI B5 38 I test data input for BST; note 2 V
SSD2
V
DDD2
PD4 A3 41 I MSB 3 with C
C5, D5 39 S digital ground 2
D4 40 S digital supply voltage 2 (3.3 V, core)
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for pin
B
assignment
PD5 B3 42 I MSB 2 with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for pin
B
assignment
PD6 B4 43 I MSB 1 with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for pin
B
assignment
PD7 A2 44 I MSB with C
-Y-CR 4 : 2 : 2; see Tables 25 to 29 for pin
B
assignment
Notes
1. Pin type: I = input, O = output, S = supply.
2. In accordance with the
“IEEE1149.1”
standard the pins TDI, TMS, TCLK and TRST are input pins with an internal
pull-up resistor and TDO is a 3-state output pin.
3. For board design without boundary scan implementation connect TRST to ground.
4. This pin provides easy initialization of the Boundary Scan Test (BST) circuit. TRST can be used to force the Test Access Port (TAP) controller to the TEST_LOGIC_RESET state (normal operation) at once.
2001 Sep 25 7
Digital video encoder SAA7102; SAA7103
Table 1 Pin assignment SAA7102E; SAA7103E (top view)
1 2 3 4 5 6 7 8 9 1011121314
A PD7 PD4 TRST XTALI XTALO DUMP V
B PD9 PD8 PD5 PD6 TDI V
C PD11 PD10 TTX_
SRES
D TDO RESET TMS V
TTXRQ_
V
SSD2
XCLKO2
DDD2VSSD2VDDA2
BLUE_
CB_
CVBS
DDA2
DUMP V
GREEN_
VBS_
CVBS
VSM HSM_
CSYNC
E TCLK SCL HSVGC V
F VSVGCPIXCLKI PD3 V
SSD1
DDD1
G FSVGC SDA CBO PIXCLKO
H PD2 PD1 PD0
J
RSET V
SSA1
SSA1VDDA1
RED_
V
CR_
C
V
DDA1
DDA1
DDA1
K
L
M
N
P
2001 Sep 25 8
Digital video encoder SAA7102; SAA7103
MHB907
handbook, halfpage
P N
M
L K
J H G F E D C B A
234567891011121314
1
SAA7102E SAA7103E
handbook, full pagewidth
PD8
PD9 PD10 PD11
RESET
TMS TDO
TCLK
V
SSD1
V
DDD1
SCL
Fig.2 Pin configuration (SAA7102E; SAA7103E).
PD7
PD6
PD5
44
43
42
1 2 3 4 5 6 7 8
9 10 11
DDD2VSSD2
PD4
V
41
40
SAA7102H SAA7103H
TDI
39
38
TRST 37
DDA2
V 36
XTALI 35
XTALO 34
33
V
SSA1
32
DUMP
31
RSET
30
BLUE_CB_CVBS V
29
DDA1
28
GREEN_VBS_CVBS
27
RED_CR_C
26
HSM_CSYNC
25
VSM
24
TTXRQ_XCLKO2
23
TTX_SRES
12
13
14
15
16
SDA
FSVGC
VSVGC
PD3
PIXCLKI
Fig.3 Pin configuration (SAA7102H; SAA7103H).
2001 Sep 25 9
17
PD2
18
PD1
19
PD0
20
21
CBO
PIXCLKO
22
MHB908
HSVGC
Digital video encoder SAA7102; SAA7103

7 FUNCTIONAL DESCRIPTION

The digital video encoder encodes digital luminance and colour difference signals (CB-Y-CR) or digital RGB signals into analog CVBS, S-video and, optionally, RGB or CR-Y-CB signals. NTSC M, PAL B/G and sub-standards are supported.
The SAA7102; SAA7103 can be directly connected to a PC video graphics controller with a maximum resolution of 800 × 600 at a 50 or 60 Hz frame rate. A programmable scalerscales the computer graphics picture sothatit will fit into a standard TV screen with an adjustable underscan area.Non-interlaced-to-interlaced conversion is optimized with an adjustable anti-flicker filter for a flicker-free display at a very high sharpness.
Besides the most common 16-bit 4 :2:2 CB-Y-CR input format (using 8 pins with double edge clocking), other CB-Y-CR and RGB formats are also supported; see Tables 25 to 29.
Acomplete3 × 256bytesLook-Up Table (LUT), which can be used, for example, as a separate gamma corrector, is locatedin the RGB domain; it canbeloaded either through the video input port PD (Pixel Data) or via the I2C-bus.
The SAA7102; SAA7103 supports a 32 × 32 × 2-bit hardware cursor, the pattern of which can also be loaded through the video input port or via the I2C-bus.
For ease of analog post filtering the signals are twice oversampled to 27 MHz before digital-to-analog conversion.
The total filter transfer characteristics (scaler and anti-flicker filter are not taken into account) are illustrated in Figs 4 to 8. All three DACs are realized with full 10-bit resolution. The CR-Y-CB to RGB dematrix can be bypassed (optionally) in order to provide the upsampled CR-Y-CB input signals.
The8-bitmultiplexedCB-Y-CRformatsare (D1 format) compatible, but the SAV and EAV codes can be decoded optionally, when the device is operated in slave mode. For assignment of the input data to the rising or falling clock edge see Tables 25 to 29.
In order to display interlaced RGB signals through a euro-connector TV set, a separate digital composite sync signal (pin 26) can be generated; it can be advanced up to 31 periods of the 27 MHz crystal clock in order to be adapted to the RGB processing of a TV set.
The SAA7102; SAA7103 synthesizes all necessary internal signals, colour subcarrier frequency and synchronization signals from that clock.
Wide screen signalling data can be loaded via the I2C-bus and is inserted into line 23 for standards using a 50 Hz field rate.
“ITU-R BT.656”
It is also possible to encode interlaced 4 :2:2 video signals such as PC-DVD; for that the anti-flicker filter, and in most cases the scaler, will simply be bypassed.
Besides the applications for video output, the SAA7102; SAA7103 can also be used for generating a kind of auxiliary VGA output, when the RGB non-interlaced input signal is fed to the DACs. This may be of interest for example, when the graphics controller provides a second graphics window at its video output port.
The basic encoder function consists of subcarrier generation, colour modulation and insertion of synchronization signals at a crystal-stable clock rate of
13.5 MHz (independent of the actual pixel clock used at the input side), corresponding to an internal 4 :2:2 bandwidth in the luminance/colour difference domain. Luminance and chrominance signals are filtered in accordance with the standard requirements of and
“ITU-R BT.470-3”
.
“RS-170-A”
VPS data for program dependent automatic start and stop of such featured VCRs is loadable via the I2C-bus.
The IC also contains Closed Caption and extended data servicesencoding(line 21),andsupportsteletext insertion fortheappropriatebitstreamformatata27 MHz clock rate (see Fig.14). It is also possible to load data for the copy generation management system into line 20 of every field (525/60 line counting).
A number of possibilities are provided for setting different video parameters such as:
Black and blanking level control
Colour subcarrier frequency
Variable burst amplitude etc.
2001 Sep 25 10
Digital video encoder SAA7102; SAA7103

7.1 Reset conditions

To activate the reset a pulse at least of 2 crystal clocks duration is required.
During reset (RESET = LOW) plus an extra 32 crystal clock periods, FSVGC, VSVGC, CBO, HSVGC and TTX_SRES are set to input mode and HSM_CSYNC and VSM are set to 3-state. A reset also forces the I2C-bus interface to abort any running bus transfer and sets it into receive condition.
After reset, the state of the I/Os and other functions is defined by the strapping pins until an I2C-bus access redefines the corresponding registers; see Table 2.
Table 2 Strapping pins
PIN TIED PRESET
FSVGC (pin 13) LOW NTSC M encoding, PIXCLK
fits to 640 × 480 graphics input
HIGH PAL B/G encoding, PIXCLK
fits to 640 × 480 graphics input
VSVGC (pin 14) LOW 4:2:2 Y-C
input (format 0)
HIGH 4:4:4 RGB graphics input
(format 3)
CBO (pin 21) LOW input demultiplex phase:
LSB=LOW
HIGH input demultiplex phase:
LSB = HIGH
HSVGC (pin 22) LOW input demultiplex phase:
MSB = LOW
HIGH input demultiplex phase:
MSB = HIGH
TTXRQ_XCLKO2 (pin 24)
LOW slave (FSVGC, VSVGC and
HSVGC are inputs, internal colour bar is active)
HIGH master (FSVGC, VSVGC
and HSVGC are outputs)
B-CR
graphics
If Y-CB-CR is being applied as a 27 Mbyte/s data stream, the output of the input formatter can be used directly to feed the video encoder block.

7.3 RGB LUT

The three 256 byte RAMs of this block can be addressed by three 8-bit wide signals, thus it can be used to build any transformation, e.g. a gamma correction for RGB signals. In the event that the indexed colour data is applied, the RAMs are addressed in parallel.
The LUTs can eitherbe loaded by an I2C-bus write access or can be part of the pixel data input through the PD port. Inthe latter case, 256 × 3 bytesfor the R, G andB LUT are expected at the beginning of the input video line, two lines before the line that has been defined as first active line, until the middle of the line immediately preceding the first active line. The first 3 bytes represent the first RGB LUT data, and so on.

7.4 Cursor insertion

The cursor bit map is set up as follows: each pixel occupies 2 bits. The meaning of these bits depends on the CMODE I2C-bus register as described in Table 5. Transparent means that the input pixels are passed through, the ‘cursor colours’ can be programmed in separate registers.
The bit map is stored with 4 pixels per byte, aligned to the least significant bit. So the first pixel is in bits 0 and 1, the next pixel in bits 3 and 4 and so on. The first index is the column, followed by the row; index 0,0 is the upper left corner.
Table 3 Layout of a byte in the cursor bit map
D7 D6 D5 D4 D3 D2 D1 D0
pixel n + 3 pixel n + 2 pixel n + 1 pixel n D1 D0 D1 D0 D1 D0 D1 D0

7.2 Input formatter

The input formatter converts all accepted PD input data formats, either RGB or Y-CB-CR, to a common internal RGB or Y-CB-CR data stream.
When double-edge clocking is used, the data is internally split into portions PPD1 and PPD2. The clock edge assignment must be set according to the I2C-bus control bits EDGE1 and EDGE2 for correct operation.
2001 Sep 25 11
Digital video encoder SAA7102; SAA7103
Table 4 Cursor bit map
BYTE D7 D6 D5 D4 D3 D2 D1 D0
0row0
column 3
1row0
column 7
2row0
column
11
... ... ... ... ...
6row0
column
27 7row0
column
31
... ... ... ... ...
254 row 31
column
27 255 row 31
column
31
Table 5 Cursor modes
CURSOR
PATTERN
00 second cursor colour second cursor colour 01 first cursor colour first cursor colour 10 transparent transparent 11 inverted input auxiliary cursor
7.5 RGB Y-C
RGB input signals to be encoded to PAL or NTSC are converted to the Y-C colour difference signals are fed through low-pass filters and formatted to a ITU-R BT.601 like 4 : 2 : 2 data stream for further processing.
row 0 column 2
row 0 column 6
row 0 column 10
row 0 column 26
row 0 column 30
row 31 column 26
row 31 column 30
CURSOR MODE
CMODE = 0 CMODE = 1
matrix
B-CR
colour space in this block. The
B-CR
row 0 column 1
row 0 column 5
row 0 column 9
row 0 column 25
row 0 column 29
row 31 column 25
row 31 column 29
colour
row 0 column 0
row 0 column 4
row 0 column 8
row 0 column 24
row 0 column 28
row 31 column 24
row 31 column 28

7.6 Horizontal scaler

The high quality horizontal scaler operates on the 4 : 2 : 2 data stream. Its control engines compensate the colour phase offset automatically.
The scaler starts processing after a programmable horizontal offset and continues with a number of input pixels. Each input pixel is a programmable fraction of the current output pixel (XINC/4096). A special case is XINC = 0, this sets the scaling factor to 1.
If the SAA7102; SAA7103 input data is in accordance with
“ITU-R BT.656”
event, XINC needs to be set to 2048 for a scaling factor of 1. With higher values, upscaling will occur.
The phase resolution of the circuit is 12 bits, giving a maximum offset of 0.2 after 800 input pixels. Small FIFOs rearrange a 4 : 2 : 2 data stream at the scaler output.
7.7 Vertical scaler and anti-flicker filter
The functions scaling, Anti-Flicker Filter (AFF) and re-interlacing are implemented in the vertical scaler.
Besides the entire input frame, it receives the first and last lines of the border to allow anti-flicker filtering.
Thecircuitgeneratestheinterlacedoutputfieldsbyscaling down the input frames with different offsets for odd and even fields. Increasing the YSKIP setting reduces the anti-flicker function. A YSKIP value of 4095 switches it off; see Table 94.
Theprogrammingissimilartothehorizontalscaler. For the re-interlacing,the resolutions of the offsetregisters are not sufficient, so the weighting factors for the first lines can also be adjusted. YINC = 0 sets the scaling factor to 1; YIWGTO and YIWGTE must not be 0.
Dueto the re-interlacing, the circuit can perform upscaling. The maximum factor depends on the setting of the anti-flicker function and can be derived from the formulae given in Section 7.17.
, the scaler enters another mode. In this
The matrix and formatting blocks can be bypassed for Y-CB-CR graphics input.
WhentheauxiliaryVGAmodeisselected,theoutputofthe cursor insertion block is immediately directed to the triple DAC.
2001 Sep 25 12
Digital video encoder SAA7102; SAA7103

7.8 FIFO

The FIFO acts as a buffer to translate from the PIXCLK clock domain to the XTAL clock domain. The write clock is PIXCLK and the read clock is XTAL. An underflow or overflow condition can be detected via the I2C-bus read access.
In order to avoid underflows and overflows, it is essential that the frequency of the synthesized PIXCLK matches to the input graphics resolution and the desired scaling factor. It is suggested to refer to Tables 6 to 23 for some representative combinations.

7.9 Border generator

When the graphics picture is to be displayed as interlaced PAL, NTSC, S-video or RGB on a TV screen, it is desired in many cases not to lose picture information due to the inherent overscanning of a TV set. The desired amount of underscan area, which is achieved through appropriate scaling in the vertical and horizontal direction, can be filled in the border generator with an arbitrary true colour tint.

7.10 Oscillator and Discrete Time Oscillator (DTO)

The master clock generation is realized as a 27 MHz crystal oscillator, which can operate with either a fundamental wave crystal or a 3rd-harmonic crystal.
The crystal clock supplies the DTO of the pixel clock synthesizer, the video encoder and the I2C-bus control block. It also usually supplies the triple DAC, with the exceptionof the auxiliary VGA mode, where thetripleDAC is clocked by the pixel clock (PIXCLK).
The DTO can be programmed to synthesize all relevant pixel clock frequencies between circa 18 and 44 MHz.

7.11 Low-pass Clock Generation Circuit (CGC)

This block reduces the phase jitter of the synthesized pixel clock. It works as a tracking filter for all relevant synthesized pixel clock frequencies.

7.12 Encoder

7.12.1 VIDEO PATH The encoder generates luminance and colour subcarrier
output signals from the Y, CBand CR baseband signals, which are suitable for use as CVBS or separate Y and C signals.
Input to the encoder, at 27 MHz clock (e.g. DVD), is either originated from computer graphics at pixel clock, fed throughtheFIFOandbordergenerator,oraITU-R BT.656 style signal.
Luminance is modified in gain and in offset (the offset is programmable in a certain range to enable different black level set-ups). A blanking level can be set after insertion of a fixed synchronization pulse tip level, in accordance with standard composite synchronization schemes. Other manipulations used for the Macrovision anti-taping process, such as additional insertion of AGC super-white pulses (programmable in height), are supported by the SAA7102 only.
To enable easy analog post filtering, luminance is interpolated from a 13.5 MHz data rate to a 27 MHz data rate, thereby providing luminance in a 10-bit resolution. The transfer characteristics of the luminance interpolation filter are illustrated in Figs 7 and 8. Appropriate transients at start/end of active video and for synchronization pulses are ensured.
Chrominance is modified in gain (programmable separately for CBand CR), and a standard dependent burst is inserted, before baseband colour signals are interpolated from a 6.75 MHz data rate to a 27 MHz data rate. One of the interpolation stages can be bypassed, thus providing a higher colour bandwidth, which can be usedfortheY and Coutput.Thetransfer characteristics of the chrominance interpolation filter are illustrated in Figs 4 and 5.
The amplitude (beginning and ending) of the inserted burst, is programmable in a certain range that is suitable for standard signals and for special effects. After the succeeding quadrature modulator, colour is provided on the subcarrier in 10-bit resolution.
The numeric ratio between the Y and C outputs is in accordance with the standards.
7.12.2 TELETEXT INSERTION AND ENCODING (NOT
SIMULTANEOUSLY WITH REAL
Pin TTX_SRES receives a WST or NABTS teletext bitstream sampled at the crystal clock. At each rising edge of the output signal (TTXRQ) a single teletext bit has to be provided after a programmable delay at input pin TTX_SRES.
-TIME CONTROL)
2001 Sep 25 13
Digital video encoder SAA7102; SAA7103
Phase variant interpolation is achieved on this bitstream in the internal teletext encoder, providing sufficient small phase jitter on the output text lines.
TTXRQ_XCLKO2 provides a fully programmable request signal to the teletext source, indicating the insertion period of bitstream at lines which can be selected independently for both fields. The internal insertion window for text is set to 360 (PAL WST), 296 (NTSC WST) or 288 (NABTS) teletext bits including clock run-in bits. The protocol and timing are illustrated in Fig.14.
Alternatively, this pin can be provided with a buffered crystal clock (XCLK) of 13.5 MHz.
7.12.3 VIDEO PROGRAMMING SYSTEM (VPS) ENCODING Five bytes of VPS information can be loaded via the
I2C-bus and will be encoded in the appropriate format into line 16.
7.12.4 CLOSED CAPTION ENCODER Using this circuit, data in accordance with the specification
of Closed Caption or extended data service, delivered by the control interface, can be encoded (line 21). Two dedicated pairs of bytes (two bytes per field), each pair preceded by run-in clocks and framing code, are possible.
Theactual line number in which datais to be encoded, can be modified in a certain range.
The data clock frequency is in accordance with the definition for NTSC M standard 32 times horizontal line frequency.
DataLOWattheoutputoftheDACscorresponds to 0 IRE, data HIGH at the output of the DACs corresponds to approximately 50 IRE.
Itis also possible to encode Closed Caption data for50 Hz field frequencies at 32 times the horizontal line frequency.
7.12.5 ANTI-TAPING (SAA7102 ONLY) For more information contact your nearest Philips
Semiconductors sales office.

7.13 RGB processor

This block contains a dematrix in order to produce RED, GREEN and BLUE signals to be fed to a SCART plug.
Before Y, CBand CR signals are de-matrixed, individual gain adjustment for Y and colour difference signals and 2 times oversampling for luminance and 4 times oversampling for colour difference signals is performed.
The transfer curves of luminance and colour difference components of RGB are illustrated in Figs 8 and 9.

7.14 Triple DAC

Both Y and C signals are converted from digital-to-analog in a 10-bit resolution at the output of the video encoder. Y and C signals are also combined into a 10-bit CVBS signal.
The CVBS output signal occurs with the same processing delay as the Y, C and optional RGB or CR-Y-CB outputs. Absolute amplitude at the input of the DAC for CVBS is reduced by15⁄16with respect to Y and C DACs to make maximum use of the conversion ranges.
RED, GREEN and BLUE signals are also converted from digital-to-analog, each providing a 10-bit resolution.
The reference currents of all three DACs can be adjusted individually in order to adapt for different output signals. In addition, all reference currents can be adjusted commonly to compensate for small tolerances of the on-chip band gap reference voltage.
Alternatively, all currents can be switched off to reduce power dissipation.
All three outputs can be used to sense for an external load (usually 75 ) during a pre-defined output. A flag in the I2C-bus status byte reflects whether a load is applied or not.
If the SAA7102; SAA7103 is required to drive a second (auxiliary) VGA monitor, the DACs receive the signal directly from the cursor insertion block. In this event, the DACs are clocked at the incoming PIXCLKI instead of the 27 MHz crystal clock used in the video encoder.

7.15 Timing generator

The synchronization of the SAA7102; SAA7103 is able to operate in two modes; slave mode and master mode.
In slave mode, the circuit accepts sync pulses on the bidirectional FSVGC (frame sync), VSVGC (vertical sync) and HSVGC (horizontal sync) pins: the polarities of the signals can be programmed. The frame sync signal is only necessary when the input signal is interlaced, in other casesitmaybeomitted.Iftheframesyncsignalispresent, it is possible to derive the vertical andthe horizontal phase from it by setting the HFS and VFS bits. HSVGC and VSVGC are not necessary in this case, so it is possible to switch the pins to output mode.
Alternatively, the device can be triggered by auxiliary codes in a ITU-R BT.656 data stream via PD7 to PD0.
2001 Sep 25 14
Digital video encoder SAA7102; SAA7103
Only vertical frequencies of 50 and 60 Hz are allowed with the SAA7102; SAA7103. In slave mode, it is not possible to lock the encoders colour carrier to the line frequency with the PHRES bits.
In the (more common) master mode, the time base of the circuit is continuously free-running. The IC can output a frame sync at pin FSVGC, a vertical sync at pin VSVGC, a horizontal sync at pin HSVGC and a composite blanking signal at pin CBO. All of these signals are defined in the PIXCLK domain. The duration of HSVGC and VSVGC are fixed,theyare64 clocks for HSVGC and 1 line for VSVGC. The leading slopes are in phase and the polarities can be programmed.
The input line length can be programmed. The field length is always derived from the field length of the encoder and the pixel clock frequency that is being used.
CBO acts as a data request signal. The circuit accepts input data at a programmable number of clocks after CBO goes active. This signal is programmable and it is possible to adjust the following (see Figs 12 and 13):
The horizontal offset
The length of the active part of the line
The distance from active start to first expected data
The vertical offset separately for odd and even fields
The number of lines per input field.
In most cases, the vertical offsets for odd and even fields are equal. If they are not, then the even field will start later. The SAA7102; SAA7103 will also request the first input lines in the even field, the total number of requested lines will increase by the difference of the offsets.
As stated above, the circuit can be programmed to accept the look-up and cursor data in the first 2 lines of each field. The timing generator provides normal data request pulses fortheselines;thedurationisthesameasforregularlines. The additional request pulses will be suppressed with LUTL set to logic 0; see Table 104. The other vertical timings do not change in this case, so the first active line can be number 2, counted from 0.
2
7.16 I
C-bus interface
The register bit map consists of an RGB Look-Up Table (LUT), a cursor bit map and control registers. The LUT containsthree banks of 256 bytes, whereeach RGB triplet isassigned to one address. Thus a write access needsthe LUT address and three data bytes following subaddress FFH. For further write access auto-incrementing of the LUT address is performed. The cursor bit map access is similar to the LUT access but contains only a single byte per address.
2
The I
C-bus slave address is defined as 88H.

7.17 Programming the SAA7102; SAA7103

In order to program the SAA7102; SAA7103 it is first necessary to determine the input and output field timings. The timings are controlled by decoding binary counters that index the position in the current line and field respectively. In both cases, 0 means the start of the sync pulse.
At 60 Hz, the first visible pixel has the index 256, 710 pixels can be encoded; at 50 Hz, the index is 284, 702 pixels can be visible. Some variables are defined below:
InPix: the number of active pixels per input line
InPpl: the length of the entire input line in pixel clocks
InLin: the number of active lines per input field/frame
TPclk: the pixel clock period
OutPix: the number of active pixels per output line
OutLin: the number of active lines per output field
TXclk: the encoder clock period (37.037 ns).
Theoutput lines should be centred onthescreen. It should be noted that the encoder has 2 clocks per pixel; see Table 71.
ADWHS = 256 + 710 OutPix (60 Hz); ADWHS = 284 + 702 OutPix (50 Hz); ADWHE = ADWHS + OutPix × 2 (all frequencies)
For vertical, the procedure is the same. At 60 Hz, the first line with video information is number 19, 240 lines can be active. For 50 Hz, the numbers are 23 and 287; see Table 77.
The I2C-bus interface is a standard slave transceiver, supporting 7-bit slave addresses and 400 kbits/s guaranteed transfer rate. It uses 8-bit subaddressing with an auto-increment function. All registers are write and read, except two read only status bytes.
2001 Sep 25 15
FAL 19
FAL 23
LAL = FAL + OutLin (all frequencies)
240 OutLin
+=
--------------------------------­2
287 OutLin
+=
--------------------------------­2
(60 Hz);
(50 Hz);
Digital video encoder SAA7102; SAA7103
Most TV sets use overscan, and not all pixels respectively lines are visible. There is no standard for the factor, it is highly recommended to make the number of output pixels and lines adjustable. A reasonable underscan factor is 10%, giving approximately 640 output pixels per line.
The total number of pixel clocks per line and the input horizontal offset need to be chosen next. The only constraint is that the horizontal blanking has at least 10 clock pulses.
The required pixel clock frequency can be determined in thefollowingway: Due to the limited internal FIFO size, the input path has to provide all pixels in the same time frame as the encoders vertical active time. The scaler also hasto process the first and last border lines for the anti-flicker function. Thus:
TPclk
=
TPclk
=
and for the pixel clock generator (all frequencies); see Table 80.
The input vertical offset can be taken from the assumption thatthescaler should just have finished writing the first line when the encoder starts reading it:
YOFS
YOFS
In most cases the vertical offsets will be the same for odd and even fields. The results should be rounded down.
262.5 1716× TXclk×
---------------------------------------------------------------------------------------­InPpl integer
×
312.5 1728× TXclk×
---------------------------------------------------------------------------------------­InPpl integer
×
FAL 1716× TXclk×
---------------------------------------------------­InPpl TPclk×
FAL 1728× TXclk×
---------------------------------------------------­InPpl TPclk×
InLin 2+

----------------------

OutLin
InLin 2+

----------------------

OutLin
PCL
2=
(60 Hz)
2=
(50 Hz)
262.5×
312.5×
(60 Hz)
(50 Hz)
TXclk
-------------- ­TPclk
21
×=
2
YPIX = InLin YSKIPdefines the anti-flicker function. 0 means maximum
flicker reduction but minimum vertical bandwidth, 4095 gives no flicker reduction and maximum bandwidth.
YINC
YIWGTO
YIWGTE
When YINC = 0 it sets the scaler to scaling factor 1. The initial weighting factors must not be set to 0 in this case. YIWGTE may go negative. In this event, YINC should be added and YOFSE incremented. This can be repeated as often as necessary to make YIWGTE positive.
Due to the limited amount of memory it is not possible to get valid vertical scaler settings only from the formulae above. In some cases it is necessary to adjust the vertical offsets or the scaler increment to get valid settings. Tables 6 to 23 show verified settings. They are organised in the following way: The tables are separate for the standard to be encoded, the input resolution and three different anti-flicker filter settings. Each table contains 5 vertical sizes with 5 different offsets. They are intended to be selected according to the current TV set. The corresponding horizontal resolutions of 640 pixels give proper aspect ratios. They can be adjusted according to the formulae above. The next line gives a minimum size intended to fit on the screen under all circumstances. The corresponding horizontal resolution is 620 pixels. Overscan is only possible with an input resolution of 800 × 600 pixels. Where possible, the corresponding settings are given on the last lines of the tables.
OutLin
---------------------­InLin 2+
YINC
------------- ­2
YINC YSKIP
=
------------------------------------- -
YSKIP

1
+
× 4096×=
-----------------

4095
2048+=
2
Once the timings are known the scaler can be programmed.
XOFS can be chosen arbitrarily, the condition being that XOFS + XPIX HLEN is fulfilled. Values given by the VESA display timings are preferred.
HLEN = InPpl 1
XINC needs to be rounded up, it needs to be set to 0 for a scaling factor of 1.
2001 Sep 25 16
XPIX
InPix
= XINC
------------ ­2
OutPix
----------------- ­InPix
4096×=
Digital video encoder SAA7102; SAA7103

7.18 Input levels and formats

The SAA7102; SAA7103 accepts digital Y, CB,CR or RGB data with levels (digital codes) in accordance with
“ITU-R BT.601”
For C and CVBS outputs, deviating amplitudes of the colour difference signals can be compensated for by independent gain control setting, while gain for luminance is set to predefined values, distinguishable for 7.5 IRE set-up or without set-up.
The RGB, respectively CR-Y-CBpath features an individual gain setting for luminance (GY) and colour difference signals (GCD). Reference levels are measured with a colour bar, 100% white, 100% amplitude and 100% saturation.
Table 6 Y scaler programming at NTSC, input frame size: 640 × 400, full anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 1851099 2163 0 52 52 3128 1080 212 2 31 243 1851099 2163 0 56 56 3128 1080 212 0 33 245 1851099 2163 0 60 60 3128 1080 212 2 35 247 1851099 2163 0 63 63 3128 1080 212 4 37 249 1851099 2163 0 67 67 3128 1080 214 4 28 242 1836201 2181 0 50 50 3138 1090 214 2 30 244 1836201 2181 0 54 54 3138 1090 214 0 32 246 1836201 2181 0 57 57 3138 1090 214 2 34 248 1836201 2181 0 61 61 3138 1090 214 4 36 250 1836201 2181 0 65 65 3138 1090 216 4 27 243 1817578 2202 0 47 47 3148 1100 216 2 29 245 1817578 2202 0 51 51 3148 1100 216 0 31 247 1817578 2202 0 55 55 3148 1100 216 2 33 249 1817578 2202 0 58 58 3148 1100 216 4 35 251 1817578 2202 0 62 62 3148 1100 218 4 26 244 1802680 2222 0 45 45 3158 1110 218 2 28 246 1802680 2222 0 49 49 3158 1110 218 0 30 248 1802680 2222 0 53 53 3158 1110 218 2 32 250 1802680 2222 0 56 56 3158 1110 218 4 34 252 1802680 2222 0 60 60 3158 1110 220 4 25 245 1784057 2245 0 43 43 3168 1120 220 2 27 247 1784057 2245 0 46 46 3168 1120 220 0 29 249 1784057 2245 0 50 50 3168 1120 220 2 31 251 1784057 2245 0 54 54 3168 1120 220 4 33 253 1784057 2245 0 57 57 3168 1120
Overscan (horizontal size: 710 pixels)
241 0 0 0 0 0 0 0 0 0 0
Small size (horizontal size: 620 pixels)
204 0 37 241 1925590 2079 0 70 70 3087 1039
; see Table 23.
2001 Sep 25 17
Digital video encoder SAA7102; SAA7103
Table 7 Y scaler programming at NTSC, input frame size: 640 × 400, half anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 1851099 3123 1820 52 52 3668 596 212 2 31 243 1851099 3123 1820 56 56 3668 596 212 0 33 245 1851099 3123 1820 60 60 3668 596 212 2 35 247 1851099 3123 1820 64 64 3668 596 212 4 37 249 1851099 3123 1820 67 67 3668 596 214 4 28 242 1836201 3135 1790 50 50 3683 611 214 2 30 244 1836201 3135 1790 54 54 3683 611 214 0 32 246 1836201 3135 1790 58 58 3683 611 214 2 34 248 1836201 3135 1790 61 61 3683 611 214 4 36 250 1836201 3135 1790 65 65 3683 611 216 4 27 243 1817578 3145 1750 48 48 3698 626 216 2 29 245 1817578 3145 1750 51 51 3698 626 216 0 31 247 1817578 3145 1750 55 55 3698 626 216 2 33 249 1817578 3145 1750 59 59 3698 626 216 4 35 251 1817578 3145 1750 63 63 3698 626 218 4 26 244 1802680 3155 1720 45 45 3714 642 218 2 28 246 1802680 3155 1720 49 49 3714 642 218 0 30 248 1802680 3155 1720 53 53 3714 642 218 2 32 250 1802680 3155 1720 56 56 3714 642 218 4 34 252 1802680 3155 1720 60 60 3714 642 220 4 25 245 1784057 3165 1680 43 43 3729 657 220 2 27 247 1784057 3165 1680 47 47 3729 657 220 0 29 249 1784057 3165 1680 50 50 3729 657 220 2 31 251 1784057 3165 1680 54 54 3729 657 220 4 33 253 1784057 3165 1680 58 58 3729 657
Full size (horizontal size: 710 pixels)
241 0 0 0 0 0 0 0 0 0 0
Small size (horizontal size: 620 pixels)
204 0 37 241 1925590 3087 1980 70 70 3589 551
2001 Sep 25 18
Digital video encoder SAA7102; SAA7103
Table 8 Y scaler programming at NTSC, input frame size: 640 × 400, no anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 1851099 4094 3655 52 52 4092 216 212 2 31 243 1851099 4094 3655 56 56 4092 216 212 0 33 245 1851099 4094 3655 60 60 4092 216 212 2 35 247 1851099 4094 3655 64 64 4092 216 212 4 37 249 1851099 4094 3655 68 68 4092 216 214 4 28 242 1836201 4090 3580 50 50 4091 253 214 2 30 244 1836201 4090 3580 54 54 4091 253 214 0 32 246 1836201 4090 3580 58 58 4091 253 214 2 34 248 1836201 4088 3580 61 61 4091 253 214 4 36 250 1836201 4088 3580 65 65 4091 253 216 4 27 243 1817578 4093 3510 48 48 4091 288 216 2 29 245 1817578 4093 3510 52 52 4091 288 216 0 31 247 1817578 4093 3510 55 55 4091 288 216 2 33 249 1817578 4093 3510 59 59 4091 288 216 4 35 251 1817578 4093 3510 63 63 4091 288 218 4 26 244 1802680 4092 3445 46 46 4092 322 218 2 28 246 1802680 4092 3445 49 49 4092 322 218 0 30 248 1802680 4092 3445 53 53 4092 322 218 2 32 250 1802680 4092 3445 57 57 4092 322 218 4 34 252 1802680 4092 3445 60 60 4092 322 220 4 25 245 1784057 4090 3370 43 43 4091 358 220 2 27 247 1784057 4090 3370 47 47 4091 358 220 0 29 249 1784057 4090 3370 50 50 4091 358 220 2 31 251 1784057 4090 3370 54 54 4091 358 220 4 33 253 1784057 4090 3370 58 58 4091 358
Full size (horizontal size: 710 pixels)
241 0 0 0 0 0 0 0 0 0 0
Small size (horizontal size: 620 pixels)
204 0 37 241 1925590 4087 3950 70 70 4089 66
2001 Sep 25 19
Digital video encoder SAA7102; SAA7103
Table 9 Y scaler programming at NTSC, input frame size: 640 × 480, full anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 2219829 1804 0 63 63 2948 900 212 2 31 243 2219829 1804 0 67 67 2948 900 212 0 33 245 2219829 1804 0 72 72 2948 900 212 2 35 247 2219829 1804 0 77 77 2948 900 212 4 37 249 2219829 1804 0 81 81 2948 900 214 4 28 242 2201206 1819 0 60 60 2957 909 214 2 30 244 2201206 1819 0 65 65 2957 909 214 0 32 246 2201206 1819 0 69 69 2957 909 214 2 34 248 2201206 1819 0 73 73 2957 909 214 4 36 250 2201206 1819 0 78 78 2957 909 216 4 27 243 2178859 1836 0 57 57 2965 917 216 2 29 245 2178859 1836 0 61 61 2965 917 216 0 31 247 2178859 1836 0 66 66 2965 917 216 2 33 249 2178859 1836 0 70 70 2965 917 216 4 35 251 2178859 1836 0 75 75 2965 917 218 4 26 244 2160236 1853 0 54 54 2974 926 218 2 28 246 2160236 1853 0 59 59 2974 926 218 0 30 248 2160236 1853 0 63 63 2974 926 218 2 32 250 2160236 1853 0 68 68 2974 926 218 4 34 252 2160236 1853 0 72 72 2974 926 220 4 25 245 2141613 1870 0 52 52 2982 934 220 2 27 247 2141613 1870 0 56 56 2982 934 220 0 29 249 2141613 1870 0 61 61 2982 934 220 2 31 251 2141613 1870 0 65 65 2982 934 220 4 33 253 2141613 1870 0 69 69 2982 934
Full size (horizontal size: 710 pixels)
241 0 0 0 0 0 0 0 0 0 0
Small size (horizontal size: 620 pixels)
204 0 37 241 2309218 1734 0 84 84 2941 866
2001 Sep 25 20
Digital video encoder SAA7102; SAA7103
Table 10 Y scaler programming at NTSC, input frame size: 640 × 480, half anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 2219829 2704 2048 63 63 3399 327 212 2 31 243 2219829 2704 2048 67 67 3399 327 212 0 33 245 2219829 2704 2048 72 72 3399 327 212 2 35 247 2219829 2704 2048 77 77 3399 327 212 4 37 249 2219829 2704 2048 81 81 3399 327 214 4 28 242 2201206 2730 2048 60 60 3412 340 214 2 30 244 2201206 2730 2048 65 65 3412 340 214 0 32 246 2201206 2730 2048 69 69 3412 340 214 2 34 248 2201206 2730 2048 74 74 3412 340 214 4 36 250 2201206 2730 2048 78 78 3412 340 216 4 27 243 2178859 2756 2048 57 57 3424 352 216 2 29 245 2178859 2756 2048 62 62 3424 352 216 0 31 247 2178859 2756 2048 66 66 3424 352 216 2 33 249 2178859 2756 2048 71 71 3424 352 216 4 35 251 2178859 2756 2048 75 75 3424 352 218 4 26 244 2160236 2781 2048 55 55 3437 365 218 2 28 246 2160236 2781 2048 59 59 3437 365 218 0 30 248 2160236 2781 2048 63 63 3437 365 218 2 32 250 2160236 2781 2048 68 68 3437 365 218 4 34 252 2160236 2781 2048 72 72 3437 365 220 4 25 245 2141613 2807 2048 52 52 3450 378 220 2 27 247 2141613 2807 2048 57 57 3450 378 220 0 29 249 2141613 2807 2048 61 61 3450 378 220 2 31 251 2141613 2807 2048 65 65 3450 378 220 4 33 253 2141613 2807 2048 70 70 3450 378
Full size (horizontal size: 710 pixels)
241 0 0 0 0 0 0 0 0 0 0
Small size (horizontal size: 620 pixels)
204 0 37 241 2309218 2602 2048 84 84 3348 276
2001 Sep 25 21
Digital video encoder SAA7102; SAA7103
Table 11 Y scaler programming at NTSC, input frame size: 640 × 480, no anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 2219829 3607 4095 63 64 3849 3362 212 2 31 243 2219829 3607 4095 68 69 3849 3362 212 0 33 245 2219829 3607 4095 72 73 3849 3362 212 2 35 247 2219829 3607 4095 77 78 3849 3362 212 4 37 249 2219829 3607 4095 81 82 3849 3362 214 4 28 242 2201206 3639 4095 60 61 3866 3413 214 2 30 244 2201206 3639 4095 65 66 3866 3413 214 0 32 246 2201206 3639 4095 69 70 3866 3413 214 2 34 248 2201206 3639 4095 74 75 3866 3413 214 4 36 250 2201206 3639 4095 78 79 3866 3413 216 4 27 243 2178859 3675 4095 57 58 3883 3464 216 2 29 245 2178859 3675 4095 62 63 3883 3464 216 0 31 247 2178859 3675 4095 66 67 3883 3464 216 2 33 249 2178859 3675 4095 71 72 3883 3464 216 4 35 251 2178859 3675 4095 75 76 3883 3464 218 4 26 244 2160236 3709 4095 55 56 3900 3515 218 2 28 246 2160236 3709 4095 59 60 3900 3515 218 0 30 248 2160236 3709 4095 64 65 3900 3515 218 2 32 250 2160236 3709 4095 68 69 3900 3515 218 4 34 252 2160236 3709 4095 73 74 3900 3515 220 4 25 245 2141613 3741 4095 52 53 3917 3566 220 2 27 247 2141613 3741 4095 57 58 3917 3566 220 0 29 249 2141613 3741 4095 61 62 3917 3566 220 2 31 251 2141613 3741 4095 65 66 3917 3566 220 4 33 253 2141613 3741 4095 70 71 3917 3566
Full size (horizontal size: 710 pixels)
241 0 0 0 0 0 0 0 0 0 0
Small size (horizontal size: 620 pixels)
204 0 37 241 2309218 3471 4095 85 86 3781 3158
2001 Sep 25 22
Digital video encoder SAA7102; SAA7103
Table 12 Y scaler programming at NTSC, input frame size: 800 × 600, full anti-flicker filter
TV LINE OFFSET FAL LAL PCL YINC YSKIP YOFSO YOFSE YIWGTO YIWGTE
Regular size (horizontal TV size: 640 pixels, offset ±10 pixels)
212 4 29 241 3551726 1443 0 79 79 2769 721 212 2 31 243 3551726 1443 0 84 84 2769 721 212 0 33 245 3551726 1443 0 90 90 2769 721 212 2 35 247 3551726 1443 0 96 96 2769 721 212 4 37 249 3551726 1443 0 102 102 2769 721 214 4 28 242 3518354 1457 0 75 75 2776 728 214 2 30 244 3518354 1457 0 81 81 2776 728 214 0 32 246 3518354 1457 0 86 86 2776 728 214 2 34 248 3518354 1457 0 92 92 2776 728 214 4 36 250 3518354 1457 0 98 98 2776 728 216 4 27 243 3484982 1470 0 72 72 2782 734 216 2 29 245 3484982 1470 0 77 77 2782 734 216 0 31 247 3484982 1470 0 82 82 2782 734 216 2 33 249 3484982 1470 0 88 88 2782 734 216 4 35 251 3484982 1470 0 94 94 2782 734 218 4 26 244 3451610 1484 0 68 68 2789 741 218 2 28 246 3451610 1484 0 73 73 2789 741 218 0 30 248 3451610 1484 0 79 79 2789 741 218 2 32 250 3451610 1484 0 85 85 2789 741 218 4 34 252 3451610 1484 0 90 90 2789 741 220 4 25 245 3423006 1497 0 65 65 2796 748 220 2 27 247 3423006 1497 0 71 71 2796 748 220 0 29 249 3423006 1497 0 76 76 2796 748 220 2 31 251 3423006 1497 0 81 81 2796 748 220 4 33 253 3423006 1497 0 87 87 2796 748
Full size (horizontal size: 710 pixels)
241 0 18 259 3122659 1642 0 42 42 2867 819
Small size (horizontal size: 620 pixels)
204 0 37 241 3689981 1389 0 106 106 2742 694
2001 Sep 25 23
Loading...
+ 53 hidden pages